2855 lines
155 KiB
C
2855 lines
155 KiB
C
/* gameplaySP
|
|
*
|
|
* Copyright (C) 2006 Exophase <exophase@gmail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifndef MIPS_EMIT_H
|
|
#define MIPS_EMIT_H
|
|
|
|
#include "mips/mips_codegen.h"
|
|
|
|
// Pointers to default handlers.
|
|
// Use IWRAM as default, assume aligned by default too
|
|
#define execute_load_u8 tmemld[0][3]
|
|
#define execute_load_s8 tmemld[1][3]
|
|
#define execute_load_u16 tmemld[2][3]
|
|
#define execute_load_s16 tmemld[4][3]
|
|
#define execute_load_u32 tmemld[6][3]
|
|
#define execute_aligned_load32 tmemld[10][3]
|
|
#define execute_store_u8 tmemst[0][3]
|
|
#define execute_store_u16 tmemst[1][3]
|
|
#define execute_store_u32 tmemst[2][3]
|
|
#define execute_aligned_store32 tmemst[3][3]
|
|
|
|
u32 mips_update_gba(u32 pc);
|
|
|
|
// Although these are defined as a function, don't call them as
|
|
// such (jump to it instead)
|
|
void mips_indirect_branch_arm(u32 address);
|
|
void mips_indirect_branch_thumb(u32 address);
|
|
void mips_indirect_branch_dual(u32 address);
|
|
|
|
u32 execute_read_cpsr();
|
|
u32 execute_read_spsr();
|
|
void execute_swi(u32 pc);
|
|
void mips_cheat_hook(void);
|
|
|
|
u32 execute_spsr_restore(u32 address);
|
|
void execute_store_cpsr(u32 new_cpsr, u32 store_mask);
|
|
void execute_store_spsr(u32 new_spsr, u32 store_mask);
|
|
|
|
u32 execute_spsr_restore_body(u32 address);
|
|
u32 execute_store_cpsr_body(u32 _cpsr, u32 store_mask, u32 address);
|
|
|
|
|
|
#define reg_base mips_reg_s0
|
|
#define reg_cycles mips_reg_s1
|
|
#define reg_a0 mips_reg_a0
|
|
#define reg_a1 mips_reg_a1
|
|
#define reg_a2 mips_reg_a2
|
|
#define reg_rv mips_reg_v0
|
|
#define reg_pc mips_reg_s3
|
|
#define reg_temp mips_reg_at
|
|
#define reg_zero mips_reg_zero
|
|
|
|
#define reg_n_cache mips_reg_s4
|
|
#define reg_z_cache mips_reg_s5
|
|
#define reg_c_cache mips_reg_s6
|
|
#define reg_v_cache mips_reg_s7
|
|
|
|
#define reg_r0 mips_reg_v1
|
|
#define reg_r1 mips_reg_a3
|
|
#define reg_r2 mips_reg_t0
|
|
#define reg_r3 mips_reg_t1
|
|
#define reg_r4 mips_reg_t2
|
|
#define reg_r5 mips_reg_t3
|
|
#define reg_r6 mips_reg_t4
|
|
#define reg_r7 mips_reg_t5
|
|
#define reg_r8 mips_reg_t6
|
|
#define reg_r9 mips_reg_t7
|
|
#define reg_r10 mips_reg_s2
|
|
#define reg_r11 mips_reg_t8
|
|
#define reg_r12 mips_reg_t9
|
|
#define reg_r13 mips_reg_gp
|
|
#define reg_r14 mips_reg_fp
|
|
|
|
// Writing to r15 goes straight to a0, to be chained with other ops
|
|
|
|
u32 arm_to_mips_reg[] =
|
|
{
|
|
reg_r0,
|
|
reg_r1,
|
|
reg_r2,
|
|
reg_r3,
|
|
reg_r4,
|
|
reg_r5,
|
|
reg_r6,
|
|
reg_r7,
|
|
reg_r8,
|
|
reg_r9,
|
|
reg_r10,
|
|
reg_r11,
|
|
reg_r12,
|
|
reg_r13,
|
|
reg_r14,
|
|
reg_a0,
|
|
reg_a1,
|
|
reg_a2
|
|
};
|
|
|
|
#define arm_reg_a0 15
|
|
#define arm_reg_a1 16
|
|
#define arm_reg_a2 17
|
|
|
|
#define generate_load_reg(ireg, reg_index) \
