gpsp/arm/arm_stub.S
David Guillen Fandos ff510e7f7a Move caches to stub files to get around gcc 10
Seems that using the __atribute__ magic for sections is not the best way
of doing this, since it injects some default atributtes that collide
with the user defined ones. Using assembly is far easier in this case.

Reworked definitions a bit to make it easier to import from assembly.
Also wrapped stuff around macros for easy and less verbose
implementation of the symbol prefix issue.
2021-03-23 20:02:44 +01:00

851 lines
38 KiB
ArmAsm

#include "../gpsp_config.h"
#define defsymbl(symbol) \
.global symbol ; \
.global _##symbol ; \
symbol: \
_##symbol:
.text
.align 2
#define REG_R0 (0 * 4)
#define REG_R1 (1 * 4)
#define REG_R2 (2 * 4)
#define REG_R3 (3 * 4)
#define REG_R4 (4 * 4)
#define REG_R5 (5 * 4)
#define REG_R6 (6 * 4)
#define REG_R7 (7 * 4)
#define REG_R8 (8 * 4)
#define REG_R9 (9 * 4)
#define REG_R10 (10 * 4)
#define REG_R11 (11 * 4)
#define REG_R12 (12 * 4)
#define REG_R13 (13 * 4)
#define REG_R14 (14 * 4)
#define REG_SP (13 * 4)
#define REG_LR (14 * 4)
#define REG_PC (15 * 4)
#define REG_N_FLAG (16 * 4)
#define REG_Z_FLAG (17 * 4)
#define REG_C_FLAG (18 * 4)
#define REG_V_FLAG (19 * 4)
#define REG_CPSR (20 * 4)
#define REG_SAVE (21 * 4)
#define REG_SAVE2 (22 * 4)
#define REG_SAVE3 (23 * 4)
#define CPU_MODE (29 * 4)
#define CPU_HALT_STATE (30 * 4)
#define CHANGED_PC_STATUS (31 * 4)
#define COMPLETED_FRAME (32 * 4)
#define MAIN_THREAD_SP (33 * 4)
#define reg_a0 r0
#define reg_a1 r1
#define reg_a2 r2
#define reg_s0 r9
#define reg_base sp
#define reg_flags r11
#define reg_cycles r12
#define reg_x0 r3
#define reg_x1 r4
#define reg_x2 r5
#define reg_x3 r6
#define reg_x4 r7
#define reg_x5 r8
#define MODE_SUPERVISOR 3
#ifdef __ARM_ARCH_7A__
#define extract_u16(rd, rs) \
uxth rd, rs
#else
#define extract_u16(rd, rs) \
bic rd, rs, #0xff000000 ;\
bic rd, rd, #0x00ff0000
#endif
@ Will load the register set from memory into the appropriate cached registers.
@ See arm_emit.h for listing explanation.
#define load_registers_arm() ;\
ldr reg_x0, [reg_base, #REG_R0] ;\
ldr reg_x1, [reg_base, #REG_R1] ;\
ldr reg_x2, [reg_base, #REG_R6] ;\
ldr reg_x3, [reg_base, #REG_R9] ;\
ldr reg_x4, [reg_base, #REG_R12] ;\
ldr reg_x5, [reg_base, #REG_R14] ;\
#define load_registers_thumb() ;\
ldr reg_x0, [reg_base, #REG_R0] ;\
ldr reg_x1, [reg_base, #REG_R1] ;\
ldr reg_x2, [reg_base, #REG_R2] ;\
ldr reg_x3, [reg_base, #REG_R3] ;\
ldr reg_x4, [reg_base, #REG_R4] ;\
ldr reg_x5, [reg_base, #REG_R5] ;\
@ Will store the register set from cached registers back to memory.
#define store_registers_arm() ;\
str reg_x0, [reg_base, #REG_R0] ;\
str reg_x1, [reg_base, #REG_R1] ;\
str reg_x2, [reg_base, #REG_R6] ;\
str reg_x3, [reg_base, #REG_R9] ;\
str reg_x4, [reg_base, #REG_R12] ;\
str reg_x5, [reg_base, #REG_R14] ;\
#define store_registers_thumb() ;\
str reg_x0, [reg_base, #REG_R0] ;\
str reg_x1, [reg_base, #REG_R1] ;\
str reg_x2, [reg_base, #REG_R2] ;\
str reg_x3, [reg_base, #REG_R3] ;\
str reg_x4, [reg_base, #REG_R4] ;\
str reg_x5, [reg_base, #REG_R5] ;\
@ Returns an updated persistent cpsr with the cached flags register.
