Merge pull request 'gigantic nightmare ffmpeg + components pr' (#12) from viv/ffmpeg2 into matriarch

Reviewed-on: https://git.vvn.space/cinnabon/rustro/pulls/12
This commit is contained in:
Vivian Lim 2021-08-17 23:22:08 +00:00
commit 12b879ac9f
15 changed files with 2508 additions and 153 deletions

9
.gitignore vendored
View File

@ -2,3 +2,12 @@
**/*.rs.bk
/.idea
/Cargo.lock
*.so
*.dll
*.dylib
*.mp4
*.ogv
*.gb
*.bin
.DS_Store

View File

@ -8,15 +8,21 @@ edition = "2018"
cc = "^1"
[dependencies]
libretro-sys = "^0.1"
failure = "^0.1"
libloading = "^0.5"
num_enum = "^0.4"
libretro-sys = "0.1"
libloading = "0.5"
num_enum = "0.4"
ffmpeg-next = { version = "4.3.8", optional = true }
sdl2 = { version = "0.32", optional = true }
crossbeam-channel = { version = "0.4", optional = true }
[dev-dependencies]
# example: sdl2_emulator
sdl2 = "^0.32"
crossbeam-channel = "^0.4"
structopt = "^0.3"
sdl2 = "0.32"
crossbeam-channel = "0.4"
structopt = "0.3"
# example: ffmpeg_recorder
ffmpeg4 = "0.4.0"
ffmpeg-next = "4.3.8"
[features]
ffmpeg_comp = ["ffmpeg-next"]
sdl2_comp = ["sdl2", "crossbeam-channel"]

584
examples/ffmpeg_recorder.rs Normal file
View File

@ -0,0 +1,584 @@
extern crate ferretro;
extern crate ffmpeg_next as ffmpeg;
use std::collections::VecDeque;
use std::io::Read;
use std::path::{Path, PathBuf};
use std::pin::Pin;
use structopt::StructOpt;
use ferretro::retro;
use ferretro::retro::ffi::{PixelFormat, GameGeometry, SystemAvInfo, SystemInfo};
use ferretro::retro::wrapper::{LibretroWrapper, RetroCallbacks};
use ferretro::retro::wrapped_types::{Variable2};
use ffmpeg::{ChannelLayout, Packet, codec, filter, format, frame, media};
use ffmpeg::util::rational::Rational;
struct MyEmulator {
retro: retro::wrapper::LibretroWrapper,
sys_info: SystemInfo,
av_info: SystemAvInfo,
audio_buf: Vec<(i16, i16)>,
video_pixel_format: format::Pixel,
prev_video_frame: Option<frame::Video>,
video_frames: VecDeque<frame::Video>,
video_encoder: ffmpeg::encoder::Video,
audio_encoder: ffmpeg::encoder::Audio,
video_filter: filter::Graph,
audio_filter: filter::Graph,
sys_path: Option<PathBuf>,
frame_properties_locked: bool,
octx: ffmpeg::format::context::Output,
frame: u64,
}
fn video_filter(
video_encoder: &ffmpeg::encoder::video::Video,
av_info: &SystemAvInfo,
pix_fmt: PixelFormat,
) -> Result<filter::Graph, ffmpeg::Error> {
let mut vfilter = filter::Graph::new();
let pix_fmt = match pix_fmt {
PixelFormat::ARGB1555 => if cfg!(target_endian = "big") { "rgb555be" } else { "rgb555le" },
PixelFormat::ARGB8888 => "argb",
PixelFormat::RGB565 => if cfg!(target_endian = "big") { "rgb565be" } else { "rgb565le" },
};
let pixel_aspect = av_info.geometry.aspect_ratio / (av_info.geometry.base_width as f32 / av_info.geometry.base_height as f32);
let fps = if av_info.timing.fps == 0.0 { 60.0 } else { av_info.timing.fps };
let args = format!(
"width={}:height={}:pix_fmt={}:frame_rate={}:pixel_aspect={}:time_base=1/{}",
av_info.geometry.base_width,
av_info.geometry.base_height,
pix_fmt,
fps,
pixel_aspect,
fps,
);
eprintln!("🎥 filter args: {}", args);
vfilter.add(&filter::find("buffer").unwrap(), "in", &args)?;
//scale?
vfilter.add(&filter::find("buffersink").unwrap(), "out", "")?;
{
let mut out = vfilter.get("out").unwrap();
out.set_pixel_format(video_encoder.format());
}
vfilter.output("in", 0)?
.input("out", 0)?
.parse("null")?; // passthrough filter for video
vfilter.validate()?;
// human-readable filter graph
eprintln!("{}", vfilter.dump());
Ok(vfilter)
}
fn audio_filter(
audio_encoder: &ffmpeg::codec::encoder::Audio,
sample_rate: f64,
) -> Result<filter::Graph, ffmpeg::Error> {
let mut afilter = filter::Graph::new();
let sample_rate = if sample_rate == 0.0 { 32040.0 } else { sample_rate };
let args = format!("sample_rate={}:sample_fmt=s16:channel_layout=stereo:time_base=1/60", sample_rate);
eprintln!("🔊 filter args: {}", args);
afilter.add(&filter::find("abuffer").unwrap(), "in", &args)?;
//aresample?
afilter.add(&filter::find("abuffersink").unwrap(), "out", "")?;
{
let mut out = afilter.get("out").unwrap();
out.set_sample_format(audio_encoder.format());
out.set_channel_layout(audio_encoder.channel_layout());
out.set_sample_rate(audio_encoder.rate());
}
afilter.output("in", 0)?
.input("out", 0)?
.parse("anull")?;
afilter.validate()?;
// human-readable filter graph
eprintln!("{}", afilter.dump());
if let Some(codec) = audio_encoder.codec() {
if !codec
.capabilities()
.contains(ffmpeg::codec::capabilities::Capabilities::VARIABLE_FRAME_SIZE)
{
eprintln!("setting constant frame size {}", audio_encoder.frame_size());
afilter
.get("out")
.unwrap()
.sink()
.set_frame_size(audio_encoder.frame_size());
}
}
Ok(afilter)
}
impl MyEmulator {
pub fn new(
core_path: impl AsRef<Path>,
sys_path: &Option<impl AsRef<Path>>,
video_path: impl AsRef<Path>,
mut octx: ffmpeg::format::context::Output,
) -> Pin<Box<Self>> {
let lib = libloading::Library::new(core_path.as_ref()).unwrap();
let raw_retro = retro::loading::LibretroApi::from_library(lib).unwrap();
let retro = retro::wrapper::LibretroWrapper::from(raw_retro);
let sys_info = retro.get_system_info();
let mut av_info = retro.get_system_av_info();
let fps_int = av_info.timing.fps.round() as i32;
let fps_int = if fps_int == 0 { 60 } else { fps_int };
let detected_vcodec = octx.format().codec(&video_path, media::Type::Video);
//let detected_acodec = octx.format().codec(&video_path, media::Type::Audio);
let wavname = Path::new("out.wav");
let detected_acodec = octx.format().codec(&wavname, media::Type::Audio);
let vcodec = ffmpeg::encoder::find(detected_vcodec).unwrap().video().unwrap();
let acodec = ffmpeg::encoder::find(detected_acodec).unwrap().audio().unwrap();
let mut video_output = octx.add_stream(vcodec).unwrap();
video_output.set_time_base(Rational::new(1, 60));
let mut video_encoder = video_output.codec().encoder().video().unwrap();
video_encoder.set_bit_rate(2560000);
video_encoder.set_format(video_encoder.codec().unwrap().video().unwrap().formats().unwrap().nth(0).unwrap());
video_encoder.set_time_base(Rational::new(1, 60));
video_encoder.set_frame_rate(Some(Rational::new(fps_int, 1)));
//video_encoder.set_frame_rate(av_info.timing.fps.into());
if av_info.geometry.base_height == 0 && av_info.geometry.base_width == 0 {
av_info.geometry.base_width = 320;
av_info.geometry.base_height = 224;
av_info.geometry.aspect_ratio = 4.33;
}
if av_info.timing.sample_rate == 0.0 {
av_info.timing.sample_rate = 44100.0;
}
video_encoder.set_width(av_info.geometry.base_width);
video_encoder.set_height(av_info.geometry.base_height);
//video_encoder.set_aspect_ratio(av_info.geometry.aspect_ratio as f64);
let pix_fmt = PixelFormat::ARGB1555; // temporary until env call is made
let video_filter = video_filter(&video_encoder, &av_info, pix_fmt).unwrap();
let video_encoder = video_encoder.open_as(vcodec).unwrap();
//video_output.set_parameters(&video_encoder);
let mut audio_output = octx.add_stream(acodec).unwrap();
let mut audio_encoder = audio_output.codec().encoder().audio().unwrap();
//let mut video_encoder = octx.add_stream(vcodec).unwrap().codec().encoder().video().unwrap();
/*
let mut audio_output = octx.add_stream(acodec).unwrap();
let mut audio_encoder = audio_output.codec().encoder().audio().unwrap();
*/
/*
retroarch inits
static bool ffmpeg_init_config(struct ff_config_param *params,
if (!ffmpeg_init_muxer_pre(handle))
if (!ffmpeg_init_video(handle))
av_frame_alloc
*/
audio_encoder.set_bit_rate(640000);
audio_encoder.set_max_bit_rate(990000);
//audio_encoder.set_rate(44100);
audio_encoder.set_rate(av_info.timing.sample_rate.round() as i32);
audio_encoder.set_channels(2);
audio_encoder.set_channel_layout(ChannelLayout::STEREO);
audio_encoder.set_format(audio_encoder.codec().unwrap().audio().unwrap().formats().unwrap().nth(0).unwrap());
audio_encoder.set_time_base(Rational::new(1, 60));
audio_output.set_time_base(Rational::new(1, 60));
let audio_encoder = audio_encoder.open_as(acodec).unwrap();
//audio_output.set_parameters(&audio_encoder);
let audio_filter = audio_filter(&audio_encoder, av_info.timing.sample_rate).unwrap();
//audio_encoder.set_rate(av_info.timing.sample_rate.round() as i32);
octx.write_header().unwrap();
ffmpeg::format::context::output::dump(&octx, 0, None);
let emu = MyEmulator {
retro,
sys_info,
av_info: av_info.clone(),
audio_buf: Default::default(),
video_pixel_format: format::Pixel::RGB555,
prev_video_frame: None,
video_frames: Default::default(),
video_encoder,
audio_encoder,
video_filter,
audio_filter,
sys_path: sys_path.as_ref().map(|x| x.as_ref().to_path_buf()),
frame_properties_locked: false,
octx,
frame: 0
};
let mut pin_emu = Box::pin(emu);
retro::wrapper::set_handler(pin_emu.as_mut());
pin_emu.retro.init();
pin_emu.set_system_av_info(&av_info);
pin_emu
}
fn receive_and_write_packets(&mut self, encoder: EncoderToWriteFrom)
{
let stream_index = match encoder {
EncoderToWriteFrom::Video => 0,
EncoderToWriteFrom::Audio => 1,
};
let mut encoded_packet = ffmpeg::Packet::empty();
loop
{
match match encoder {
EncoderToWriteFrom::Video => self.video_encoder.receive_packet(&mut encoded_packet),
EncoderToWriteFrom::Audio => self.audio_encoder.receive_packet(&mut encoded_packet),
} {
Ok(..) => {
//if encoded_packet.size() > 0 {
encoded_packet.set_stream(stream_index);
eprintln!("📦 Writing packet, pts {:?} dts {:?} size {}", encoded_packet.pts(), encoded_packet.dts(), encoded_packet.size());
if stream_index == 0 {
encoded_packet.rescale_ts(Rational(1, 60), self.octx.stream(stream_index).unwrap().time_base());
}
eprintln!("📦 rescaled , pts {:?} dts {:?} size {}", encoded_packet.pts(), encoded_packet.dts(), encoded_packet.size());
match encoded_packet.write_interleaved(&mut self.octx) {
Ok(..) => eprintln!("Write OK"),
Err(e) => eprintln!("Error writing: {}", e),
}
//encoded_packet.write_interleaved(&mut self.octx).unwrap(); // AAA
//}
//else {
//eprintln!("Did not try to write 0-length packet");
//}
},
Err(e) => {
eprintln!("Error writing packet: {:?}", e);
break;
}
}
}
}
pub fn run(&mut self, frame: i64) {
self.frame += 1;
self.retro.run();
match self.video_frames.pop_front() {
Some(mut vframe) => {
vframe.set_pts(Some(frame));
eprintln!("🎞 queue frame pts {:?}", vframe.pts());
self.video_filter.get("in").unwrap().source().add(&vframe).unwrap();
let mut filtered_vframe = frame::Video::empty();
loop {
match self.video_filter.get("out").unwrap().sink().frame(&mut filtered_vframe) {
Ok(..) => {
eprintln!("🎥 Got filtered video frame {}x{} pts {:?}", filtered_vframe.width(), filtered_vframe.height(), filtered_vframe.pts());
if self.video_filter.get("in").unwrap().source().failed_requests() > 0 {
println!("🎥 failed to put filter input frame");
}
//filtered_vframe.set_pts(Some(frame));
self.video_encoder.send_frame(&filtered_vframe).unwrap();
self.receive_and_write_packets(EncoderToWriteFrom::Video);
},
Err(e) => {
eprintln!("Error getting filtered video frame: {:?}", e);
break;
}
}
}
let mut aframe = frame::Audio::new(
format::Sample::I16(format::sample::Type::Packed),
self.audio_buf.len(),
ChannelLayout::STEREO
);
if aframe.planes() > 0 {
aframe.set_channels(2);
aframe.set_rate(44100);
aframe.set_pts(Some(frame));
let aplane: &mut [(i16, i16)] = aframe.plane_mut(0);
eprintln!("Audio buffer length {} -> {}", self.audio_buf.len(), aplane.len());
aplane.copy_from_slice(self.audio_buf.as_ref());
//eprintln!("src: {:?}, dest: {:?}", self.audio_buf, aplane);
self.audio_buf.clear();
eprintln!("frame audio: {:?}", aframe);
eprintln!("🎞 queue frame pts {:?}", aframe.pts());
self.audio_filter.get("in").unwrap().source().add(&aframe).unwrap();
let mut filtered_aframe = frame::Audio::empty();
loop {
match self.audio_filter.get("out").unwrap().sink().frame(&mut filtered_aframe) {
Ok(..) => {
eprintln!("🔊 Got filtered audio frame {:?} pts {:?}", filtered_aframe, filtered_aframe.pts());
if self.audio_filter.get("in").unwrap().source().failed_requests() > 0 {
println!("🎥 failed to put filter input frame");
}
//let faplane: &[f32] = filtered_aframe.plane(0);
//filtered_aframe.set_pts(Some(frame));
self.audio_encoder.send_frame(&filtered_aframe).unwrap();
self.receive_and_write_packets(EncoderToWriteFrom::Audio);
},
Err(e) => {
eprintln!("Error getting filtered audio frame: {:?}", e);
break;
}
}
}
}
},
None => println!("Video not ready during frame {}", self.frame)
}
}
pub fn load_game(&mut self, rom: impl AsRef<Path>) {
let path = rom.as_ref();
let mut data = None;
let mut v = Vec::new();
if !self.sys_info.need_fullpath {
if let Ok(mut f) = std::fs::File::open(path) {
if f.read_to_end(&mut v).is_ok() {
data = Some(v.as_ref());
}
}
}
self.retro
.load_game(Some(path), data, None)
.unwrap();
}
pub fn end(&mut self) {
self.video_encoder.send_eof();
self.receive_and_write_packets(EncoderToWriteFrom::Video);
self.audio_encoder.send_eof();
self.receive_and_write_packets(EncoderToWriteFrom::Audio);
self.octx.write_trailer().unwrap();
}
pub fn unserialize(&mut self, state: impl AsRef<Path>) -> Result<(), Box<dyn std::error::Error>> {
let path = state.as_ref();
let mut v = Vec::new();
if let Ok(mut f) = std::fs::File::open(path) {
if f.read_to_end(&mut v).is_ok(){
return self.retro.unserialize(v.as_ref());
}
}
Err("Couldn't read file to unserialize".into())
}
}
impl retro::wrapper::LibretroWrapperAccess for MyEmulator {
fn libretro_core(&mut self) -> &mut LibretroWrapper {
&mut self.retro
}
}
impl retro::wrapper::RetroCallbacks for MyEmulator {
fn video_refresh(&mut self, data: &[u8], width: u32, height: u32, pitch: u32) {
let mut vframe = frame::Video::new(self.video_pixel_format, width, height);
let stride = vframe.stride(0);
let pitch = pitch as usize;
let vplane = vframe.data_mut(0);
if data.len() == vplane.len() && pitch == stride {
vplane.copy_from_slice(&data);
} else {
for y in 0..(height as usize) {
let ffbegin = y * stride;
let lrbegin = y * pitch;
let min = usize::min(stride, pitch);
vplane[ffbegin..(ffbegin + min)].copy_from_slice(
&data[lrbegin..(lrbegin + min)]
);
}
}
//vframe.set_pts(Some(self.frame as i64));
self.prev_video_frame.replace(vframe.clone());
self.video_frames.push_back(vframe);
}
fn video_refresh_dupe(&mut self, width: u32, height: u32, _pitch: u32) {
if let Some(frame) = &self.prev_video_frame {
self.video_frames.push_back(frame.clone());
} else {
let vframe = frame::Video::new(self.video_pixel_format, width, height);
self.video_frames.push_back(vframe);
}
}
fn audio_sample(&mut self, left: i16, right: i16) {
self.audio_buf.push((left, right));
}
fn audio_sample_batch(&mut self, stereo_pcm: &[i16]) -> usize {
let left_iter = stereo_pcm.iter().step_by(2).cloned();
let right_iter = stereo_pcm.iter().skip(1).step_by(2).cloned();
self.audio_buf.extend(Iterator::zip(left_iter, right_iter));
stereo_pcm.len()
}
fn get_system_directory(&mut self) -> Option<PathBuf> {
self.sys_path.clone()
}
fn set_pixel_format(&mut self, format: PixelFormat) -> Option<bool> {
if self.frame_properties_locked {
return Some(true);
}
self.video_pixel_format = match format {
PixelFormat::ARGB1555 => format::Pixel::RGB555,
PixelFormat::ARGB8888 => format::Pixel::RGB32,
PixelFormat::RGB565 => format::Pixel::RGB565,
};
self.video_filter = video_filter(&self.video_encoder, &self.av_info, format).unwrap();
Some(true)
}
fn set_system_av_info(&mut self, system_av_info: &SystemAvInfo) -> Option<bool> {
if self.frame_properties_locked {
return Some(true);
}
//self.video_encoder.set_frame_rate(system_av_info.timing.fps.into());
//self.video_encoder.set_time_base(Rational::new(1, 60));
//self.video_encoder.set_frame_rate(Some(Rational::new(1, 60)));
if system_av_info.timing.sample_rate.round() as i32 > 0 {
self.audio_encoder.set_rate(system_av_info.timing.sample_rate.round() as i32);
}
self.av_info.timing = system_av_info.timing.clone();
self.set_geometry(&system_av_info.geometry);
Some(true)
}
fn set_geometry(&mut self, geometry: &GameGeometry) -> Option<bool> {
if self.frame_properties_locked {
return Some(true);
}
self.video_encoder.set_width(geometry.base_width);
self.video_encoder.set_height(geometry.base_height);
//self.video_encoder.set_aspect_ratio(geometry.aspect_ratio as f64);
self.av_info.geometry = geometry.clone();
let pixel_format = match self.video_pixel_format {
format::Pixel::RGB555 => PixelFormat::ARGB1555,
format::Pixel::RGB32 => PixelFormat::ARGB8888,
format::Pixel::RGB565 => PixelFormat::RGB565,
_ => unimplemented!(),
};
self.video_filter = video_filter(&self.video_encoder, &self.av_info, pixel_format).unwrap();
Some(true)
}
fn get_variable(&mut self, key: &str) -> Option<String> {
match key {
"beetle_saturn_analog_stick_deadzone" => Some("15%".to_string()),
"parallel-n64-gfxplugin" => Some("angrylion".to_string()),
"parallel-n64-astick-deadzone" => Some("15%".to_string()),
_ => None,
}
}
fn set_variables(&mut self, variables: &Vec<Variable2>) -> Option<bool> {
for v in variables {
eprintln!("{:?}", v);
}
Some(true)
}
fn log_print(&mut self, level: retro::ffi::LogLevel, msg: &str) {
eprint!("🕹️ [{:?}] {}", level, msg);
}
}
#[derive(StructOpt)]
struct Opt {
/// Core module to use.
#[structopt(short, long, parse(from_os_str))]
core: PathBuf,
/// ROM to load using the core.
#[structopt(short, long, parse(from_os_str))]
rom: PathBuf,
/// Recorded video to write.
#[structopt(short, long, parse(from_os_str))]
video: PathBuf,
/// Save state to load at startup.
#[structopt(long, parse(from_os_str))]
state: Option<PathBuf>,
/// System directory, often containing BIOS files
#[structopt(short, long, parse(from_os_str))]
system: Option<PathBuf>,
}
fn main() -> Result<(), Box<dyn std::error::Error>> {
let opt: Opt = Opt::from_args();
ffmpeg::log::set_level(ffmpeg::log::Level::Trace);
ffmpeg::init().unwrap();
let mut octx = format::output(&opt.video)?;
unsafe {
(*octx.as_mut_ptr()).debug = 1;
eprintln!("oformat: {:?}", &((*octx.as_mut_ptr()).oformat));
eprintln!("flags: {:?}", (*(*octx.as_mut_ptr()).oformat).flags);
}
//octx.write_header().unwrap();
let mut emu = MyEmulator::new(opt.core, &opt.system, &opt.video, octx);
emu.load_game(opt.rom);
emu.frame_properties_locked = true;
if let Some(state) = opt.state {
emu.unserialize(state)?;
}
//for frame in 0..60*10 {
for frame in 0..800 {
eprintln!("🖼️ frame: {}", frame);
emu.run(frame);
}
let mut packet = Packet::empty();
eprintln!("flushed: {:?}", emu.video_encoder.flush(&mut packet)?);
emu.end();
//octx.write_trailer().unwrap();
Ok(())
}
enum EncoderToWriteFrom {
Video,
Audio,
}