|
|
mips_emit_addu(ireg, arm_to_mips_reg[reg_index], reg_zero) \
|
|
|
|
#define generate_load_imm(ireg, imm) \
|
|
if(((s32)imm >= -32768) && ((s32)imm <= 32767)) \
|
|
{ \
|
|
mips_emit_addiu(ireg, reg_zero, imm); \
|
|
} \
|
|
else \
|
|
{ \
|
|
if(((u32)imm >> 16) == 0x0000) \
|
|
{ \
|
|
mips_emit_ori(ireg, reg_zero, imm); \
|
|
} \
|
|
else \
|
|
{ \
|
|
mips_emit_lui(ireg, imm >> 16); \
|
|
\
|
|
if(((u32)imm & 0x0000FFFF) != 0x00000000) \
|
|
{ \
|
|
mips_emit_ori(ireg, ireg, imm & 0xFFFF); \
|
|
} \
|
|
} \
|
|
} \
|
|
|
|
#define generate_load_pc(ireg, new_pc) \
|
|
{ \
|
|
s32 pc_delta = (new_pc) - (stored_pc); \
|
|
if((pc_delta >= -32768) && (pc_delta <= 32767)) \
|
|
{ \
|
|
mips_emit_addiu(ireg, reg_pc, pc_delta); \
|
|
} \
|
|
else \
|
|
{ \
|
|
generate_load_imm(ireg, (new_pc)); \
|
|
} \
|
|
} \
|
|
|
|
#define generate_store_reg(ireg, reg_index) \
|
|
mips_emit_addu(arm_to_mips_reg[reg_index], ireg, reg_zero) \
|
|
|
|
#define generate_alu_imm(imm_type, reg_type, ireg_dest, ireg_src, imm) \
|
|
if(((s32)imm >= -32768) && ((s32)imm <= 32767)) \
|
|
{ \
|
|
mips_emit_##imm_type(ireg_dest, ireg_src, imm); \
|
|
} \
|
|
else \
|
|
{ \
|
|
generate_load_imm(reg_temp, imm); \
|
|
mips_emit_##reg_type(ireg_dest, ireg_src, reg_temp); \
|
|
} \
|
|
|
|
#define generate_alu_immu(imm_type, reg_type, ireg_dest, ireg_src, imm) \
|
|
if(((u32)imm >= 0) && ((u32)imm <= 65535)) \
|
|
{ \
|
|
mips_emit_##imm_type(ireg_dest, ireg_src, imm); \
|
|
} \
|
|
else \
|
|
{ \
|
|
generate_load_imm(reg_temp, imm); \
|
|
mips_emit_##reg_type(ireg_dest, ireg_src, reg_temp); \
|
|
} \
|
|
|
|
#define generate_mov(ireg_dest, ireg_src) \
|
|
mips_emit_addu(ireg_dest, ireg_src, reg_zero) \
|
|
|
|
#define generate_multiply_s64() \
|
|
mips_emit_mult(arm_to_mips_reg[rm], arm_to_mips_reg[rs]) \
|
|
|
|
#define generate_multiply_u64() \
|
|
mips_emit_multu(arm_to_mips_reg[rm], arm_to_mips_reg[rs]) \
|
|
|
|
#define generate_multiply_s64_add() \
|
|
mips_emit_madd(arm_to_mips_reg[rm], arm_to_mips_reg[rs]) \
|
|
|
|
#define generate_multiply_u64_add() \
|
|
mips_emit_maddu(arm_to_mips_reg[rm], arm_to_mips_reg[rs]) \
|
|
|
|
#define generate_function_call(function_location) \
|
|
mips_emit_jal(mips_absolute_offset(function_location)); \
|
|
mips_emit_nop() \
|
|
|
|
#define generate_function_call_swap_delay(function_location) \
|
|
{ \
|
|
u32 delay_instruction = address32(translation_ptr, -4); \
|
|
translation_ptr -= 4; \
|
|
mips_emit_jal(mips_absolute_offset(function_location)); \
|
|
address32(translation_ptr, 0) = delay_instruction; \
|
|
translation_ptr += 4; \
|
|
} \
|
|
|
|
#define generate_function_return_swap_delay() \
|
|
{ \
|
|
u32 delay_instruction = address32(translation_ptr, -4); \
|
|
translation_ptr -= 4; \
|
|
mips_emit_jr(mips_reg_ra); \
|
|
address32(translation_ptr, 0) = delay_instruction; \
|
|
translation_ptr += 4; \