@ Uses reg as a temporary register and returns the CPSR here.
#define collapse_flags_no_update(reg) ;\
ldr reg, [reg_base, #REG_CPSR] /* reg = cpsr */;\
bic reg, reg, #0xF0000000 /* clear ALU flags in cpsr */;\
and reg_flags, reg_flags, #0xF0000000 /* clear non-ALU flags */;\
orr reg, reg, reg_flags /* update cpsr with ALU flags */;\
@ Updates cpsr using the above macro.
#define collapse_flags(reg) ;\
collapse_flags_no_update(reg) ;\
str reg, [reg_base, #REG_CPSR] ;\
@ Loads the saved flags register from the persistent cpsr.
#define extract_flags() ;\
ldr reg_flags, [reg_base, #REG_CPSR] ;\
msr cpsr_f, reg_flags ;\
#define save_flags() ;\
mrs reg_flags, cpsr ;\
#define restore_flags() ;\
msr cpsr_f, reg_flags ;\
@ Align the stack to 64 bits (ABIs that don't require it, still recommend so)
#define call_c_saved_regs r2, r3, r12, lr
@ Calls a C function - reloads the stack pointer and saves all caller save
@ registers which are important to the dynarec.
#define call_c_function(function) ;\
ldr sp, [reg_base, #MAIN_THREAD_SP] ;\
stmdb sp!, { call_c_saved_regs } ;\
bl function ;\
ldmia sp!, { call_c_saved_regs } ;\
ldr sp, =reg ;\
@ Update the GBA hardware (video, sound, input, etc)
@ Input:
@ r0: current PC
#define return_straight() ;\
bx lr ;\
#define return_add() ;\
add pc, lr, #4 ;\
#define load_pc_straight() ;\
ldr r0, [lr, #-8] ;\
#define load_pc_add() ;\
ldr r0, [lr] ;\
#define arm_update_gba_builder(name, mode, return_op) ;\
;\
.align 2 ;\
defsymbl(arm_update_gba_##name) ;\
load_pc_##return_op() ;\
str r0, [reg_base, #REG_PC] /* write out the PC */;\
;\
save_flags() ;\
collapse_flags(r0) /* update the flags */;\
;\
store_registers_##mode() /* save out registers */;\
wait_halt_##name: ;\
call_c_function(update_gba) /* update GBA state */;\
;\
ldr r1, [reg_base, #COMPLETED_FRAME] /* return if new frame */;\
cmp r1, #0 ;\
bne return_to_main ;\
;\
ldr r1, [reg_base, #CPU_HALT_STATE] /* keep iterating if halted */;\
cmp r1, #0 ;\
bne wait_halt_##name ;\
;\
mvn reg_cycles, r0 /* load new cycle count */;\
;\
ldr r0, [reg_base, #CHANGED_PC_STATUS] /* load PC changed status */;\
cmp r0, #0 /* see if PC has changed */;\
beq 1f /* if not return */;\
;\
ldr r0, [reg_base, #REG_PC] /* load new PC */;\
ldr r1, [reg_base, #REG_CPSR] /* r1 = flags */;\
tst r1, #0x20 /* see if Thumb bit is set */;\
bne 2f /* if so load Thumb PC */;\
;\
load_registers_arm() /* load ARM regs */;\
call_c_function(block_lookup_address_arm) ;\
restore_flags() ;\
bx r0 /* jump to new ARM block */;\
;\
1: ;\
load_registers_##mode() /* reload registers */;\
restore_flags() ;\
return_##return_op() ;\
;\
2: ;\
load_registers_thumb() /* load Thumb regs */;\
call_c_function(block_lookup_address_thumb) ;\
restore_flags() ;\
bx r0 /* jump to new ARM block */;\
arm_update_gba_builder(arm, arm, straight)
arm_update_gba_builder(thumb, thumb, straight)
arm_update_gba_builder(idle_arm, arm, add)
arm_update_gba_builder(idle_thumb, thumb, add)
@ These are b stubs for performing indirect branches. They are not
@ linked to and don't return, instead they link elsewhere.