View File

@ -0,0 +1,66 @@
extern crate crossbeam_channel;
extern crate ferretro;
extern crate ffmpeg_next as ffmpeg;
extern crate sdl2;
use std::path::PathBuf;
use structopt::StructOpt;
use ferretro::prelude::*;
use ferretro::components::provided::{
ffmpeg::FfmpegComponent,
sdl2::Sdl2Component,
stdlib::{PathBufComponent, StderrLogComponent},
};
use ferretro::components::ControlFlow;
use ferretro::components::provided::stdlib::StderrSysInfoLogComponent;
#[derive(StructOpt)]
struct Opt {
/// Core module to use.
#[structopt(short, long, parse(from_os_str))]
core: PathBuf,
/// ROM to load using the core.
#[structopt(short, long, parse(from_os_str))]
rom: PathBuf,
/// Save state to load at startup.
#[structopt(long, parse(from_os_str))]
state: Option<PathBuf>,
/// System directory, often containing BIOS files
#[structopt(short, long, parse(from_os_str))]
system: Option<PathBuf>,
/// Recorded video to write.
#[structopt(short, long, parse(from_os_str))]
video: Option<PathBuf>,
}
pub fn main() {
let opt: Opt = Opt::from_args();
let mut emu = RetroComponentBase::new(&opt.core);
let sdl2_comp = Sdl2Component::new(emu.libretro_core());
emu.register_component(sdl2_comp);
emu.register_component(StderrLogComponent::default());
emu.register_component(StderrSysInfoLogComponent::default());
emu.register_component(PathBufComponent {
sys_path: opt.system.clone(),
libretro_path: Some(opt.core.to_path_buf()),
core_assets_path: None,
save_path: Some(std::env::temp_dir()),
});
if let Some(video) = opt.video {
ffmpeg::log::set_level(ffmpeg::log::Level::Info);
ffmpeg::init().unwrap();
let ffmpeg_comp = FfmpegComponent::new(emu.libretro_core(), video);
emu.register_component(ffmpeg_comp);
}
emu.load_game(&opt.rom).unwrap();
if let Some(state) = opt.state {
emu.unserialize_path(state).unwrap();
}
let mut frame = 0;
while let ControlFlow::Continue = emu.run() {
frame += 1;
}
eprintln!("Ran for {} frames.", frame);
}

View File

@ -139,7 +139,7 @@ impl MyEmulator {
pin_emu
}
pub fn run(&mut self) {
pub fn run_loop(&mut self) {
self.audio_device.resume();
let mut event_pump = self.sdl_context.event_pump().unwrap();
'running: loop {
@ -173,7 +173,7 @@ impl MyEmulator {
}
}
pub fn load_game(&self, rom: impl AsRef<Path>) {
pub fn load_game(&mut self, rom: impl AsRef<Path>) {
let path = rom.as_ref();
let mut data = None;
let mut v = Vec::new();
@ -253,11 +253,13 @@ impl Drop for MyEmulator {
}
}
impl retro::wrapper::Handler for MyEmulator {
impl retro::wrapper::LibretroWrapperAccess for MyEmulator {
fn libretro_core(&mut self) -> &mut LibretroWrapper {
&mut self.retro
}
}
impl retro::wrapper::RetroCallbacks for MyEmulator {
fn video_refresh(&mut self, data: &[u8], width: u32, height: u32, pitch: u32) {
let rect = Rect::new(0, 0, width, height);
@ -298,19 +300,17 @@ impl retro::wrapper::Handler for MyEmulator {
return self.input_state_keyboard(port, &device, &index);
}
fn get_can_dupe(&mut self) -> Option<bool> { Some(true) }
fn get_system_directory(&mut self) -> Option<PathBuf> {
self.sys_path.clone()
}
fn set_pixel_format(&mut self, pix_fmt: retro::ffi::PixelFormat) -> bool {
fn set_pixel_format(&mut self, pix_fmt: retro::ffi::PixelFormat) -> Option<bool> {
self.pixel_format = match pix_fmt {
retro::ffi::PixelFormat::ARGB1555 => sdl2::pixels::PixelFormatEnum::RGB555,
retro::ffi::PixelFormat::ARGB8888 => sdl2::pixels::PixelFormatEnum::ARGB8888,
retro::ffi::PixelFormat::RGB565 => sdl2::pixels::PixelFormatEnum::RGB565,
};
true
Some(true)
}
fn get_variable(&mut self, key: &str) -> Option<String> {
match key {
@ -321,11 +321,11 @@ impl retro::wrapper::Handler for MyEmulator {
}
}
fn set_variables(&mut self, variables: Vec<Variable2>) -> bool {
fn set_variables(&mut self, variables: &Vec<Variable2>) -> Option<bool> {
for v in variables {
eprintln!("{:?}", v);
}
true
Some(true)
}
fn get_libretro_path(&mut self) -> Option<PathBuf> {
@ -341,18 +341,18 @@ impl retro::wrapper::Handler for MyEmulator {
Some(std::env::temp_dir())
}
fn set_system_av_info(&mut self, av_info: SystemAvInfo) -> bool {
self.set_geometry(av_info.geometry.clone());
self.av_info = av_info;
true
fn set_system_av_info(&mut self, av_info: &SystemAvInfo) -> Option<bool> {
self.set_geometry(&av_info.geometry);
self.av_info = av_info.clone();
Some(true)
}
fn set_subsystem_info(&mut self, subsystem_info: Vec<SubsystemInfo2>) -> bool {
fn set_subsystem_info(&mut self, subsystem_info: &Vec<SubsystemInfo2>) -> Option<bool> {
println!("subsystem info: {:?}", subsystem_info);
true
Some(true)
}
fn set_controller_info(&mut self, controller_info: Vec<ControllerDescription2>) -> bool {
fn set_controller_info(&mut self, controller_info: &Vec<ControllerDescription2>) -> Option<bool> {
for ci in controller_info {
// so we can have analog support in beetle/mednafen saturn
if ci.name.as_str() == "3D Control Pad" {
@ -360,21 +360,21 @@ impl retro::wrapper::Handler for MyEmulator {
break;
}
}
true
Some(true)
}
fn set_input_descriptors(&mut self, descriptors: Vec<InputDescriptor2>) -> bool {
fn set_input_descriptors(&mut self, descriptors: &Vec<InputDescriptor2>) -> Option<bool> {
for id in descriptors {
println!("{:?}", id);
}
true
Some(true)
}
fn set_geometry(&mut self, geom: GameGeometry) -> bool {
fn set_geometry(&mut self, geom: &GameGeometry) -> Option<bool> {
let _ = self.canvas.window_mut().set_size(geom.base_width, geom.base_height);
let _ = self.canvas.set_logical_size(geom.base_width, geom.base_height);
self.av_info.geometry = geom;
true
self.av_info.geometry = geom.clone();
Some(true)
}
fn log_print(&mut self, level: retro::ffi::LogLevel, msg: &str) {
@ -399,13 +399,11 @@ impl AudioCallback for MySdlAudio {
}
}
pub fn main() -> failure::Fallible<()> {
pub fn main() {
let opt: Opt = Opt::from_args();
let mut emu = MyEmulator::new(&opt.core, &opt.system);
emu.load_game(&opt.rom);
emu.run();
Ok(())
emu.run_loop();
}
#[derive(StructOpt)]