|
|
} \
|
|
|
|
#define generate_swap_delay() \
|
|
{ \
|
|
u32 delay_instruction = address32(translation_ptr, -8); \
|
|
u32 branch_instruction = address32(translation_ptr, -4); \
|
|
branch_instruction = (branch_instruction & 0xFFFF0000) | \
|
|
(((branch_instruction & 0x0000FFFF) + 1) & 0x0000FFFF); \
|
|
address32(translation_ptr, -8) = branch_instruction; \
|
|
address32(translation_ptr, -4) = delay_instruction; \
|
|
} \
|
|
|
|
#define generate_cycle_update() \
|
|
if(cycle_count != 0) \
|
|
{ \
|
|
mips_emit_addiu(reg_cycles, reg_cycles, -cycle_count); \
|
|
cycle_count = 0; \
|
|
} \
|
|
|
|
#define generate_cycle_update_force() \
|
|
mips_emit_addiu(reg_cycles, reg_cycles, -cycle_count); \
|
|
cycle_count = 0 \
|
|
|
|
#define generate_branch_patch_conditional(dest, offset) \
|
|
*((u16 *)(dest)) = mips_relative_offset(dest, offset) \
|
|
|
|
#define generate_branch_patch_unconditional(dest, offset) \
|
|
*((u32 *)(dest)) = (mips_opcode_j << 26) | \
|
|
((mips_absolute_offset(offset)) & 0x3FFFFFF) \
|
|
|
|
#define generate_branch_no_cycle_update(writeback_location, new_pc) \
|
|
if(pc == idle_loop_target_pc) \
|
|
{ \
|
|
generate_load_pc(reg_a0, new_pc); \
|
|
generate_function_call_swap_delay(mips_update_gba); \
|
|
mips_emit_j_filler(writeback_location); \
|
|
mips_emit_nop(); \
|
|
} \
|
|
else \
|
|
{ \
|
|
generate_load_pc(reg_a0, new_pc); \
|
|
mips_emit_bltzal(reg_cycles, \
|
|
mips_relative_offset(translation_ptr, update_trampoline)); \
|
|
generate_swap_delay(); \
|
|
mips_emit_j_filler(writeback_location); \
|
|
mips_emit_nop(); \
|
|
} \
|
|
|
|
#define generate_branch_cycle_update(writeback_location, new_pc) \
|
|
generate_cycle_update(); \
|
|
generate_branch_no_cycle_update(writeback_location, new_pc) \
|
|
|
|
// a0 holds the destination
|
|
|
|
#define generate_indirect_branch_cycle_update(type) \
|
|
mips_emit_j(mips_absolute_offset(mips_indirect_branch_##type)); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_indirect_branch_no_cycle_update(type) \
|
|
mips_emit_j(mips_absolute_offset(mips_indirect_branch_##type)); \
|
|
mips_emit_nop() \
|
|
|
|
#define generate_block_prologue() \
|
|
update_trampoline = translation_ptr; \
|
|
mips_emit_j(mips_absolute_offset(mips_update_gba)); \
|
|
mips_emit_nop(); \
|
|
generate_load_imm(reg_pc, stored_pc) \
|
|
|
|
#define block_prologue_size 8
|
|
|
|
#define check_generate_n_flag \
|
|
(flag_status & 0x08) \
|
|
|
|
#define check_generate_z_flag \
|
|
(flag_status & 0x04) \
|
|
|
|
#define check_generate_c_flag \
|
|
(flag_status & 0x02) \
|
|
|
|
#define check_generate_v_flag \
|
|
(flag_status & 0x01) \
|
|
|
|
#define generate_load_reg_pc(ireg, reg_index, pc_offset) \
|
|
if(reg_index == REG_PC) \
|
|
{ \
|
|
generate_load_pc(ireg, (pc + pc_offset)); \
|
|
} \
|
|
else \
|
|
{ \
|
|
generate_load_reg(ireg, reg_index); \
|
|
} \
|
|
|
|