@ Input:
@ r0: PC to branch to
.align 2
defsymbl(arm_indirect_branch_arm)
save_flags()
call_c_function(block_lookup_address_arm)
restore_flags()
bx r0
.align 2
defsymbl(arm_indirect_branch_thumb)
save_flags()
call_c_function(block_lookup_address_thumb)
restore_flags()
bx r0
.align 2
defsymbl(arm_indirect_branch_dual_arm)
save_flags()
tst r0, #0x01 @ check lower bit
bne 1f @ if set going to Thumb mode
call_c_function(block_lookup_address_arm)
restore_flags()
bx r0 @ return
1:
bic r0, r0, #0x01
store_registers_arm() @ save out ARM registers
load_registers_thumb() @ load in Thumb registers
ldr r1, [reg_base, #REG_CPSR] @ load cpsr
orr r1, r1, #0x20 @ set Thumb mode
str r1, [reg_base, #REG_CPSR] @ store flags
call_c_function(block_lookup_address_thumb)
restore_flags()
bx r0 @ return
.align 2
defsymbl(arm_indirect_branch_dual_thumb)
save_flags()
tst r0, #0x01 @ check lower bit
beq 1f @ if set going to ARM mode
bic r0, r0, #0x01
call_c_function(block_lookup_address_thumb)
restore_flags()
bx r0 @ return
1:
store_registers_thumb() @ save out Thumb registers
load_registers_arm() @ load in ARM registers
ldr r1, [reg_base, #REG_CPSR] @ load cpsr
bic r1, r1, #0x20 @ clear Thumb mode
str r1, [reg_base, #REG_CPSR] @ store flags
call_c_function(block_lookup_address_arm)
restore_flags()
bx r0 @ return
@ Update the cpsr.
@ Input:
@ r0: new cpsr value
@ r1: bitmask of which bits in cpsr to update
@ r2: current PC
.align 2
defsymbl(execute_store_cpsr)
save_flags()
and reg_flags, r0, r1 @ reg_flags = new_cpsr & store_mask
ldr r0, [reg_base, #REG_CPSR] @ r0 = cpsr
bic r0, r0, r1 @ r0 = cpsr & ~store_mask
orr reg_flags, reg_flags, r0 @ reg_flags = new_cpsr | cpsr
mov r0, reg_flags @ also put new cpsr in r0
store_registers_arm() @ save ARM registers
ldr r2, [lr] @ r2 = pc
call_c_function(execute_store_cpsr_body)
load_registers_arm() @ restore ARM registers
cmp r0, #0 @ check new PC
beq 1f @ if it's zero, return
call_c_function(block_lookup_address_arm)
restore_flags()
bx r0 @ return to new ARM address
1:
restore_flags()
add pc, lr, #4 @ return
@ Update the current spsr.
@ Input:
@ r0: new cpsr value
@ r1: bitmask of which bits in spsr to update
.align 2
defsymbl(execute_store_spsr)
ldr r1, =spsr @ r1 = spsr
ldr r2, [reg_base, #CPU_MODE] @ r2 = CPU_MODE
str r0, [r1, r2, lsl #2] @ spsr[CPU_MODE] = new_spsr
bx lr
@ Read the current spsr.
@ Output:
@ r0: spsr
.align 2
defsymbl(execute_read_spsr)
ldr r0, =spsr @ r0 = spsr
ldr r1, [reg_base, #CPU_MODE] @ r1 = CPU_MODE
ldr r0, [r0, r1, lsl #2] @ r0 = spsr[CPU_MODE]
bx lr @ return
@ Restore the cpsr from the mode spsr and mode shift.
@ Input:
@ r0: current pc
.align 2
defsymbl(execute_spsr_restore)
save_flags()
ldr r1, =spsr @ r1 = spsr
ldr r2, [reg_base, #CPU_MODE] @ r2 = cpu_mode
ldr r1, [r1, r2, lsl #2] @ r1 = spsr[cpu_mode] (new cpsr)
str r1, [reg_base, #REG_CPSR] @ update cpsr
mov reg_flags, r1 @ also, update shadow flags
@ This function call will pass r0 (address) and return it.
store_registers_arm() @ save ARM registers
call_c_function(execute_spsr_restore_body)
ldr r1, [reg_base, #REG_CPSR] @ r1 = cpsr
tst r1, #0x20 @ see if Thumb mode is set
bne 2f @ if so handle it
load_registers_arm() @ restore ARM registers
call_c_function(block_lookup_address_arm)
restore_flags()
bx r0
2:
load_registers_thumb() @ load Thumb registers
call_c_function(block_lookup_address_thumb)
restore_flags()
bx r0
@ Setup the mode transition work for calling an SWI.