502
src/components/mod.rs Normal file
View File

@ -0,0 +1,502 @@
pub mod provided;
use crate::prelude::*;
use crate::retro::ffi::*;
use std::os::raw::c_uint;
use std::path::{PathBuf, Path};
use std::pin::Pin;
use std::io::Read;
pub struct RetroComponentBase {
retro: LibretroWrapper,
libretro_path: PathBuf,
// TODO: control when things get added to this.
// probably shouldn't be after load_game?
// unless we invent a way to play back the latest set_pixel_format etc. metadata required.
components: Vec<Box<dyn RetroComponent>>,
// replaying env calls for late-added components
cached_rom_path: Option<PathBuf>,
cached_pixel_format: Option<PixelFormat>,
cached_input_descriptors: Option<Vec<InputDescriptor2>>,
cached_hw_render_callback: Option<HwRenderCallback>,
cached_variables: Option<Vec<Variable2>>,
cached_support_no_game: Option<bool>,
cached_system_av_info: Option<SystemAvInfo>,
cached_subsystem_info: Option<Vec<SubsystemInfo2>>,
cached_controller_info: Option<Vec<ControllerDescription2>>,
cached_memory_map: Option<MemoryMap>,
cached_geometry: Option<GameGeometry>,
}
// TODO: replace with std::ops::ControlFlow when it becomes stable
pub enum ControlFlow {
Continue,
Break,
}
pub type Result<T> = std::result::Result<T, Box<dyn std::error::Error>>;
#[rustfmt::skip]
#[allow(unused_variables)]
pub trait RetroComponent: RetroCallbacks {
fn pre_run(&mut self, retro: &mut LibretroWrapper) -> ControlFlow { ControlFlow::Continue }
fn post_run(&mut self, retro: &mut LibretroWrapper) -> ControlFlow { ControlFlow::Continue }
fn pre_load_game(&mut self, retro: &mut LibretroWrapper, rom: &Path) -> Result<()> { Ok(()) }
fn post_load_game(&mut self, retro: &mut LibretroWrapper, rom: &Path) -> Result<()> { Ok(()) }
}
impl RetroComponentBase {
// TODO: constructor & wrapper that uses a statically linked libretro?
pub fn new(core_path: impl AsRef<Path>) -> Pin<Box<Self>> {
let lib = libloading::Library::new(core_path.as_ref()).unwrap();
let raw_retro = crate::retro::loading::LibretroApi::from_library(lib).unwrap();
let retro = LibretroWrapper::from(raw_retro);
let emu = RetroComponentBase {
retro,
libretro_path: core_path.as_ref().to_path_buf(),
components: Vec::new(),
cached_rom_path: None,
cached_pixel_format: None,
cached_input_descriptors: None,
cached_hw_render_callback: None,
cached_variables: None,
cached_support_no_game: None,
cached_system_av_info: None,
cached_subsystem_info: None,
cached_controller_info: None,
cached_memory_map: None,
cached_geometry: None
};
let mut pin_emu = Box::pin(emu);
crate::retro::wrapper::set_handler(pin_emu.as_mut());
pin_emu.retro.init();
pin_emu
}
pub fn register_component<T>(&mut self, comp: T) -> Option<()> // TODO: Result
where T: RetroComponent
{
// TODO: match comp.schedule { BeforeInit, BeforeLoad, BeforeFirstRun, Anytime }
let mut comp = Box::new(comp);
if let Some(cached) = &self.cached_pixel_format {
if let Some(false) = comp.set_pixel_format(*cached) {
// TODO: error, and propagate this pattern downward
}
}
if let Some(cached) = &self.cached_input_descriptors {
comp.set_input_descriptors(cached);
}
if let Some(cached) = &self.cached_hw_render_callback {
comp.set_hw_render(cached);
}
if let Some(cached) = &self.cached_variables {
comp.set_variables(cached);
}
if let Some(cached) = &self.cached_support_no_game {
comp.set_support_no_game(*cached);
}
if let Some(cached) = &self.cached_system_av_info {
comp.set_system_av_info(cached);
}
if let Some(cached) = &self.cached_subsystem_info {
comp.set_subsystem_info(cached);
}
if let Some(cached) = &self.cached_controller_info {
comp.set_controller_info(cached);
}
if let Some(cached) = &self.cached_memory_map {
comp.set_memory_maps(cached);
}
if let Some(cached) = &self.cached_geometry {
comp.set_geometry(cached);
}
if let Some(cached) = &self.cached_rom_path {
comp.post_load_game(&mut self.retro, &cached);
}
self.components.push(comp);
Some(())
}
pub fn load_game(&mut self, rom: impl AsRef<Path>) -> Result<()> {
let path = rom.as_ref();
self.cached_rom_path = Some(path.to_path_buf());
for comp in &mut self.components {
comp.pre_load_game(&mut self.retro, path)?;
}
let mut data = None;
let mut v = Vec::new();
if !self.retro.get_system_info().need_fullpath {
if let Ok(mut f) = std::fs::File::open(path) {
if f.read_to_end(&mut v).is_ok() {
data = Some(v.as_ref());
}
}
}
self.retro.load_game(Some(path), data, None)?;
for comp in &mut self.components {
comp.post_load_game(&mut self.retro, path)?;
}
Ok(())
}
pub fn run(&mut self) -> ControlFlow {
for comp in &mut self.components {
if let ControlFlow::Break = comp.pre_run(&mut self.retro) {
return ControlFlow::Break;
}
}
self.retro.run();
for comp in &mut self.components {
if let ControlFlow::Break = comp.post_run(&mut self.retro) {
return ControlFlow::Break;
}
}
ControlFlow::Continue
}
pub fn unserialize_path(&mut self, state: impl AsRef<Path>) -> Result<()> {
let path = state.as_ref();
let mut v = Vec::new();
if let Ok(mut f) = std::fs::File::open(path) {
if f.read_to_end(&mut v).is_ok(){
return self.unserialize_buf(v);
}
}
Err("Couldn't read file to unserialize".into())
}
pub fn unserialize_buf(&mut self, data: impl AsRef<[u8]>) -> Result<()> {
self.retro.unserialize(data.as_ref())
}
}
impl LibretroWrapperAccess for RetroComponentBase {
fn libretro_core(&mut self) -> &mut LibretroWrapper {
&mut self.retro
}
}
impl RetroCallbacks for RetroComponentBase {
fn video_refresh(&mut self, data: &[u8], width: c_uint, height: c_uint, pitch: c_uint) {
for comp in &mut self.components {
comp.video_refresh(data, width, height, pitch);
}
}
fn video_refresh_dupe(&mut self, width: c_uint, height: c_uint, pitch: c_uint) {
for comp in &mut self.components {
comp.video_refresh_dupe(width, height, pitch);
}
}
fn audio_sample(&mut self, left: i16, right: i16) {
for comp in &mut self.components {
comp.audio_sample(left, right);
}
}
fn audio_sample_batch(&mut self, stereo_pcm: &[i16]) -> usize {
self.components.iter_mut()
.map(|comp| comp.audio_sample_batch(stereo_pcm))
.max()
.unwrap_or_default()
}
fn input_poll(&mut self) {
for comp in &mut self.components {
comp.input_poll();
}
}
fn input_state(&mut self, port: u32, device: InputDeviceId, index: InputIndex) -> i16 {
self.components.iter_mut()
.map(|comp| comp.input_state(port, device, index))
.filter(|x| *x != 0)
// TODO: is this really the semantic we want?
.last()
.unwrap_or_default()
}
fn set_rotation(&mut self, rotation: EnvRotation) -> Option<bool> {
self.components.iter_mut()
.map(|comp| comp.set_rotation(rotation))
.flatten()
.fold(false, |x, y| x || y) // not "any" because we don't short-circuit
.into()
}
fn get_overscan(&mut self) -> Option<bool> {
self.components.iter_mut()
.map(|comp| comp.get_overscan())
.fold(None, |x, y| match (x, y) {
(Some(a), Some(b)) => Some(a || b),
(Some(a), None) | (None, Some(a)) => Some(a),
(None, None) => None,
})
}
fn set_message(&mut self, message: &Message) -> Option<bool> {
self.components.iter_mut()
.map(|comp| comp.set_message(message))
.flatten()
.fold(false, |x, y| x || y) // not "any" because we don't short-circuit
.into()
}
fn shutdown(&mut self) -> Option<bool> {
self.components.iter_mut()
.map(|comp| comp.shutdown())
.flatten()
.all(|x| x)
.into()
}
fn set_performance_level(&mut self, level: c_uint) -> Option<bool> {
self.components.iter_mut()
.map(|comp| comp.set_performance_level(level))
.flatten()
.all(|x| x)
.into()
}
fn get_system_directory(&mut self) -> Option<PathBuf> {
self.components.iter_mut()
.map(|comp| comp.get_system_directory())
.flatten()
.next()
}
fn set_pixel_format(&mut self, format: PixelFormat) -> Option<bool> {
self.cached_pixel_format = Some(format);
self.components.iter_mut()
.map(|comp| comp.set_pixel_format(format))
.flatten()
.all(|x| x)
.into()
}
fn set_input_descriptors(&mut self, input_descriptors: &Vec<InputDescriptor2>) -> Option<bool> {
self.cached_input_descriptors = Some(input_descriptors.to_vec());
self.components.iter_mut()
.map(|comp| comp.set_input_descriptors(input_descriptors))
.flatten()
.fold(false, |x, y| x || y)
.into()
}
fn set_hw_render(&mut self, hw_render_callback: &HwRenderCallback) -> Option<bool> {
self.cached_hw_render_callback = Some(hw_render_callback.to_owned());
self.components.iter_mut()
.map(|comp| comp.set_hw_render(hw_render_callback))
.flatten()
.all(|x| x)
.into()
}
fn get_variable(&mut self, key: &str) -> Option<String> {
self.components.iter_mut()
.map(|comp| comp.get_variable(key))
.flatten()
.next()
}
fn set_variables(&mut self, variables: &Vec<Variable2>) -> Option<bool> {
self.cached_variables = Some(variables.to_vec());
self.components.iter_mut()
.map(|comp| comp.set_variables(variables))
.flatten()
.fold(false, |x, y| x || y)
.into()
}
fn get_variable_update(&mut self) -> Option<bool> {
self.components.iter_mut()
.map(|comp| comp.get_variable_update())
.flatten()
.reduce(|x, y| x || y)
}
fn set_support_no_game(&mut self, supports_no_game: bool) -> Option<bool> {
self.cached_support_no_game = Some(supports_no_game);
self.components.iter_mut()
.map(|comp| comp.set_support_no_game(supports_no_game))
.flatten()
.all(|x| x)
.into()
}
// allow it to be overridden, but we *do* have the answer at this level since we loaded it.
fn get_libretro_path(&mut self) -> Option<PathBuf> {
self.components.iter_mut()
.map(|comp| comp.get_libretro_path())
.flatten()
.next()
.unwrap_or_else(|| self.libretro_path.clone())
.into()
}
fn get_input_device_capabilities(&mut self) -> Option<u64> {
self.components.iter_mut()
.map(|comp| comp.get_input_device_capabilities())
.flatten()
.reduce(|x, y| x & y)
}
fn get_core_assets_directory(&mut self) -> Option<PathBuf> {
self.components.iter_mut()
.map(|comp| comp.get_core_assets_directory())
.flatten()
.next()
}
fn get_save_directory(&mut self) -> Option<PathBuf> {
self.components.iter_mut()
.map(|comp| comp.get_save_directory())
.flatten()
.next()
}
fn set_system_av_info(&mut self, system_av_info: &SystemAvInfo) -> Option<bool> {
self.cached_system_av_info = Some(system_av_info.to_owned());
self.cached_geometry = Some(system_av_info.geometry.clone());
self.components.iter_mut()
.map(|comp| comp.set_system_av_info(system_av_info))
.flatten()
.fold(false, |x, y| x || y) // not "any" because we don't short-circuit
.into()
}
fn set_subsystem_info(&mut self, subsystem_info: &Vec<SubsystemInfo2>) -> Option<bool> {
self.cached_subsystem_info = Some(subsystem_info.to_vec());
self.components.iter_mut()
.map(|comp| comp.set_subsystem_info(subsystem_info))
.flatten()
.all(|x| x)
.into()
}
fn set_controller_info(&mut self, controller_info: &Vec<ControllerDescription2>) -> Option<bool> {
self.cached_controller_info = Some(controller_info.to_vec());
self.components.iter_mut()
.map(|comp| comp.set_controller_info(controller_info))
.flatten()
.all(|x| x)
.into()
}
fn set_memory_maps(&mut self, memory_map: &MemoryMap) -> Option<bool> {
self.cached_memory_map = Some(memory_map.to_owned());
self.components.iter_mut()
.map(|comp| comp.set_memory_maps(memory_map))
.flatten()
.all(|x| x)
.into()
}
fn set_geometry(&mut self, game_geometry: &GameGeometry) -> Option<bool> {
self.cached_geometry = Some(game_geometry.to_owned());
self.components.iter_mut()
.map(|comp| comp.set_geometry(game_geometry))
.flatten()
.fold(false, |x, y| x || y) // not "any" because we don't short-circuit
.into()
}
fn get_username(&mut self) -> Option<String> {
self.components.iter_mut()
.map(|comp| comp.get_username())
.flatten()
.next()
}
fn get_language(&mut self) -> Option<Language> {
self.components.iter_mut()
.map(|comp| comp.get_language())
.flatten()
.next()
}
fn log_print(&mut self, level: LogLevel, msg: &str) {
for comp in &mut self.components {
comp.log_print(level, msg);
}
}
fn set_rumble_state(&mut self, port: c_uint, effect: RumbleEffect, strength: u16) -> bool {
self.components.iter_mut()
.map(|comp| comp.set_rumble_state(port, effect, strength))
.fold(false, |x, y| x || y) // not "any" because we don't short-circuit
}
fn perf_get_time_usec_cb(&mut self) -> Time {
self.components.first_mut()
.map(|comp| comp.perf_get_time_usec_cb())
.unwrap_or_default()
}
fn perf_get_counter_cb(&mut self) -> PerfTick {
self.components.first_mut()
.map(|comp| comp.perf_get_counter_cb())
.unwrap_or_default()
}
fn perf_get_cpu_features_cb(&mut self) -> u64 {
self.components.first_mut()
.map(|comp| comp.perf_get_cpu_features_cb())
.unwrap_or_default()
}
fn perf_log_cb(&mut self) {
if let Some(comp) = self.components.first_mut() {
comp.perf_log_cb()
}
}
fn perf_register_cb(&mut self, counter: &mut PerfCounter) {
if let Some(comp) = self.components.first_mut() {
comp.perf_register_cb(counter)
}
}
fn perf_start_cb(&mut self, counter: &mut PerfCounter) {
if let Some(comp) = self.components.first_mut() {
comp.perf_start_cb(counter)
}
}
fn perf_stop_cb(&mut self, counter: &mut PerfCounter) {
if let Some(comp) = self.components.first_mut() {
comp.perf_stop_cb(counter)
}
}
fn set_sensor_state(&mut self, port: c_uint, action: SensorAction, rate: c_uint) -> bool {
self.components.iter_mut()
.map(|comp| comp.set_sensor_state(port, action, rate))
.fold(false, |x, y| x || y) // not "any" because we don't short-circuit
}
fn get_sensor_input(&mut self, port: c_uint, id: c_uint) -> f32 {
self.components.iter_mut()
.map(|comp| comp.get_sensor_input(port, id))
.filter(|x| *x != 0.0)
.last()
.unwrap_or_default()
}
}
impl Drop for RetroComponentBase {
fn drop(&mut self) {
crate::retro::wrapper::unset_handler();
}
}

