This is based on the MIPS dynarec (more or less) with some ARM
borrowings. Seems to be quite fast (under my testing fixed results:
faster than ARM on A1 but not a lot faster than the interpreter on
Android Snapdragon 845) but still some optimizations are missing at the
moment.
Seems to pass my testing suite and compatibility wise is very similar to
arm.
This gets rid of the bloated memmap_win32.c in favour of a much simpler
wrapper. This will be needed in the future since the wrapper does not
support MAP_FIXED maps (necessary for some platforms)
This uses BSON as savestate format, to allow external tools to parse it
(so that we can add proper test of the states). The BSON is not 100%
correct according to spec (no ordered keys) but can be parsed by most
libraries.
This fixes also a bug in the savestate palette color recalculation that
was wrongly overwritting the original palette (which could cause some
problems on some games).
Also fixes some potential issues by serializing some more stuff and
cleans up unused stuff.
Testing shows that states look good and there's only minor differences
in audio ticks, related to buffer sizes (since buffer flushes are
de-synced from video frames due to different frequency).
Add options to select whether to boot from BIOS (default is no, as it is
now) and whether to use the original bios or the builtin one (default is
auto, which tries to use the official but falls back to the builtin if
not found).
This removes libco and all the usages of it (+pthreads).
Rewired all dynarecs and interpreter to return after every frame so that
libretro can process events. This required to make dynarec re-entrant.
Dynarecs were updated to check for new frame on every update (IRQ, cycle
exhaustion, I/O write, etc). The performance impact of doing so should
be minimal (and definitely outweight the libco gains). While at it,
fixed small issues to get a bit more perf: arm dynarec was not idling
correctly, mips was using stack when not needed, etc.
Tested on PSP (mips), OGA (armv7), Linux (x86 and interpreter). Not
tested on Android though.
these case ranges made fps slower, not faster. Keep working on
cpu.c to attain a smaller interpreter core so we can eventually
make this a lot more efficient