@ Input:
@ r0: current pc
#define execute_swi_builder(mode) ;\
;\
.align 2 ;\
defsymbl(execute_swi_##mode) ;\
save_flags() ;\
ldr r1, =reg_mode /* r1 = reg_mode */;\
/* reg_mode[MODE_SUPERVISOR][6] = pc */;\
ldr r0, [lr] /* load PC */;\
str r0, [r1, #((MODE_SUPERVISOR * (7 * 4)) + (6 * 4))] ;\
collapse_flags_no_update(r0) /* r0 = cpsr */;\
ldr r1, =spsr /* r1 = spsr */;\
str r0, [r1, #(MODE_SUPERVISOR * 4)] /* spsr[MODE_SUPERVISOR] = cpsr */;\
bic r0, r0, #0x3F /* clear mode flag in r0 */;\
orr r0, r0, #0x13 /* set to supervisor mode */;\
str r0, [reg_base, #REG_CPSR] /* update cpsr */;\
;\
mov r0, #MODE_SUPERVISOR ;\
;\
store_registers_##mode() /* store regs for mode */;\
call_c_function(set_cpu_mode) /* set the CPU mode to svsr */;\
load_registers_arm() /* load ARM regs */;\
;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
execute_swi_builder(arm)
execute_swi_builder(thumb)
@ Wrapper for calling SWI functions in C (or can implement some in ASM if
@ desired)
#define execute_swi_function_builder(swi_function, mode) ;\
;\
.align 2 ;\
defsymbl(execute_swi_hle_##swi_function##_##mode) ;\
save_flags() ;\
store_registers_##mode() ;\
call_c_function(execute_swi_hle_##swi_function##_c) ;\
load_registers_##mode() ;\
restore_flags() ;\
bx lr ;\
execute_swi_function_builder(div, arm)
execute_swi_function_builder(div, thumb)
@ Start program execution. Normally the mode should be Thumb and the
@ PC should be 0x8000000, however if a save state is preloaded this
@ will be different.
@ Input:
@ r0: initial value for cycle counter
@ Uses sp as reg_base; must hold consistently true.
.align 2
defsymbl(execute_arm_translate)
@ save the registers to be able to return later
stmdb sp!, { r4, r5, r6, r7, r8, r9, r10, r11, r12, lr }
ldr r1, =reg @ reg to r1
str sp, [r1, #MAIN_THREAD_SP] @ store the current sp
ldr sp, =reg @ reg_base = sp (loading addr)
mvn reg_cycles, r0 @ load cycle counter
@ Check whether the CPU is sleeping already, we should just wait for IRQs
ldr r1, [reg_base, #CPU_HALT_STATE]
cmp r1, #0
bne alert_loop
ldr r0, [reg_base, #REG_PC] @ r0 = current pc
ldr r1, [reg_base, #REG_CPSR] @ r1 = flags
tst r1, #0x20 @ see if Thumb bit is set
bne 1f @ if so lookup thumb
load_registers_arm() @ load ARM registers
call_c_function(block_lookup_address_arm)
extract_flags() @ load flags
bx r0 @ jump to first ARM block
1:
load_registers_thumb() @ load Thumb registers
call_c_function(block_lookup_address_thumb)
extract_flags() @ load flags
bx r0 @ jump to first Thumb block
@ Epilogue to return to the main thread (whatever called execute_arm_translate)
return_to_main:
@ restore the stack pointer
ldr sp, [reg_base, #MAIN_THREAD_SP]
@ restore the saved regs and return
ldmia sp!, { r4, r5, r6, r7, r8, r9, r10, r11, r12, lr }
bx lr
#define store_align_8() ;\
and r1, r1, #0xff ;\
#define store_align_16() ;\
bic r0, r0, #0x01 ;\
extract_u16(r1, r1) ;\
#define store_align_32() ;\
bic r0, r0, #0x03 ;\
#define mask_addr_8(nbits) ;\
mov r0, r0, lsl #(32 - nbits) /* isolate bottom n bits in top */;\
mov r0, r0, lsr #(32 - nbits) /* high bits are now clear */;\
#define mask_addr_16(nbits) ;\
mov r0, r0, lsl #(32 - nbits) /* isolate bottom n bits in top */;\
mov r0, r0, lsr #(32 - nbits + 1) /* high bits are now clear */;\
mov r0, r0, lsl #1 /* LSB is also zero */;\
#define mask_addr_32(nbits) ;\
mov r0, r0, lsl #(32 - nbits) /* isolate bottom n bits in top */;\
mov r0, r0, lsr #(32 - nbits + 2) /* high bits are now clear */;\
mov r0, r0, lsl #2 /* 2 LSB are also zero */;\
@ Vram, OAM and palette memories can only be accessed at a 16 bit boundary
#define mask_addr_bus16_32(nbits) mask_addr_32(nbits)
#define mask_addr_bus16_16(nbits) mask_addr_16(nbits)
#define mask_addr_bus16_8(nbits) \
mask_addr_16(nbits) \
extract_u16(r1, r1)
@ Write out to memory.