View File

@ -0,0 +1,473 @@
extern crate ffmpeg_next as ffmpeg;
use std::collections::VecDeque;
use std::error::Error;
use std::path::Path;
use crate::prelude::*;
use ffmpeg::{ChannelLayout, Packet, filter, format, frame, media};
use ffmpeg::util::rational::Rational;
use crate::components::ControlFlow;
enum EncoderToWriteFrom {
Video,
Audio,
}
pub struct FfmpegComponent {
av_info: SystemAvInfo,
audio_buf: Vec<(i16, i16)>,
video_pixel_format: format::Pixel,
prev_video_frame: Option<frame::Video>,
video_frames: VecDeque<frame::Video>,
video_encoder: ffmpeg::encoder::Video,
audio_encoder: ffmpeg::encoder::Audio,
video_filter: filter::Graph,
audio_filter: filter::Graph,
frame_properties_locked: bool,
octx: ffmpeg::format::context::Output,
frame: i64,
}
fn video_filter(
video_encoder: &ffmpeg::encoder::video::Video,
av_info: &SystemAvInfo,
pix_fmt: PixelFormat,
) -> Result<filter::Graph, ffmpeg::Error> {
let mut vfilter = filter::Graph::new();
let pix_fmt = match pix_fmt {
PixelFormat::ARGB1555 => if cfg!(target_endian = "big") { "rgb555be" } else { "rgb555le" },
PixelFormat::ARGB8888 => "argb",
PixelFormat::RGB565 => if cfg!(target_endian = "big") { "rgb565be" } else { "rgb565le" },
};
let pixel_aspect = av_info.geometry.aspect_ratio / (av_info.geometry.base_width as f32 / av_info.geometry.base_height as f32);
let fps = if av_info.timing.fps == 0.0 { 60.0 } else { av_info.timing.fps };
let args = format!(
"width={}:height={}:pix_fmt={}:frame_rate={}:pixel_aspect={}:time_base=1/{}",
av_info.geometry.base_width,
av_info.geometry.base_height,
pix_fmt,
fps,
pixel_aspect,
fps,
);
eprintln!("🎥 filter args: {}", args);
vfilter.add(&filter::find("buffer").unwrap(), "in", &args)?;
//scale?
vfilter.add(&filter::find("buffersink").unwrap(), "out", "")?;
{
let mut out = vfilter.get("out").unwrap();
out.set_pixel_format(video_encoder.format());
}
vfilter.output("in", 0)?
.input("out", 0)?
.parse("null")?; // passthrough filter for video
vfilter.validate()?;
// human-readable filter graph
eprintln!("{}", vfilter.dump());
Ok(vfilter)
}
fn audio_filter(
audio_encoder: &ffmpeg::codec::encoder::Audio,
sample_rate: f64,
) -> Result<filter::Graph, ffmpeg::Error> {
let mut afilter = filter::Graph::new();
let sample_rate = if sample_rate == 0.0 { 32040.0 } else { sample_rate };
let args = format!("sample_rate={}:sample_fmt=s16:channel_layout=stereo:time_base=1/60", sample_rate);
eprintln!("🔊 filter args: {}", args);
afilter.add(&filter::find("abuffer").unwrap(), "in", &args)?;
//aresample?
afilter.add(&filter::find("abuffersink").unwrap(), "out", "")?;
{
let mut out = afilter.get("out").unwrap();
out.set_sample_format(audio_encoder.format());
out.set_channel_layout(audio_encoder.channel_layout());
out.set_sample_rate(audio_encoder.rate());
}
afilter.output("in", 0)?
.input("out", 0)?
.parse("anull")?;
afilter.validate()?;
// human-readable filter graph
eprintln!("{}", afilter.dump());
if let Some(codec) = audio_encoder.codec() {
if !codec
.capabilities()
.contains(ffmpeg::codec::capabilities::Capabilities::VARIABLE_FRAME_SIZE)
{
eprintln!("setting constant frame size {}", audio_encoder.frame_size());
afilter
.get("out")
.unwrap()
.sink()
.set_frame_size(audio_encoder.frame_size());
}
}
Ok(afilter)
}
impl RetroComponent for FfmpegComponent {
fn pre_run(&mut self, _retro: &mut LibretroWrapper) -> ControlFlow {
self.frame += 1;
ControlFlow::Continue
}
fn post_run(&mut self, _retro: &mut LibretroWrapper) -> ControlFlow {
match self.video_frames.pop_front() {
Some(mut vframe) => {
vframe.set_pts(Some(self.frame));
eprintln!("🎞 queue frame pts {:?}", vframe.pts());
self.video_filter.get("in").unwrap().source().add(&vframe).unwrap();
let mut filtered_vframe = frame::Video::empty();
loop {
match self.video_filter.get("out").unwrap().sink().frame(&mut filtered_vframe) {
Ok(..) => {
eprintln!("🎥 Got filtered video frame {}x{} pts {:?}", filtered_vframe.width(), filtered_vframe.height(), filtered_vframe.pts());
if self.video_filter.get("in").unwrap().source().failed_requests() > 0 {
println!("🎥 failed to put filter input frame");
}
//filtered_vframe.set_pts(Some(frame));
self.video_encoder.send_frame(&filtered_vframe).unwrap();
self.receive_and_write_packets(EncoderToWriteFrom::Video);
},
Err(e) => {
eprintln!("Error getting filtered video frame: {:?}", e);
break;
}
}
}
let mut aframe = frame::Audio::new(
format::Sample::I16(format::sample::Type::Packed),
self.audio_buf.len(),
ChannelLayout::STEREO
);
if aframe.planes() > 0 {
aframe.set_channels(2);
aframe.set_rate(44100);
aframe.set_pts(Some(self.frame));
let aplane: &mut [(i16, i16)] = aframe.plane_mut(0);
eprintln!("Audio buffer length {} -> {}", self.audio_buf.len(), aplane.len());
aplane.copy_from_slice(self.audio_buf.as_ref());
//eprintln!("src: {:?}, dest: {:?}", self.audio_buf, aplane);
self.audio_buf.clear();
eprintln!("frame audio: {:?}", aframe);
eprintln!("🎞 queue frame pts {:?}", aframe.pts());
self.audio_filter.get("in").unwrap().source().add(&aframe).unwrap();
let mut filtered_aframe = frame::Audio::empty();
loop {
match self.audio_filter.get("out").unwrap().sink().frame(&mut filtered_aframe) {
Ok(..) => {
eprintln!("🔊 Got filtered audio frame {:?} pts {:?}", filtered_aframe, filtered_aframe.pts());
if self.audio_filter.get("in").unwrap().source().failed_requests() > 0 {
println!("🎥 failed to put filter input frame");
}
//let faplane: &[f32] = filtered_aframe.plane(0);
//filtered_aframe.set_pts(Some(frame));
self.audio_encoder.send_frame(&filtered_aframe).unwrap();
self.receive_and_write_packets(EncoderToWriteFrom::Audio);
},
Err(e) => {
eprintln!("Error getting filtered audio frame: {:?}", e);
break;
}
}
}
}
},
None => println!("Video not ready during frame {}", self.frame)
}
ControlFlow::Continue
}
fn post_load_game(&mut self, _retro: &mut LibretroWrapper, _rom: &Path) -> Result<(), Box<dyn Error>> {
self.frame_properties_locked = true;
Ok(())
}
}
impl FfmpegComponent {
pub fn new(
retro: &LibretroWrapper,
video_path: impl AsRef<Path>,
) -> Self {
let mut octx = format::output(&video_path).unwrap();
let mut av_info = retro.get_system_av_info();
let fps_int = av_info.timing.fps.round() as i32;
let fps_int = if fps_int == 0 { 60 } else { fps_int };
let detected_vcodec = octx.format().codec(&video_path, media::Type::Video);
//let detected_acodec = octx.format().codec(&video_path, media::Type::Audio);
let wavname = Path::new("out.wav");
let detected_acodec = octx.format().codec(&wavname, media::Type::Audio);
let vcodec = ffmpeg::encoder::find(detected_vcodec).unwrap().video().unwrap();
let acodec = ffmpeg::encoder::find(detected_acodec).unwrap().audio().unwrap();
let mut video_output = octx.add_stream(vcodec).unwrap();
video_output.set_time_base(Rational::new(1, 60));
let mut video_encoder = video_output.codec().encoder().video().unwrap();
video_encoder.set_bit_rate(2560000);
video_encoder.set_format(video_encoder.codec().unwrap().video().unwrap().formats().unwrap().nth(0).unwrap());
video_encoder.set_time_base(Rational::new(1, 60));
video_encoder.set_frame_rate(Some(Rational::new(fps_int, 1)));
//video_encoder.set_frame_rate(av_info.timing.fps.into());
if av_info.geometry.base_height == 0 && av_info.geometry.base_width == 0 {
av_info.geometry.base_width = 320;
av_info.geometry.base_height = 224;
av_info.geometry.aspect_ratio = 4.33;
}
if av_info.timing.sample_rate == 0.0 {
av_info.timing.sample_rate = 44100.0;
}
video_encoder.set_width(av_info.geometry.base_width);
video_encoder.set_height(av_info.geometry.base_height);
//video_encoder.set_aspect_ratio(av_info.geometry.aspect_ratio as f64);
let pix_fmt = PixelFormat::ARGB1555; // temporary until env call is made
let video_filter = video_filter(&video_encoder, &av_info, pix_fmt).unwrap();
let video_encoder = video_encoder.open_as(vcodec).unwrap();
//video_output.set_parameters(&video_encoder);
let mut audio_output = octx.add_stream(acodec).unwrap();
let mut audio_encoder = audio_output.codec().encoder().audio().unwrap();
//let mut video_encoder = octx.add_stream(vcodec).unwrap().codec().encoder().video().unwrap();
/*
let mut audio_output = octx.add_stream(acodec).unwrap();
let mut audio_encoder = audio_output.codec().encoder().audio().unwrap();
*/
/*
retroarch inits
static bool ffmpeg_init_config(struct ff_config_param *params,
if (!ffmpeg_init_muxer_pre(handle))
if (!ffmpeg_init_video(handle))
av_frame_alloc
*/
audio_encoder.set_bit_rate(640000);
audio_encoder.set_max_bit_rate(990000);
//audio_encoder.set_rate(44100);
audio_encoder.set_rate(av_info.timing.sample_rate.round() as i32);
audio_encoder.set_channels(2);
audio_encoder.set_channel_layout(ChannelLayout::STEREO);
audio_encoder.set_format(audio_encoder.codec().unwrap().audio().unwrap().formats().unwrap().nth(0).unwrap());
audio_encoder.set_time_base(Rational::new(1, 60));
audio_output.set_time_base(Rational::new(1, 60));
let audio_encoder = audio_encoder.open_as(acodec).unwrap();
//audio_output.set_parameters(&audio_encoder);
let audio_filter = audio_filter(&audio_encoder, av_info.timing.sample_rate).unwrap();
//audio_encoder.set_rate(av_info.timing.sample_rate.round() as i32);
octx.write_header().unwrap();
ffmpeg::format::context::output::dump(&octx, 0, None);
let mut comp = FfmpegComponent {
av_info: av_info.clone(),
audio_buf: Default::default(),
video_pixel_format: format::Pixel::RGB555,
prev_video_frame: None,
video_frames: Default::default(),
video_encoder,
audio_encoder,
video_filter,
audio_filter,
frame_properties_locked: false,
octx,
frame: 0
};
comp.set_system_av_info(&av_info);
comp
}
fn receive_and_write_packets(&mut self, encoder: EncoderToWriteFrom)
{
let stream_index = match encoder {
EncoderToWriteFrom::Video => 0,
EncoderToWriteFrom::Audio => 1,
};
let mut encoded_packet = ffmpeg::Packet::empty();
loop
{
match match encoder {
EncoderToWriteFrom::Video => self.video_encoder.receive_packet(&mut encoded_packet),
EncoderToWriteFrom::Audio => self.audio_encoder.receive_packet(&mut encoded_packet),
} {
Ok(..) => {
//if encoded_packet.size() > 0 {
encoded_packet.set_stream(stream_index);
eprintln!("📦 Writing packet, pts {:?} dts {:?} size {}", encoded_packet.pts(), encoded_packet.dts(), encoded_packet.size());
if stream_index == 0 {
encoded_packet.rescale_ts(Rational(1, 60), self.octx.stream(stream_index).unwrap().time_base());
}
eprintln!("📦 rescaled , pts {:?} dts {:?} size {}", encoded_packet.pts(), encoded_packet.dts(), encoded_packet.size());
match encoded_packet.write_interleaved(&mut self.octx) {
Ok(..) => eprintln!("Write OK"),
Err(e) => eprintln!("Error writing: {}", e),
}
//encoded_packet.write_interleaved(&mut self.octx).unwrap(); // AAA
//}
//else {
//eprintln!("Did not try to write 0-length packet");
//}
},
Err(e) => {
eprintln!("Error writing packet: {:?}", e);
break;
}
}
}
}
pub fn end(&mut self) {
let mut packet = Packet::empty();
eprintln!("flushed: {:?}", self.video_encoder.flush(&mut packet).unwrap());
self.video_encoder.send_eof().unwrap();
self.receive_and_write_packets(EncoderToWriteFrom::Video);
self.audio_encoder.send_eof().unwrap();
self.receive_and_write_packets(EncoderToWriteFrom::Audio);
self.octx.write_trailer().unwrap();
}
}
impl Drop for FfmpegComponent {
fn drop(&mut self) {
self.end();
}
}
impl RetroCallbacks for FfmpegComponent {
fn video_refresh(&mut self, data: &[u8], width: u32, height: u32, pitch: u32) {
let mut vframe = frame::Video::new(self.video_pixel_format, width, height);
let stride = vframe.stride(0);
let pitch = pitch as usize;
let vplane = vframe.data_mut(0);
if data.len() == vplane.len() && pitch == stride {
vplane.copy_from_slice(&data);
} else {
for y in 0..(height as usize) {
let ffbegin = y * stride;
let lrbegin = y * pitch;
let min = usize::min(stride, pitch);
vplane[ffbegin..(ffbegin + min)].copy_from_slice(
&data[lrbegin..(lrbegin + min)]
);
}
}
//vframe.set_pts(Some(self.frame as i64));
self.prev_video_frame.replace(vframe.clone());
self.video_frames.push_back(vframe);
}
fn video_refresh_dupe(&mut self, width: u32, height: u32, _pitch: u32) {
if let Some(frame) = &self.prev_video_frame {
self.video_frames.push_back(frame.clone());
} else {
let vframe = frame::Video::new(self.video_pixel_format, width, height);
self.video_frames.push_back(vframe);
}
}
fn audio_sample(&mut self, left: i16, right: i16) {
self.audio_buf.push((left, right));
}
fn audio_sample_batch(&mut self, stereo_pcm: &[i16]) -> usize {
let left_iter = stereo_pcm.iter().step_by(2).cloned();
let right_iter = stereo_pcm.iter().skip(1).step_by(2).cloned();
self.audio_buf.extend(Iterator::zip(left_iter, right_iter));
stereo_pcm.len()
}
fn set_pixel_format(&mut self, format: PixelFormat) -> Option<bool> {
if self.frame_properties_locked {
return Some(false);
}
self.video_pixel_format = match format {
PixelFormat::ARGB1555 => format::Pixel::RGB555,
PixelFormat::ARGB8888 => format::Pixel::RGB32,
PixelFormat::RGB565 => format::Pixel::RGB565,
};
self.video_filter = video_filter(&self.video_encoder, &self.av_info, format).unwrap();
Some(true)
}
fn get_variable(&mut self, key: &str) -> Option<String> {
match key {
"beetle_saturn_analog_stick_deadzone" => Some("15%".to_string()),
"parallel-n64-gfxplugin" => Some("angrylion".to_string()),
"parallel-n64-astick-deadzone" => Some("15%".to_string()),
_ => None,
}
}
fn set_system_av_info(&mut self, system_av_info: &SystemAvInfo) -> Option<bool> {
if self.frame_properties_locked {
return Some(false);
}
//self.video_encoder.set_frame_rate(system_av_info.timing.fps.into());
//self.video_encoder.set_time_base(Rational::new(1, 60));
//self.video_encoder.set_frame_rate(Some(Rational::new(1, 60)));
if system_av_info.timing.sample_rate.round() as i32 > 0 {
self.audio_encoder.set_rate(system_av_info.timing.sample_rate.round() as i32);
}
self.av_info.timing = system_av_info.timing.clone();
self.set_geometry(&system_av_info.geometry);
Some(true)
}
fn set_geometry(&mut self, geometry: &GameGeometry) -> Option<bool> {
if self.frame_properties_locked {
return Some(false);
}
self.video_encoder.set_width(geometry.base_width);
self.video_encoder.set_height(geometry.base_height);
//self.video_encoder.set_aspect_ratio(geometry.aspect_ratio as f64);
self.av_info.geometry = geometry.clone();
let pixel_format = match self.video_pixel_format {
format::Pixel::RGB555 => PixelFormat::ARGB1555,
format::Pixel::RGB32 => PixelFormat::ARGB8888,
format::Pixel::RGB565 => PixelFormat::RGB565,
_ => unimplemented!(),
};
self.video_filter = video_filter(&self.video_encoder, &self.av_info, pixel_format).unwrap();
Some(true)
}
}