@ Input:
@ r0: address
@ r1: value
@ r2: current pc
@
@ The instruction at LR is not an inst but a u32 data that contains the PC
@ Used for SMC. That's why return is essentially `pc = lr + 4`
#define execute_store_body(store_type, store_op) ;\
save_flags() ;\
str lr, [reg_base, #REG_SAVE3] /* save lr */;\
str r4, [reg_base, #REG_SAVE2] /* save r4 */;\
tst r0, #0xF0000000 /* make sure address is in range */;\
bne ext_store_u##store_type /* if not do ext store */;\
;\
ldr lr, =ptr_tbl_##store_type /* lr = ptr table */;\
mov r4, r0, lsr #24 /* r4 = region number */;\
ldr lr, [lr, r4, lsl #2] /* lr = function pointer */;\
ldr r4, [reg_base, #REG_SAVE2] /* restore r4 */;\
bx lr /* jump to handler */;\
;\
ptr_tbl_##store_type: ;\
.word ext_store_ignore /* 0x00: BIOS, ignore */;\
.word ext_store_ignore /* 0x01: ignore */;\
.word ext_store_ewram_u##store_type /* 0x02: ewram */;\
.word ext_store_iwram_u##store_type /* 0x03: iwram */;\
.word ext_store_u##store_type /* 0x04: I/O regs */;\
.word ext_store_u##store_type /* 0x05: palette RAM */;\
.word ext_store_vram_u##store_type /* 0x06: vram */;\
.word ext_store_u##store_type /* 0x07: oam ram */;\
.word ext_store_u##store_type /* 0x08: gamepak: ignore */;\
.word ext_store_u##store_type /* 0x09: gamepak: ignore */;\
.word ext_store_u##store_type /* 0x0A: gamepak: ignore */;\
.word ext_store_u##store_type /* 0x0B: gamepak: ignore */;\
.word ext_store_u##store_type /* 0x0C: gamepak: ignore */;\
.word ext_store_u##store_type /* 0x0D: EEPROM */;\
.word ext_store_u##store_type /* 0x0E: backup */;\
.word ext_store_ignore /* 0x0F: ignore */;\
@ for ignored areas, just return
ext_store_ignore:
ldr lr, [reg_base, #REG_SAVE3] @ pop lr off of stack
restore_flags()
add pc, lr, #4 @ return
#define execute_store_builder(store_type, store_op, load_op) ;\
;\
.align 2 ;\
defsymbl(execute_store_u##store_type) ;\
execute_store_body(store_type, store_op) ;\
;\
ext_store_u##store_type: ;\
ldr lr, [reg_base, #REG_SAVE3] /* pop lr off of stack */;\
ldr r2, [lr] /* load PC */;\
str r2, [reg_base, #REG_PC] /* write out PC */;\
store_align_##store_type() ;\
call_c_function(write_memory##store_type) ;\
b write_epilogue /* handle additional write stuff */;\
;\
ext_store_iwram_u##store_type: ;\
mask_addr_##store_type(15) /* Mask to mirror memory (+align)*/;\
ldr r2, =(iwram+0x8000) /* r2 = iwram base */;\
store_op r1, [r0, r2] /* store data */;\
sub r2, r2, #0x8000 /* r2 = iwram smc base */;\
load_op r1, [r0, r2] /* r1 = SMC sentinel */;\
cmp r1, #0 /* see if it's not 0 */;\
bne 3f /* if so perform smc write */;\
ldr lr, [reg_base, #REG_SAVE3] /* pop lr off of stack */;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
;\
ext_store_ewram_u##store_type: ;\
mask_addr_##store_type(18) /* Mask to mirror memory (+align)*/;\
ldr r2, =(ewram) /* r2 = ewram base */;\
store_op r1, [r0, r2] /* store data */;\
add r2, r2, #0x40000 /* r2 = ewram smc base */;\
load_op r1, [r0, r2] /* r1 = SMC sentinel */;\
cmp r1, #0 /* see if it's not 0 */;\
bne 3f /* if so perform smc write */;\
ldr lr, [reg_base, #REG_SAVE3] /* pop lr off of stack */;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
;\
ext_store_vram_u##store_type: ;\
mask_addr_bus16_##store_type(17) /* Mask to mirror memory (+align)*/;\
cmp r0, #0x18000 /* Check if exceeds 96KB */;\
subcs r0, r0, #0x8000 /* Mirror to the last bank */;\
ldr r2, =(vram) /* r2 = vram base */;\
store_op r1, [r0, r2] /* store data */;\
ldr lr, [reg_base, #REG_SAVE3] /* pop lr off of stack */;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
;\
3: ;\
ldr lr, [reg_base, #REG_SAVE3] /* restore lr */;\
ldr r0, [lr] /* load PC */;\
str r0, [reg_base, #REG_PC] /* write out PC */;\
b smc_write /* perform smc write */;\
execute_store_builder(8, strb, ldrb)
execute_store_builder(16, strh, ldrh)
execute_store_builder(32, str, ldr)
@ This is a store that is executed in a strm case (so no SMC checks in-between)
defsymbl(execute_store_u32_safe)
execute_store_body(32_safe, str)
restore_flags()
ldr pc, [reg_base, #REG_SAVE3] @ return
ext_store_u32_safe:
ldr lr, [reg_base, #REG_SAVE3] @ Restore lr
call_c_function(write_memory32) @ Perform 32bit store
restore_flags()
bx lr @ Return
ext_store_iwram_u32_safe:
mask_addr_8(15) @ Mask to mirror memory (no need to align!)
ldr r2, =(iwram+0x8000) @ r2 = iwram base
str r1, [r0, r2] @ store data
restore_flags()
ldr pc, [reg_base, #REG_SAVE3] @ return
ext_store_ewram_u32_safe:
mask_addr_8(18) @ Mask to mirror memory (no need to align!)
ldr r2, =(ewram) @ r2 = ewram base
str r1, [r0, r2] @ store data
restore_flags()
ldr pc, [reg_base, #REG_SAVE3] @ return
ext_store_vram_u32_safe:
mask_addr_8(17) @ Mask to mirror memory (no need to align!)
ldr r2, =(vram) @ r2 = vram base
cmp r0, #0x18000 @ Check if exceeds 96KB
subcs r0, r0, #0x8000 @ Mirror to the last bank
str r1, [r0, r2] @ store data
restore_flags()
ldr pc, [reg_base, #REG_SAVE3] @ return
write_epilogue:
cmp r0, #0 @ check if the write rose an alert
beq 4f @ if not we can exit
collapse_flags(r1) @ interrupt needs current flags
cmp r0, #2 @ see if the alert is due to SMC
beq smc_write @ if so, goto SMC handler
ldr r1, [reg_base, #REG_CPSR] @ r1 = cpsr
tst r1, #0x20 @ see if Thumb bit is set
bne 1f @ if so do Thumb update
store_registers_arm() @ save ARM registers
b alert_loop
1:
store_registers_thumb() @ save Thumb registers
alert_loop:
call_c_function(update_gba) @ update GBA until CPU isn't halted
ldr r1, [reg_base, #COMPLETED_FRAME] @ Check whether a frame was completed
cmp r1, #0
bne return_to_main
ldr r1, [reg_base, #CPU_HALT_STATE] @ Check whether the CPU is halted
cmp r1, #0
bne alert_loop @ Keep looping until it is
mvn reg_cycles, r0 @ load new cycle count
ldr r0, [reg_base, #REG_PC] @ load new PC
ldr r1, [reg_base, #REG_CPSR] @ r1 = flags
tst r1, #0x20 @ see if Thumb bit is set
bne 2f
load_registers_arm()
call_c_function(block_lookup_address_arm)
restore_flags()
bx r0 @ jump to new ARM block
2:
load_registers_thumb()
call_c_function(block_lookup_address_thumb)
restore_flags()
bx r0 @ jump to new Thumb block
4:
restore_flags()
add pc, lr, #4 @ return
smc_write:
call_c_function(flush_translation_cache_ram)
lookup_pc:
ldr r0, [reg_base, #REG_PC] @ r0 = new pc