View File

@ -0,0 +1,7 @@
#[cfg(feature = "ffmpeg_comp")]
pub mod ffmpeg;
#[cfg(feature = "sdl2_comp")]
pub mod sdl2;
pub mod stdlib;

View File

@ -0,0 +1,323 @@
use std::error::Error;
use std::ffi::CStr;
use std::path::Path;
use std::time::{Duration, Instant};
use crate::prelude::*;
use crate::components::ControlFlow;
use sdl2::audio::{AudioCallback, AudioFormat, AudioSpec, AudioSpecDesired, AudioDevice};
use sdl2::controller::{GameController, Button, Axis};
use sdl2::event::Event;
use sdl2::keyboard::Keycode;
use sdl2::rect::Rect;
use sdl2::render::WindowCanvas;
// TODO: split up between video/audio/input!
pub struct Sdl2Component {
preferred_pad: Option<u32>,
av_info: SystemAvInfo,
_sdl_context: sdl2::Sdl,
// video bits
canvas: WindowCanvas,
pixel_format: sdl2::pixels::PixelFormatEnum,
// audio bits
audio_buffer: Vec<i16>,
audio_spec: AudioSpec,
audio_device: AudioDevice<MySdlAudio>,
audio_sender: crossbeam_channel::Sender<Vec<i16>>,
// input bits
gamepad_subsys: sdl2::GameControllerSubsystem,
gamepads: Vec<GameController>,
// timing and events
frame_begin: Instant,
event_pump: sdl2::EventPump,
}
impl RetroComponent for Sdl2Component {
fn pre_run(&mut self, _retro: &mut LibretroWrapper) -> ControlFlow {
self.frame_begin = Instant::now();
for event in self.event_pump.poll_iter() {
match event {
Event::Quit { .. }
| Event::KeyDown {
keycode: Some(Keycode::Escape),
..
} => return ControlFlow::Break,
_ => {}
}
}
ControlFlow::Continue
}
fn post_run(&mut self, _retro: &mut LibretroWrapper) -> ControlFlow {
// The rest of the game loop goes here...
self.canvas.present();
// similar hack to the sample rate, make sure we don't divide by zero.
let mut spf = 1.0 / self.av_info.timing.fps;
if spf.is_nan() || spf.is_infinite() {
spf = 1.0 / 60.0;
}
Duration::from_secs_f64(spf)
.checked_sub(self.frame_begin.elapsed())
.map(std::thread::sleep);
ControlFlow::Continue
}
fn post_load_game(&mut self, retro: &mut LibretroWrapper, _rom: &Path) -> Result<(), Box<dyn Error>> {
if let Some(device) = self.preferred_pad {
for port in 0..self.gamepads.len() as u32 {
retro.set_controller_port_device(port, device);
}
}
self.audio_device.resume();
Ok(())
}
}
impl Sdl2Component {
pub fn new(retro: &LibretroWrapper) -> Self {
let sys_info = retro.get_system_info();
let title = format!(
"{} - ferretro",
unsafe { CStr::from_ptr(sys_info.library_name) }.to_string_lossy()
);
let mut av_info = retro.get_system_av_info();
let pixel_format = sdl2::pixels::PixelFormatEnum::ARGB1555;
// HACK: some cores don't report this 'til we get an environ call to set_system_av_info...
// which is too late for this constructor to pass along to SDL.
if av_info.timing.sample_rate == 0.0 {
av_info.timing.sample_rate = 32040.0;
}
let sdl_context = sdl2::init().unwrap();
let window = sdl_context
.video()
.unwrap()
.window(title.as_str(), av_info.geometry.base_width, av_info.geometry.base_height)
.opengl()
.build()
.unwrap();
let canvas = window.into_canvas().build().unwrap();
let (audio_sender, audio_receiver) = crossbeam_channel::bounded(2);
let audio = sdl_context.audio().unwrap();
let desired_spec = AudioSpecDesired {
freq: Some(av_info.timing.sample_rate.round() as i32),
channels: Some(2),
samples: None,
};
let mut audio_spec = None;
let audio_device = audio
.open_playback(None, &desired_spec, |spec| {
if spec.format != AudioFormat::S16LSB {
eprintln!("unsupported audio format {:?}", spec.format);
}
audio_spec = Some(spec.clone());
MySdlAudio {
audio_spec: spec,
audio_receiver,
}
})
.unwrap();
let gamepad_subsys = sdl_context.game_controller().unwrap();
let mut gamepads = Vec::new();
for i in 0..gamepad_subsys.num_joysticks().unwrap() {
gamepads.extend(gamepad_subsys.open(i).into_iter());
}
let event_pump = sdl_context.event_pump().unwrap();
Sdl2Component {
preferred_pad: None,
av_info,
_sdl_context: sdl_context,
canvas,
pixel_format,
audio_buffer: Default::default(),
audio_spec: audio_spec.unwrap(),
audio_device,
audio_sender,
gamepad_subsys,
gamepads,
frame_begin: Instant::now(),
event_pump,
}
}
fn send_audio_samples(&mut self) {
let stereo_samples = self.audio_spec.samples as usize * 2;
while self.audio_buffer.len() >= stereo_samples {
let remainder = self.audio_buffer.split_off(stereo_samples);
let msg = std::mem::replace(&mut self.audio_buffer, remainder);
let _ = self.audio_sender.try_send(msg);
}
}
}
impl RetroCallbacks for Sdl2Component {
fn video_refresh(&mut self, data: &[u8], width: u32, height: u32, pitch: u32) {
let rect = Rect::new(0, 0, width, height);
if let Ok(mut tex) =
self.canvas
.texture_creator()
.create_texture_static(self.pixel_format, width, height)
{
if tex.update(rect, data, pitch as usize).is_ok() {
self.canvas.clear();
self.canvas.copy(&tex, None, None).unwrap();
}
}
}
fn audio_sample(&mut self, left: i16, right: i16) {
self.audio_buffer.push(left);
self.audio_buffer.push(right);
self.send_audio_samples()
}
fn audio_sample_batch(&mut self, stereo_pcm: &[i16]) -> usize {
self.audio_buffer.extend(stereo_pcm);
self.send_audio_samples();
stereo_pcm.len()
}
fn input_poll(&mut self) {
self.gamepad_subsys.update();
}
fn input_state(&mut self, port: u32, device: InputDeviceId, index: InputIndex) -> i16 {
match self.gamepads.get(port as usize) {
Some(gamepad) => {
match device {
InputDeviceId::Joypad(button) => {
match button_map(&button) {
Some(x) => gamepad.button(x) as i16,
None => match button {
JoypadButton::L2 => gamepad.axis(Axis::TriggerLeft),
JoypadButton::R2 => gamepad.axis(Axis::TriggerRight),
_ => 0,
}
}
}
InputDeviceId::Analog(axis) => gamepad.axis(axis_map(index, axis)),
_ => 0,
}
}
None => 0,
}
}
fn set_pixel_format(&mut self, pix_fmt: PixelFormat) -> Option<bool> {
self.pixel_format = match pix_fmt {
PixelFormat::ARGB1555 => sdl2::pixels::PixelFormatEnum::RGB555,
PixelFormat::ARGB8888 => sdl2::pixels::PixelFormatEnum::ARGB8888,
PixelFormat::RGB565 => sdl2::pixels::PixelFormatEnum::RGB565,
};
Some(true)
}
fn get_variable(&mut self, key: &str) -> Option<String> {
match key {
"beetle_saturn_analog_stick_deadzone" => Some("15%".to_string()),
"parallel-n64-gfxplugin" => Some("angrylion".to_string()),
"parallel-n64-astick-deadzone" => Some("15%".to_string()),
_ => None,
}
}
fn get_input_device_capabilities(&mut self) -> Option<u64> {
let bits = (1 << (DeviceType::Joypad as u32)) | (1 << (DeviceType::Analog as u32));
Some(bits as u64)
}
fn set_system_av_info(&mut self, av_info: &SystemAvInfo) -> Option<bool> {
self.set_geometry(&av_info.geometry);
self.av_info = av_info.clone();
Some(true)
}
fn set_controller_info(&mut self, controller_info: &Vec<ControllerDescription2>) -> Option<bool> {
for ci in controller_info {
// so we can have analog support in beetle/mednafen saturn
if ci.name.as_str() == "3D Control Pad" {
self.preferred_pad = Some(ci.device_id());
break;
}
}
Some(true)
}
fn set_geometry(&mut self, geom: &GameGeometry) -> Option<bool> {
let _ = self.canvas.window_mut().set_size(geom.base_width, geom.base_height);
let _ = self.canvas.set_logical_size(geom.base_width, geom.base_height);
self.av_info.geometry = geom.clone();
Some(true)
}
}
struct MySdlAudio {
audio_spec: AudioSpec,
audio_receiver: crossbeam_channel::Receiver<Vec<i16>>,
}
impl AudioCallback for MySdlAudio {
type Channel = i16;
fn callback(&mut self, out: &mut [Self::Channel]) {
if self.audio_spec.format == AudioFormat::S16LSB {
if let Ok(samples) = self.audio_receiver.recv() {
out.copy_from_slice(&samples[..out.len()]);
}
}
}
}
fn button_map(retro_button: &JoypadButton) -> Option<Button> {
match retro_button {
JoypadButton::B => Some(Button::A),
JoypadButton::Y => Some(Button::X),
JoypadButton::Select => Some(Button::Back),
JoypadButton::Start => Some(Button::Start),
JoypadButton::Up => Some(Button::DPadUp),
JoypadButton::Down => Some(Button::DPadDown),
JoypadButton::Left => Some(Button::DPadLeft),
JoypadButton::Right => Some(Button::DPadRight),
JoypadButton::A => Some(Button::B),
JoypadButton::X => Some(Button::Y),
JoypadButton::L => Some(Button::LeftShoulder),
JoypadButton::R => Some(Button::RightShoulder),
// SDL2 controller API doesn't have L2/R2 as buttons, they're considered axes
JoypadButton::L2 => None,
JoypadButton::R2 => None,
JoypadButton::L3 => Some(Button::LeftStick),
JoypadButton::R3 => Some(Button::RightStick),
}
}
fn axis_map(index: InputIndex, axis: AnalogAxis) -> Axis {
match (index, axis) {
(InputIndex::Left, AnalogAxis::X) => Axis::LeftX,
(InputIndex::Left, AnalogAxis::Y) => Axis::LeftY,
(InputIndex::Right, AnalogAxis::X) => Axis::RightX,
(InputIndex::Right, AnalogAxis::Y) => Axis::RightY,
}
}

View File

@ -0,0 +1,80 @@
use std::path::PathBuf;
use crate::prelude::*;
#[derive(Default)]
pub struct PathBufComponent {
pub sys_path: Option<PathBuf>,
pub libretro_path: Option<PathBuf>,
pub core_assets_path: Option<PathBuf>,
pub save_path: Option<PathBuf>,
}
impl RetroComponent for PathBufComponent {}
impl RetroCallbacks for PathBufComponent {
fn get_system_directory(&mut self) -> Option<PathBuf> {
self.sys_path.clone()
}
fn get_libretro_path(&mut self) -> Option<PathBuf> {
self.libretro_path.clone()
}
fn get_core_assets_directory(&mut self) -> Option<PathBuf> {
self.core_assets_path.clone()
}
fn get_save_directory(&mut self) -> Option<PathBuf> {
self.save_path.clone()
}
}
#[derive(Default)]
pub struct StderrLogComponent {
pub prefix: String,
}
impl RetroComponent for StderrLogComponent {}
impl RetroCallbacks for StderrLogComponent {
fn log_print(&mut self, level: crate::retro::ffi::LogLevel, msg: &str) {
eprint!("{}[{:?}] {}", self.prefix, level, msg);
}
}
#[derive(Default)]
pub struct StderrSysInfoLogComponent {
pub prefix: String,
}
impl RetroComponent for StderrSysInfoLogComponent {}
impl RetroCallbacks for StderrSysInfoLogComponent {
fn set_input_descriptors(&mut self, descriptors: &Vec<InputDescriptor2>) -> Option<bool> {
for id in descriptors {
eprintln!("{}{:?}", self.prefix, id);
}
Some(true)
}
fn set_variables(&mut self, variables: &Vec<Variable2>) -> Option<bool> {
for v in variables {
eprintln!("{}{:?}", self.prefix, v);
}
Some(true)
}
fn set_subsystem_info(&mut self, subsystem_info: &Vec<SubsystemInfo2>) -> Option<bool> {
for s in subsystem_info {
eprintln!("{}{:?}", self.prefix, s);
}
Some(true)
}
}
#[derive(Default)]
pub struct StderrCallTraceComponent {
pub prefix: String,
}
impl RetroComponent for StderrCallTraceComponent {}
impl RetroCallbacks for StderrCallTraceComponent {
fn audio_sample(&mut self, left: i16, right: i16) {
eprintln!("{}audio_sample({}, {})", self.prefix, left, right);
}
// TODO: etc...
}

View File

@ -1,4 +1,12 @@
extern crate failure;
extern crate libloading;
pub mod retro;
pub mod components;
pub mod prelude {
pub use crate::retro::constants::*;
pub use crate::components::{RetroComponent, RetroComponentBase};
pub use crate::retro::wrapped_types::*;
pub use crate::retro::wrapper::{RetroCallbacks, LibretroWrapper, LibretroWrapperAccess};
pub use crate::retro::ffi::{PixelFormat, GameGeometry, SystemAvInfo, SystemInfo};
}

View File

@ -4,7 +4,7 @@ use super::ffi::*;
// NB: commented-out stuff is from newer versions of libretro.h not yet represented in libretro-sys
#[derive(TryFromPrimitive, IntoPrimitive, Debug, Clone, Copy)]
#[derive(TryFromPrimitive, IntoPrimitive, Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum DeviceType {
None = DEVICE_NONE,
@ -23,7 +23,7 @@ impl DeviceType {
}
}
#[derive(TryFromPrimitive, IntoPrimitive, Debug)]
#[derive(TryFromPrimitive, IntoPrimitive, Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum InputIndex {
Left = DEVICE_INDEX_ANALOG_LEFT,
@ -31,7 +31,7 @@ pub enum InputIndex {
// Button = DEVICE_INDEX_ANALOG_BUTTON,
}
#[derive(TryFromPrimitive, IntoPrimitive, Debug)]
#[derive(TryFromPrimitive, IntoPrimitive, Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum JoypadButton {
B = DEVICE_ID_JOYPAD_B,
@ -52,14 +52,14 @@ pub enum JoypadButton {
R3 = DEVICE_ID_JOYPAD_R3,
}
#[derive(TryFromPrimitive, IntoPrimitive, Debug)]
#[derive(TryFromPrimitive, IntoPrimitive, Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum AnalogAxis {
X = DEVICE_ID_ANALOG_X,
Y = DEVICE_ID_ANALOG_Y,
}
#[derive(TryFromPrimitive, IntoPrimitive, Debug)]
#[derive(TryFromPrimitive, IntoPrimitive, Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum MouseButton {
X = DEVICE_ID_MOUSE_X,
@ -73,7 +73,7 @@ pub enum MouseButton {
HorizWheelDown = DEVICE_ID_MOUSE_HORIZ_WHEELDOWN,
}
#[derive(TryFromPrimitive, IntoPrimitive, Debug)]
#[derive(TryFromPrimitive, IntoPrimitive, Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum LightGunButton {
// ScreenX = DEVICE_ID_LIGHTGUN_SCREEN_X,
@ -95,7 +95,7 @@ pub enum LightGunButton {
Pause = DEVICE_ID_LIGHTGUN_PAUSE,
}
#[derive(TryFromPrimitive, IntoPrimitive, Debug)]
#[derive(TryFromPrimitive, IntoPrimitive, Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum PointerStat {
X = DEVICE_ID_POINTER_X,
@ -103,7 +103,7 @@ pub enum PointerStat {
Pressed = DEVICE_ID_POINTER_PRESSED,
}
#[derive(TryFromPrimitive, IntoPrimitive)]
#[derive(TryFromPrimitive, IntoPrimitive, Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum EnvRotation {
None = 0,
@ -113,7 +113,7 @@ pub enum EnvRotation {
}
// TODO: experimental calls
#[derive(TryFromPrimitive, IntoPrimitive, Debug)]
#[derive(TryFromPrimitive, IntoPrimitive, Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum EnvCmd {
SetRotation = ENVIRONMENT_SET_ROTATION,

View File

@ -2,18 +2,19 @@ use std::ffi::CString;
use std::os::raw::{c_char, c_void};
use std::path::Path;
use failure::Fallible;
use libloading;
use super::ffi::*;
pub type Result<T> = std::result::Result<T, Box<dyn std::error::Error>>;
pub struct LibretroApi {
_lib: libloading::Library, // for tying our lifetime to its own
pub core_api: CoreAPI,
}
impl LibretroApi {
pub fn from_library(lib: libloading::Library) -> Fallible<Self> {
pub fn from_library(lib: libloading::Library) -> Result<Self> {
unsafe {
let core_api = CoreAPI {
retro_set_environment: *lib.get(b"retro_set_environment")?,
@ -46,31 +47,31 @@ impl LibretroApi {
}
}
/// set_environment() must be called before init().
pub fn set_environment(&self, cb: EnvironmentFn) {
pub fn set_environment(&mut self, cb: EnvironmentFn) {
unsafe { (&self.core_api.retro_set_environment)(cb) }
}
/// video_refresh() must be called before run().
pub fn set_video_refresh(&self, cb: VideoRefreshFn) {
/// set_video_refresh() must be called before run().
pub fn set_video_refresh(&mut self, cb: VideoRefreshFn) {
unsafe { (&self.core_api.retro_set_video_refresh)(cb) }
}
pub fn set_audio_sample(&self, cb: AudioSampleFn) {
pub fn set_audio_sample(&mut self, cb: AudioSampleFn) {
unsafe { (&self.core_api.retro_set_audio_sample)(cb) }
}
pub fn set_audio_sample_batch(&self, cb: AudioSampleBatchFn) {
pub fn set_audio_sample_batch(&mut self, cb: AudioSampleBatchFn) {
unsafe { (&self.core_api.retro_set_audio_sample_batch)(cb) }
}
pub fn set_input_poll(&self, cb: InputPollFn) {
pub fn set_input_poll(&mut self, cb: InputPollFn) {
unsafe { (&self.core_api.retro_set_input_poll)(cb) }
}
pub fn set_input_state(&self, cb: InputStateFn) {
pub fn set_input_state(&mut self, cb: InputStateFn) {
unsafe { (&self.core_api.retro_set_input_state)(cb) }
}
/// set_environment() must be called before init().
pub fn init(&self) {
pub fn init(&mut self) {
// TODO assert!(called retro_set_environment);
unsafe { (&self.core_api.retro_init)() }
}
pub fn deinit(&self) {
pub fn deinit(&mut self) {
unsafe { (&self.core_api.retro_deinit)() }
}
/// Must return RETRO_API_VERSION. Used to validate ABI compatibility when the API is revised.
@ -85,11 +86,11 @@ impl LibretroApi {
info
}
}
/** Gets information about system audio/video timings and geometry.
* Can be called only after load_game() has successfully completed.
* NOTE: The implementation of this function might not initialize every variable if needed.
* E.g. geom.aspect_ratio might not be initialized if core doesn't
* desire a particular aspect ratio. */
/// Gets information about system audio/video timings and geometry.
/// Can be called only after load_game() has successfully completed.
/// NOTE: The implementation of this function might not initialize every variable if needed.
/// E.g. geom.aspect_ratio might not be initialized if core doesn't
/// desire a particular aspect ratio.
pub fn get_system_av_info(&self) -> SystemAvInfo {
unsafe {
let mut av_info = ::std::mem::zeroed::<SystemAvInfo>();
@ -97,40 +98,38 @@ impl LibretroApi {
av_info
}
}
/** Sets device to be used for player 'port'.
* By default, RETRO_DEVICE_JOYPAD is assumed to be plugged into all
* available ports.
* Setting a particular device type is not a guarantee that libretro cores
* will only poll input based on that particular device type. It is only a
* hint to the libretro core when a core cannot automatically detect the
* appropriate input device type on its own. It is also relevant when a
* core can change its behavior depending on device type.
*
* As part of the core's implementation of retro_set_controller_port_device,
* the core should call RETRO_ENVIRONMENT_SET_INPUT_DESCRIPTORS to notify the
* frontend if the descriptions for any controls have changed as a
* result of changing the device type.
*/
pub fn set_controller_port_device(&self, port: u32, device: u32) {
/// Sets device to be used for player 'port'.
/// By default, RETRO_DEVICE_JOYPAD is assumed to be plugged into all
/// available ports.
/// Setting a particular device type is not a guarantee that libretro cores
/// will only poll input based on that particular device type. It is only a
/// hint to the libretro core when a core cannot automatically detect the
/// appropriate input device type on its own. It is also relevant when a
/// core can change its behavior depending on device type.
///
/// As part of the core's implementation of retro_set_controller_port_device,
/// the core should call RETRO_ENVIRONMENT_SET_INPUT_DESCRIPTORS to notify the
/// frontend if the descriptions for any controls have changed as a
/// result of changing the device type.
pub fn set_controller_port_device(&mut self, port: u32, device: u32) {
unsafe { (&self.core_api.retro_set_controller_port_device)(port, device) }
}
/// Resets the current game.
pub fn reset(&self) {
pub fn reset(&mut self) {
unsafe { (&self.core_api.retro_reset)() }
}
/** Runs the game for one video frame.
* During retro_run(), input_poll callback must be called at least once.
*
* If a frame is not rendered for reasons where a game "dropped" a frame,
* this still counts as a frame, and retro_run() should explicitly dupe
* a frame if GET_CAN_DUPE returns true.
* In this case, the video callback can take a NULL argument for data.
*/
pub fn run(&self) {
/// Runs the game for one video frame.
/// During retro_run(), input_poll callback must be called at least once.
///
/// If a frame is not rendered for reasons where a game "dropped" a frame,
/// this still counts as a frame, and retro_run() should explicitly dupe
/// a frame if GET_CAN_DUPE returns true.
/// In this case, the video callback can take a NULL argument for data.
pub fn run(&mut self) {
unsafe { (&self.core_api.retro_run)() }
}
/// Serializes internal state.
pub fn serialize(&self) -> Fallible<Vec<u8>> {
pub fn serialize(&mut self) -> Result<Vec<u8>> {
let size: usize = unsafe { (&self.core_api.retro_serialize_size)() };
let mut vec = Vec::with_capacity(size);
vec.resize(size, 0);
@ -138,29 +137,35 @@ impl LibretroApi {
if unsafe { (&self.core_api.retro_serialize)(vec.as_mut_ptr() as *mut c_void, size); true } {
Ok(vec)
} else {
Err(failure::err_msg("Serialize failed"))
Err("Serialize failed".into())
}
}
pub fn unserialize(&self, data: &[u8]) -> Fallible<()> {
pub fn unserialize(&mut self, data: &[u8]) -> Result<()> {
// validate size of the data
let size: usize = unsafe { (&self.core_api.retro_serialize_size)() };
if data.len() != size {
return Err(format!("Size of data {} doesn't match this core's expected size {}", data.len(), size).into())
}
if unsafe { (&self.core_api.retro_unserialize)(data.as_ptr() as *const c_void, data.len()) } {
Ok(())
} else {
Err(failure::err_msg("Unserialize failed"))
Err("Unserialize failed".into())
}
}
pub fn cheat_reset(&self) {
pub fn cheat_reset(&mut self) {
unsafe { (&self.core_api.retro_cheat_reset)() }
}
pub fn cheat_set(&self, index: u32, enabled: bool, code: &str) {
pub fn cheat_set(&mut self, index: u32, enabled: bool, code: &str) {
unsafe { (&self.core_api.retro_cheat_set)(index, enabled, code.as_bytes().as_ptr() as *const c_char) }
}
/// Loads a game.
pub fn load_game(
&self,
&mut self,
path: Option<&Path>,
data: Option<&[u8]>,
meta: Option<&str>,
) -> Fallible<()> {
) -> Result<()> {
let mut game = GameInfo {
path: std::ptr::null(),
data: std::ptr::null(),
@ -186,11 +191,11 @@ impl LibretroApi {
if unsafe { (&self.core_api.retro_load_game)(&game) } {
Ok(())
} else {
Err(failure::err_msg("Failed to load game"))
Err("Failed to load game".into())
}
}
/// Unloads the currently loaded game. Called before deinit().
pub fn unload_game(&self) {
pub fn unload_game(&mut self) {
unsafe { (&self.core_api.retro_unload_game)() }
}
pub fn get_region(&self) -> Region {