ldr r1, [reg_base, #REG_CPSR] @ r1 = flags
tst r1, #0x20 @ see if Thumb bit is set
beq lookup_pc_arm @ if not lookup ARM
lookup_pc_thumb:
call_c_function(block_lookup_address_thumb)
restore_flags()
bx r0 @ jump to new Thumb block
lookup_pc_arm:
call_c_function(block_lookup_address_arm)
restore_flags()
bx r0 @ jump to new ARM block
#define sign_extend_u8(reg)
#define sign_extend_u16(reg)
#define sign_extend_u32(reg)
#define sign_extend_s8(reg) ;\
mov reg, reg, lsl #24 /* shift reg into upper 8bits */;\
mov reg, reg, asr #24 /* shift down, sign extending */;\
#define sign_extend_s16(reg) ;\
mov reg, reg, lsl #16 /* shift reg into upper 16bits */;\
mov reg, reg, asr #16 /* shift down, sign extending */;\
#define execute_load_op_u8(load_op) ;\
mov r0, r0, lsl #17 ;\
load_op r0, [r2, r0, lsr #17] ;\
#define execute_load_op_s8(load_op) ;\
mov r0, r0, lsl #17 ;\
mov r0, r0, lsr #17 ;\
load_op r0, [r2, r0] ;\
#define execute_load_op_u16(load_op) ;\
execute_load_op_s8(load_op) ;\
#define execute_load_op_s16(load_op) ;\
execute_load_op_s8(load_op) ;\
#define execute_load_op_u16(load_op) ;\
execute_load_op_s8(load_op) ;\
#define execute_load_op_u32(load_op) ;\
execute_load_op_u8(load_op) ;\
#define execute_load_builder(load_type, load_function, load_op, mask) ;\
;\
.align 2 ;\
defsymbl(execute_load_##load_type) ;\
save_flags() ;\
tst r0, mask /* make sure address is in range */;\
bne ext_load_##load_type /* if not do ext load */;\
;\
ldr r2, =memory_map_read /* r2 = memory_map_read */;\
mov r1, r0, lsr #15 /* r1 = page index of address */;\
ldr r2, [r2, r1, lsl #2] /* r2 = memory page */;\
;\
cmp r2, #0 /* see if map is ext */;\
beq ext_load_##load_type /* if so do ext load */;\
;\
execute_load_op_##load_type(load_op) ;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
;\
ext_load_##load_type: ;\
ldr r1, [lr] /* r1 = PC */;\
str r1, [reg_base, #REG_PC] /* update PC */;\
call_c_function(read_memory##load_function) ;\
sign_extend_##load_type(r0) /* sign extend result */;\
restore_flags() ;\
add pc, lr, #4 /* return */;\
.pool
execute_load_builder(u8, 8, ldrneb, #0xF0000000)
execute_load_builder(s8, 8, ldrnesb, #0xF0000000)
execute_load_builder(u16, 16, ldrneh, #0xF0000001)
execute_load_builder(s16, 16_signed, ldrnesh, #0xF0000001)
execute_load_builder(u32, 32, ldrne, #0xF0000000)
.data
defsymbl(memory_map_read)
.space 0x8000
defsymbl(palette_ram)
.space 0x400
defsymbl(palette_ram_converted)
.space 0x400
defsymbl(spsr)
.space 24
defsymbl(reg_mode)
.space 196
defsymbl(reg)
.space 0x100, 0
@ Vita and 3DS (and of course mmap) map their own cache sections through some
@ platform-speficic mechanisms.
#if !defined(HAVE_MMAP) && !defined(VITA) && !defined(_3DS)
@ Make this section executable!
.text
#ifdef __ANDROID__
@ Unfortunately Android builds don't like nobits, so we ship a ton of zeros
@ TODO: Revisit this whenever we upgrade to the latest clang NDK
.section .jit,"awx",%progbits
#else
.section .jit,"awx",%nobits
#endif
.align 4
defsymbl(rom_translation_cache)
.space ROM_TRANSLATION_CACHE_SIZE
defsymbl(ram_translation_cache)
.space RAM_TRANSLATION_CACHE_SIZE
#endif