View File

@ -6,7 +6,7 @@ use std::slice::from_raw_parts;
use super::constants::*;
use super::ffi::*;
#[derive(Debug)]
#[derive(Clone, Copy, Debug)]
pub enum InputDeviceId {
None(c_uint),
Joypad(JoypadButton),
@ -21,9 +21,9 @@ impl<D> TryFrom<(D, c_uint)> for InputDeviceId
where D: TryInto<DeviceType>,
<D as std::convert::TryInto<DeviceType>>::Error: std::error::Error + Send + Sync + 'static,
{
type Error = failure::Error;
type Error = Box<dyn std::error::Error>;
fn try_from(pair: (D, c_uint)) -> failure::Fallible<Self> {
fn try_from(pair: (D, c_uint)) -> Result<Self, Self::Error> {
let (device, id) = pair;
Ok(match device.try_into()? {
DeviceType::None => InputDeviceId::None(id),
@ -37,7 +37,7 @@ impl<D> TryFrom<(D, c_uint)> for InputDeviceId
}
}
#[derive(Debug)]
#[derive(Clone, Debug)]
pub struct Variable2 {
pub key: String,
pub description: String,
@ -68,7 +68,7 @@ impl From<&Variable> for Variable2 {
}
}
#[derive(Debug)]
#[derive(Clone, Debug)]
pub struct ControllerDescription2 {
pub name: String,
pub base_type: DeviceType,
@ -104,7 +104,7 @@ impl TryFrom<&ControllerDescription> for ControllerDescription2 {
}
}
#[derive(Debug)]
#[derive(Clone, Debug)]
pub struct InputDescriptor2 {
pub port: c_uint,
pub device_id: InputDeviceId,
@ -131,7 +131,7 @@ impl TryFrom<&InputDescriptor> for InputDescriptor2 {
}
}
#[derive(Debug)]
#[derive(Clone, Debug)]
pub struct SubsystemInfo2 {
pub description: String,
pub identifier: String,
@ -155,7 +155,7 @@ impl From<&SubsystemInfo> for SubsystemInfo2 {
}
}
#[derive(Debug)]
#[derive(Clone, Debug)]
pub struct SubsystemRomInfo2 {
pub description: String,
pub valid_extensions: Vec<String>,
@ -185,7 +185,7 @@ impl From<&SubsystemRomInfo> for SubsystemRomInfo2 {
}
}
#[derive(Debug)]
#[derive(Clone, Debug)]
pub struct SubsystemMemoryInfo2 {
pub extension: String,
pub kind: c_uint,

View File

@ -4,8 +4,9 @@ use core::slice::from_raw_parts;
use std::convert::TryFrom;
use std::ffi::{CStr, CString};
use std::ops::Deref;
use std::ops::{Deref, DerefMut};
use std::os::raw::{c_char, c_uint};
use std::os::unix::ffi::OsStrExt;
use std::path::{Path, PathBuf};
use std::pin::Pin;
use std::time::Duration;
@ -28,70 +29,353 @@ extern "C" {
fn c_ext_set_log_print_cb(cb: WrappedLogPrintFn);
}
// method docs largely copied/lightly-adapted-to-rust straight from libretro.h.
#[rustfmt::skip]
#[allow(unused)]
pub trait Handler: Unpin + 'static {
fn libretro_core(&mut self) -> &mut LibretroWrapper;
fn delegate_handler(&self) -> Option<&mut dyn Handler> { None }
#[allow(unused_variables)]
pub trait RetroCallbacks: Unpin + 'static {
// -- main callbacks --
/// Render a frame. Pixel format is 15-bit 0RGB1555 native endian
/// unless changed (see [Self::set_pixel_format]).
///
/// Width and height specify dimensions of buffer.
/// Pitch specifices length in bytes between two lines in buffer.
///
/// For performance reasons, it is highly recommended to have a frame
/// that is packed in memory, i.e. pitch == width * byte_per_pixel.
/// Certain graphic APIs, such as OpenGL ES, do not like textures
/// that are not packed in memory.
fn video_refresh(&mut self, data: &[u8], width: c_uint, height: c_uint, pitch: c_uint) {}
/// Called instead of video_refresh when the core reports a duplicate frame (NULL).
fn video_refresh_dupe(&mut self, width: c_uint, height: c_uint, pitch: c_uint) {}
/// Renders a single audio frame. Should only be used if implementation
/// generates a single sample at a time.
/// Format is signed 16-bit native endian.
fn audio_sample(&mut self, left: i16, right: i16) {}
/// Renders multiple audio frames in one go.
///
/// One frame is defined as a sample of left and right channels, interleaved.
/// I.e. int16_t buf\[4\] = { l, r, l, r }; would be 2 frames.
/// Only one of the audio callbacks must ever be used.
fn audio_sample_batch(&mut self, stereo_pcm: &[i16]) -> usize { stereo_pcm.len() }
/// Polls input.
fn input_poll(&mut self) {}
/// Queries for input for player 'port'.
fn input_state(&mut self, port: u32, device: InputDeviceId, index: InputIndex) -> i16 { 0 }
// -- environment callbacks --
fn set_rotation(&mut self, rotation: EnvRotation) -> bool { false }
/// Sets screen rotation of graphics.
/// Is only implemented if rotation can be accelerated by hardware.
/// Valid values are 0, 1, 2, 3, which rotates screen by 0, 90, 180,
/// 270 degrees counter-clockwise respectively.
fn set_rotation(&mut self, rotation: EnvRotation) -> Option<bool> { None }
/// Boolean value whether or not the implementation should use overscan,
/// or crop away overscan.
fn get_overscan(&mut self) -> Option<bool> { None }
fn get_can_dupe(&mut self) -> Option<bool> { None }
fn set_message(&mut self, message: Message) -> bool { false }
fn shutdown(&mut self) -> bool { false }
fn set_performance_level(&mut self, level: c_uint) -> bool { false }
/// Sets a message to be displayed in implementation-specific manner
/// for a certain amount of 'frames'.
/// Should not be used for trivial messages, which should simply be
/// logged via [Self::get_log_interface] (or as a
/// fallback, stderr).
fn set_message(&mut self, message: &Message) -> Option<bool> { None }
/// Requests the frontend to shutdown.
/// Should only be used if game has a specific
/// way to shutdown the game from a menu item or similar.
fn shutdown(&mut self) -> Option<bool> { None }
/// Gives a hint to the frontend how demanding this implementation
/// is on a system. E.g. reporting a level of 2 means
/// this implementation should run decently on all frontends
/// of level 2 and up.
///
/// It can be used by the frontend to potentially warn
/// about too demanding implementations.
///
/// The levels are "floating".
///
/// This function can be called on a per-game basis,
/// as certain games an implementation can play might be
/// particularly demanding.
/// If called, it should be called in [libretro_sys::CoreAPI::retro_load_game].
fn set_performance_level(&mut self, level: c_uint) -> Option<bool> { None }
/// Returns the "system" directory of the frontend.
/// This directory can be used to store system specific
/// content such as BIOSes, configuration data, etc.
/// The returned value can be `None`.
/// If so, no such directory is defined,
/// and it's up to the implementation to find a suitable directory.
///
/// NOTE: Some cores used this folder also for "save" data such as
/// memory cards, etc, for lack of a better place to put it.
/// This is now discouraged, and if possible, cores should try to
/// use the new [Self::get_save_directory].
fn get_system_directory(&mut self) -> Option<PathBuf> { None }
fn set_pixel_format(&mut self, format: PixelFormat) -> bool { false }
fn set_input_descriptors(&mut self, input_descriptors: Vec<InputDescriptor2>) -> bool { false }
fn set_hw_render(&mut self, hw_render_callback: HwRenderCallback) -> bool { false }
/// Sets the internal pixel format used by the implementation.
/// The default pixel format is [libretro_sys::PixelFormat::ARGB1555].
/// This pixel format however, is deprecated (see enum retro_pixel_format).
/// If the call returns false, the frontend does not support this pixel
/// format.
///
/// The core should call this function inside [libretro_sys::CoreAPI::retro_load_game] or
/// [Self::set_system_av_info].
fn set_pixel_format(&mut self, format: PixelFormat) -> Option<bool> { None }
/// Sets an array of [crate::prelude::InputDescriptor2].
/// It is up to the frontend to present this in a usable way.
/// This function can be called at any time, but it is recommended
/// for the core to call it as early as possible.
fn set_input_descriptors(&mut self, input_descriptors: &Vec<InputDescriptor2>) -> Option<bool> { None }
/// Sets an interface to let a libretro core render with
/// hardware acceleration.
/// The core should call this in [libretro_sys::CoreAPI::retro_load_game].
/// If successful, libretro cores will be able to render to a
/// frontend-provided framebuffer.
/// The size of this framebuffer will be at least as large as
/// max_width/max_height provided in [libretro_sys::CoreAPI::retro_get_system_av_info].
/// If HW rendering is used, pass only [libretro_sys::HW_FRAME_BUFFER_VALID] or
/// NULL to [libretro_sys::VideoRefreshFn].
fn set_hw_render(&mut self, hw_render_callback: &HwRenderCallback) -> Option<bool> { None }
/// Interface to acquire user-defined information from environment
/// that cannot feasibly be supported in a multi-system way.
/// 'key' should be set to a key which has already been set by
/// [Self::set_variables].
fn get_variable(&mut self, key: &str) -> Option<String> { None }
fn set_variables(&mut self, variables: Vec<Variable2>) -> bool { false }
/// Allows an implementation to signal the environment
/// which variables it might want to check for later using
/// [Self::get_variable].
/// This allows the frontend to present these variables to
/// a user dynamically.
/// The core should call this for the first time as early as
/// possible (ideally in [libretro_sys::CoreAPI::retro_set_environment]).
/// Afterward it may be called again for the core to communicate
/// updated options to the frontend, but the number of core
/// options must not change from the number in the initial call.
///
/// [crate::prelude::Variable2::key] should be namespaced to not collide
/// with other implementations' keys. E.g. A core called
/// 'foo' should use keys named as 'foo_option'.
///
/// [crate::prelude::Variable2::description] should contain a human readable
/// description of the key.
///
/// [crate::prelude::Variable2::options] should contain the list of expected values.
/// The number of possible options should be very limited,
/// i.e. it should be feasible to cycle through options
/// without a keyboard. The first entry should be treated as a default.
///
/// Only strings are operated on. The possible values will
/// generally be displayed and stored as-is by the frontend.
fn set_variables(&mut self, variables: &Vec<Variable2>) -> Option<bool> { None }
/// Result is set to true if some variables are updated by
/// frontend since last call to [Self::get_variable].
/// Variables should be queried with [Self::get_variable].
fn get_variable_update(&mut self) -> Option<bool> { None }
fn set_support_no_game(&mut self, supports_no_game: bool) -> bool { false }
/// If true, the libretro implementation supports calls to
/// [libretro_sys::CoreAPI::retro_load_game] with NULL as argument.
/// Used by cores which can run without particular game data.
/// This should be called within [libretro_sys::CoreAPI::retro_set_environment] only.
fn set_support_no_game(&mut self, supports_no_game: bool) -> Option<bool> { None }
/// Retrieves the absolute path from where this libretro
/// implementation was loaded.
/// `None` is returned if the libretro was loaded statically
/// (i.e. linked statically to frontend), or if the path cannot be
/// determined.
/// Mostly useful in cooperation with [Self::set_support_no_game] as assets can
/// be loaded without ugly hacks.
fn get_libretro_path(&mut self) -> Option<PathBuf> { None }
/// Gets a bitmask telling which device type are expected to be
/// handled properly in a call to retro_input_state_t.
/// Devices which are not handled or recognized always return
/// 0 in [Self::input_state].
/// Example bitmask: caps = (1 << [libretro_sys::DEVICE_JOYPAD]) | (1 << [libretro_sys::DEVICE_ANALOG]).
/// Should only be called in [libretro_sys::CoreAPI::retro_run].
fn get_input_device_capabilities(&mut self) -> Option<u64> { None }
fn get_sensor_interface(&mut self) -> Option<SensorInterface> { None }
fn get_camera_interface(&mut self) -> Option<CameraCallback> { None }
fn get_log_interface(&mut self) -> Option<LogCallback> { None }
fn get_perf_interface(&mut self) -> Option<PerfCallback> { None }
fn get_location_interface(&mut self) -> Option<LocationCallback> { None }
/// Returns the "core assets" directory of the frontend.
/// This directory can be used to store specific assets that the
/// core relies upon, such as art assets,
/// input data, etc etc.
/// The returned value can be `None`.
/// If so, no such directory is defined,
/// and it's up to the implementation to find a suitable directory.
fn get_core_assets_directory(&mut self) -> Option<PathBuf> { None }
/// Returns the "save" directory of the frontend, unless there is no
/// save directory available. The save directory should be used to
/// store SRAM, memory cards, high scores, etc, if the libretro core
/// cannot use the regular memory interface ([libretro_sys::CoreAPI::retro_get_memory_data]).
///
/// If the frontend cannot designate a save directory, it will return
/// `None` to indicate that the core should attempt to operate without a
/// save directory set.
///
/// NOTE: early libretro cores used the system directory for save
/// files. Cores that need to be backwards-compatible can still check
/// [Self::get_system_directory].
fn get_save_directory(&mut self) -> Option<PathBuf> { None }
fn set_system_av_info(&mut self, system_av_info: SystemAvInfo) -> bool { false }
fn set_proc_address_callback(&mut self, cb: GetProcAddressInterface) -> bool { false }
fn set_subsystem_info(&mut self, subsystem_info: Vec<SubsystemInfo2>) -> bool { false }
fn set_controller_info(&mut self, controller_info: Vec<ControllerDescription2>) -> bool { false }
fn set_memory_maps(&mut self, memory_map: MemoryMap) -> bool { false }
fn set_geometry(&mut self, game_geometry: GameGeometry) -> bool { false }
/// Sets a new av_info structure. This can only be called from
/// within [libretro_sys::CoreAPI::retro_run].
/// This should *only* be used if the core is completely altering the
/// internal resolutions, aspect ratios, timings, sampling rate, etc.
/// Calling this can require a full reinitialization of video/audio
/// drivers in the frontend,
///
/// so it is important to call it very sparingly, and usually only with
/// the users explicit consent.
/// An eventual driver reinitialize will happen so that video and
/// audio callbacks
/// happening after this call within the same [libretro_sys::CoreAPI::retro_run] call will
/// target the newly initialized driver.
///
/// This callback makes it possible to support configurable resolutions
/// in games, which can be useful to
/// avoid setting the "worst case" in `max_width`/`max_height`.
///
/// ***HIGHLY RECOMMENDED*** Do not call this callback every time
/// resolution changes in an emulator core if it's
/// expected to be a temporary change, for the reasons of possible
/// driver reinitialization.
/// This call is not a free pass for not trying to provide
/// correct values in [libretro_sys::CoreAPI::retro_get_system_av_info]. If you need to change
/// things like aspect ratio or nominal width/height,
/// use [Self::set_geometry], which is a softer variant
/// of [Self::set_system_av_info].
///
/// If this returns false, the frontend does not acknowledge a
/// changed av_info struct.
fn set_system_av_info(&mut self, system_av_info: &SystemAvInfo) -> Option<bool> { None }
/// This environment call introduces the concept of libretro "subsystems".
/// A subsystem is a variant of a libretro core which supports
/// different kinds of games.
/// The purpose of this is to support e.g. emulators which might
/// have special needs, e.g. Super Nintendo's Super GameBoy, Sufami Turbo.
/// It can also be used to pick among subsystems in an explicit way
/// if the libretro implementation is a multi-system emulator itself.
///
/// Loading a game via a subsystem is done with [libretro_sys::CoreAPI::retro_load_game_special],
/// and this environment call allows a libretro core to expose which
/// subsystems are supported for use with [libretro_sys::CoreAPI::retro_load_game_special].
///
/// If a core wants to expose this interface, [Self::set_subsystem_info]
/// **MUST** be called from within [libretro_sys::CoreAPI::retro_set_environment].
fn set_subsystem_info(&mut self, subsystem_info: &Vec<SubsystemInfo2>) -> Option<bool> { None }
/// This environment call lets a libretro core tell the frontend
/// which controller subclasses are recognized in calls to
/// [libretro_sys::CoreAPI::retro_set_controller_port_device].
///
/// Some emulators such as Super Nintendo support multiple lightgun
/// types which must be specifically selected from. It is therefore
/// sometimes necessary for a frontend to be able to tell the core
/// about a special kind of input device which is not specifcally
/// provided by the Libretro API.
///
/// In order for a frontend to understand the workings of those devices,
/// they must be defined as a specialized subclass of the generic device
/// types already defined in the libretro API.
///
/// The core must pass an array of [crate::prelude::ControllerDescription2]. Each element of the
/// array corresponds to the ascending port index
/// that is passed to [libretro_sys::CoreAPI::retro_set_controller_port_device] when that function
/// is called to indicate to the core that the frontend has changed the
/// active device subclass.
///
/// The ascending input port indexes provided by the core in the struct
/// are generally presented by frontends as ascending User # or Player #,
/// such as Player 1, Player 2, Player 3, etc. Which device subclasses are
/// supported can vary per input port.
///
/// Each entry in the controller_info array specifies the names and
/// codes of all device subclasses that are available for the corresponding
/// User or Player, beginning with the generic Libretro device that the
/// subclasses are derived from. The second inner element of each entry is the
/// total number of subclasses that are listed in the [crate::prelude::ControllerDescription2].
///
/// NOTE: Even if special device types are set in the libretro core,
/// libretro should only poll input based on the base input device types.
fn set_controller_info(&mut self, controller_info: &Vec<ControllerDescription2>) -> Option<bool> { None }
/// This environment call lets a libretro core tell the frontend
/// about the memory maps this core emulates.
/// This can be used to implement, for example, cheats in a core-agnostic way.
///
/// Should only be used by emulators; it doesn't make much sense for
/// anything else.
/// It is recommended to expose all relevant pointers through
/// [libretro_sys::CoreAPI::retro_get_memory_data] and
/// [libretro_sys::CoreAPI::retro_get_memory_size] as well.
///
/// Can be called from [libretro_sys::CoreAPI::retro_init] and [libretro_sys::CoreAPI::retro_load_game].
fn set_memory_maps(&mut self, memory_map: &MemoryMap) -> Option<bool> { None }
/// This environment call is similar to [Self::set_system_av_info] for changing
/// video parameters, but provides a guarantee that drivers will not be
/// reinitialized.
/// This can only be called from within [libretro_sys::CoreAPI::retro_run].
///
/// The purpose of this call is to allow a core to alter nominal
/// width/heights as well as aspect ratios on-the-fly, which can be
/// useful for some emulators to change in run-time.
///
/// max_width/max_height arguments are ignored and cannot be changed
/// with this call as this could potentially require a reinitialization or a
/// non-constant time operation.
/// If max_width/max_height are to be changed, [Self::set_system_av_info] is required.
///
/// A frontend must guarantee that this environment call completes in
/// constant time.
fn set_geometry(&mut self, game_geometry: &GameGeometry) -> Option<bool> { None }
/// Returns the specified username of the frontend, if specified by the user.
/// This username can be used as a nickname for a core that has online facilities
/// or any other mode where personalization of the user is desirable.
/// The returned value can be `None`.
/// If this environ callback is used by a core that requires a valid username,
/// a default username should be specified by the core.
fn get_username(&mut self) -> Option<String> { None }
/// Returns the specified language of the frontend, if specified by the user.
/// It can be used by the core for localization purposes.
fn get_language(&mut self) -> Option<Language> { None }
// fn set_serialization_quirks(&mut self, quirks: &mut u64) -> bool { false }
// fn set_serialization_quirks(&mut self, quirks: &mut u64) -> Option<bool> { None }
// -- environment-set callbacks (API extensions) --
/// Logging function.
fn log_print(&mut self, level: LogLevel, msg: &str) {}
/// Sets rumble state for joypad plugged in port 'port'.
/// Rumble effects are controlled independently,
/// and setting e.g. strong rumble does not override weak rumble.
/// Strength has a range of \[0, 0xffff\].
///
/// Returns true if rumble state request was honored.
/// Calling this before first [libretro_sys::CoreAPI::retro_run] is likely to return false.
fn set_rumble_state(&mut self, port: c_uint, effect: RumbleEffect, strength: u16) -> bool { false }
/// Returns current time in microseconds.
/// Tries to use the most accurate timer available.
fn perf_get_time_usec_cb(&mut self) -> Time { 0 }
/// A simple counter. Usually nanoseconds, but can also be CPU cycles.
/// Can be used directly if desired (when creating a more sophisticated
/// performance counter system).
fn perf_get_counter_cb(&mut self) -> PerfTick { 0 }
/// Returns a bit-mask of detected CPU features ([libretro_sys]::SIMD_*).
fn perf_get_cpu_features_cb(&mut self) -> u64 { 0 }
/// Asks frontend to log and/or display the state of performance counters.
/// Performance counters can always be poked into manually as well.
fn perf_log_cb(&mut self) {}
/// Register a performance counter.
/// ident field must be set with a discrete value and other values in
/// retro_perf_counter must be 0.
/// Registering can be called multiple times. To avoid calling to
/// frontend redundantly, you can check registered field first.
fn perf_register_cb(&mut self, counter: &mut PerfCounter) {}
/// Starts a registered counter.
fn perf_start_cb(&mut self, counter: &mut PerfCounter) {}
/// Stops a registered counter.
fn perf_stop_cb(&mut self, counter: &mut PerfCounter) {}
fn set_sensor_state(&mut self, port: c_uint, action: SensorAction, rate: c_uint) -> bool { false }
fn get_sensor_input(&mut self, port: c_uint, id: c_uint) -> f32 { 0.0 }
}
pub trait LibretroWrapperAccess {
fn libretro_core(&mut self) -> &mut LibretroWrapper;
}
pub trait RootRetroCallbacks : RetroCallbacks + LibretroWrapperAccess {}
impl<T: RetroCallbacks + LibretroWrapperAccess> RootRetroCallbacks for T {}
#[derive(Default)]
struct StaticCallbacks {
handler: Option<Pin<&'static mut dyn Handler>>,
handler: Option<Pin<&'static mut dyn RootRetroCallbacks>>,
}
unsafe impl Sync for StaticCallbacks {}
@ -108,7 +392,9 @@ impl StaticCallbacks {
Some(true)
}
fn path_into_void(data: *mut c_void, source: impl AsRef<Path>) -> Option<bool> {
Self::string_into_void(data, source.as_ref().to_string_lossy())
*unsafe { (data as *mut *const c_char).as_mut()? } =
CString::new(source.as_ref().as_os_str().as_bytes()).ok()?.into_raw();
Some(true)
}
fn from_void<T>(data: *mut c_void) -> Option<&'static mut T> {
unsafe { (data as *mut T).as_mut() }
@ -146,17 +432,17 @@ impl StaticCallbacks {
);
}
match parsed_cmd? {
EnvCmd::SetRotation => handler.set_rotation(Self::enum_from_void(data)?),
EnvCmd::SetRotation => handler.set_rotation(Self::enum_from_void(data)?)?,
EnvCmd::GetOverscan => Self::clone_into_void(data, &handler.get_overscan()?)?,
EnvCmd::GetCanDupe => Self::clone_into_void(data, &handler.get_can_dupe()?)?,
EnvCmd::SetMessage => handler.set_message(Self::from_void::<Message>(data)?.clone()),
EnvCmd::Shutdown => handler.shutdown(),
EnvCmd::SetPerformanceLevel => handler.set_performance_level(*Self::from_void(data)?),
EnvCmd::GetCanDupe => Self::clone_into_void(data, &true)?,
EnvCmd::SetMessage => handler.set_message(Self::from_void::<Message>(data)?)?,
EnvCmd::Shutdown => handler.shutdown()?,
EnvCmd::SetPerformanceLevel => handler.set_performance_level(*Self::from_void(data)?)?,
EnvCmd::GetSystemDirectory => {
Self::path_into_void(data, handler.get_system_directory()?)?
}
EnvCmd::SetPixelFormat => {
handler.set_pixel_format(PixelFormat::from_uint(*Self::from_void(data)?)?)
handler.set_pixel_format(PixelFormat::from_uint(*Self::from_void(data)?)?)?
}
EnvCmd::SetInputDescriptors => {
let mut input_desc = data as *const InputDescriptor;
@ -165,7 +451,7 @@ impl StaticCallbacks {
descriptors.push(unsafe { input_desc.as_ref() }?.try_into().ok()?);
input_desc = input_desc.wrapping_add(1);
}
handler.set_input_descriptors(descriptors)
handler.set_input_descriptors(&descriptors)?
}
EnvCmd::SetKeyboardCallback => {
let kc: &mut KeyboardCallback = Self::from_void(data)?;
@ -217,12 +503,12 @@ impl StaticCallbacks {
descriptors.push(unsafe { var.as_ref() }?.into());
var = var.wrapping_add(1);
}
handler.set_variables(descriptors)
handler.set_variables(&descriptors)?
}
EnvCmd::GetVariableUpdate => {
Self::clone_into_void(data, &handler.get_variable_update()?)?
}
EnvCmd::SetSupportNoGame => handler.set_support_no_game(*Self::from_void(data)?),
EnvCmd::SetSupportNoGame => handler.set_support_no_game(*Self::from_void(data)?)?,
EnvCmd::GetLibretroPath => Self::path_into_void(data, handler.get_libretro_path()?)?,
EnvCmd::SetFrameTimeCallback => {
let ftc: &mut FrameTimeCallback = Self::from_void(data)?;
@ -277,7 +563,7 @@ impl StaticCallbacks {
}
EnvCmd::GetSaveDirectory => Self::path_into_void(data, handler.get_save_directory()?)?,
EnvCmd::SetSystemAvInfo => {
handler.set_system_av_info(Self::from_void::<SystemAvInfo>(data)?.clone())
handler.set_system_av_info(Self::from_void::<SystemAvInfo>(data)?)?
}
EnvCmd::SetProcAddressCallback => {
let gpa = Self::from_void::<GetProcAddressInterface>(data)?;
@ -294,7 +580,7 @@ impl StaticCallbacks {
descriptors.push(unsafe { info.as_ref() }?.into());
info = info.wrapping_add(1);
}
handler.set_subsystem_info(descriptors)
handler.set_subsystem_info(&descriptors)?
}
EnvCmd::SetControllerInfo => {
let info = unsafe { (data as *const ControllerInfo).as_ref() }?;
@ -305,14 +591,14 @@ impl StaticCallbacks {
.map(TryInto::try_into)
.filter_map(|x| x.ok())
.collect();
handler.set_controller_info(controller_info)
handler.set_controller_info(&controller_info)?
}
EnvCmd::SetMemoryMaps => {
let map = Self::from_void::<MemoryMap>(data)?.clone();
handler.set_memory_maps(map)
handler.set_memory_maps(&map)?
},
EnvCmd::SetGeometry => {
handler.set_geometry(Self::from_void::<GameGeometry>(data)?.clone())
handler.set_geometry(Self::from_void::<GameGeometry>(data)?)?
}
EnvCmd::GetUsername => Self::string_into_void(data, handler.get_username()?)?,
EnvCmd::GetLanguage => Self::clone_into_void(data, &handler.get_language()?)?,
@ -336,12 +622,14 @@ impl StaticCallbacks {
height: c_uint,
pitch: usize,
) {
if !data.is_null() && data != HW_FRAME_BUFFER_VALID {
if let Some(cb) = unsafe { CB_SINGLETON.handler.as_mut() } {
if let Some(cb) = unsafe { CB_SINGLETON.handler.as_mut() } {
if data.is_null() {
cb.video_refresh_dupe(width, height, pitch as c_uint);
} else if data != HW_FRAME_BUFFER_VALID {
let data = data as *const u8;
let len = pitch * (height as usize);
let slice = unsafe { from_raw_parts(data, len) };
cb.video_refresh(slice, width, height, pitch as u32);
cb.video_refresh(slice, width, height, pitch as c_uint);
}
}
}
@ -572,11 +860,17 @@ impl Deref for LibretroWrapper {
}
}
impl DerefMut for LibretroWrapper {
fn deref_mut(&mut self) -> &mut LibretroApi {
&mut self.api
}
}
// a note on lifetimes: we explicitly lie about them here because as long as they live as long as
// the library wrapper itself we're good (we wipe our 'static references on drop() too)
pub fn set_handler(handler: Pin<&'_ mut (dyn Handler + '_)>) {
pub fn set_handler(handler: Pin<&'_ mut (dyn RootRetroCallbacks + '_)>) {
unsafe {
let ptr = handler.get_unchecked_mut() as *mut dyn Handler;
let ptr = handler.get_unchecked_mut() as *mut dyn RootRetroCallbacks;
CB_SINGLETON
.handler
.replace(Pin::new_unchecked(ptr.as_mut().unwrap()));