#define check_load_reg_pc(arm_reg, reg_index, pc_offset) \
|
|
if(reg_index == REG_PC) \
|
|
{ \
|
|
reg_index = arm_reg; \
|
|
generate_load_pc(arm_to_mips_reg[arm_reg], (pc + pc_offset)); \
|
|
} \
|
|
|
|
#define check_store_reg_pc_no_flags(reg_index) \
|
|
if(reg_index == REG_PC) \
|
|
{ \
|
|
generate_indirect_branch_arm(); \
|
|
} \
|
|
|
|
#define check_store_reg_pc_flags(reg_index) \
|
|
if(reg_index == REG_PC) \
|
|
{ \
|
|
generate_function_call(execute_spsr_restore); \
|
|
generate_indirect_branch_dual(); \
|
|
} \
|
|
|
|
#define generate_shift_imm_lsl_no_flags(arm_reg, _rm, _shift) \
|
|
check_load_reg_pc(arm_reg, _rm, 8); \
|
|
if(_shift != 0) \
|
|
{ \
|
|
mips_emit_sll(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
|
|
_rm = arm_reg; \
|
|
} \
|
|
|
|
#define generate_shift_imm_lsr_no_flags(arm_reg, _rm, _shift) \
|
|
if(_shift != 0) \
|
|
{ \
|
|
check_load_reg_pc(arm_reg, _rm, 8); \
|
|
mips_emit_srl(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
|
|
} \
|
|
else \
|
|
{ \
|
|
mips_emit_addu(arm_to_mips_reg[arm_reg], reg_zero, reg_zero); \
|
|
} \
|
|
_rm = arm_reg \
|
|
|
|
#define generate_shift_imm_asr_no_flags(arm_reg, _rm, _shift) \
|
|
check_load_reg_pc(arm_reg, _rm, 8); \
|
|
if(_shift != 0) \
|
|
{ \
|
|
mips_emit_sra(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
|
|
} \
|
|
else \
|
|
{ \
|
|
mips_emit_sra(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], 31); \
|
|
} \
|
|
_rm = arm_reg \
|
|
|
|
#define generate_shift_imm_ror_no_flags(arm_reg, _rm, _shift) \
|
|
check_load_reg_pc(arm_reg, _rm, 8); \
|
|
if(_shift != 0) \
|
|
{ \
|
|
rotate_right(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], \
|
|
reg_temp, _shift); \
|
|
} \
|
|
else \
|
|
{ /* Special case: RRX (no carry update) */ \
|
|
mips_emit_srl(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], 1); \
|
|
insert_bits(arm_to_mips_reg[arm_reg], reg_c_cache, reg_temp, 31, 1); \
|
|
} \
|
|
_rm = arm_reg \
|
|
|
|
#define generate_shift_imm_lsl_flags(arm_reg, _rm, _shift) \
|
|
check_load_reg_pc(arm_reg, _rm, 8); \
|
|
if(_shift != 0) \
|
|
{ \
|
|
extract_bits(reg_c_cache, arm_to_mips_reg[_rm], (32 - _shift), 1); \
|
|
mips_emit_sll(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
|
|
_rm = arm_reg; \
|
|
} \
|
|
|
|
#define generate_shift_imm_lsr_flags(arm_reg, _rm, _shift) \
|
|
check_load_reg_pc(arm_reg, _rm, 8); \
|
|
if(_shift != 0) \
|
|
{ \
|
|
extract_bits(reg_c_cache, arm_to_mips_reg[_rm], (_shift - 1), 1); \
|
|
mips_emit_srl(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
|
|
} \
|
|
else \
|
|
{ \
|
|
mips_emit_srl(reg_c_cache, arm_to_mips_reg[_rm], 31); \
|
|
mips_emit_addu(arm_to_mips_reg[arm_reg], reg_zero, reg_zero); \
|
|
} \
|
|
_rm = arm_reg \
|
|
|
|
#define generate_shift_imm_asr_flags(arm_reg, _rm, _shift) \
|
|
check_load_reg_pc(arm_reg, _rm, 8); \
|
|
if(_shift != 0) \
|
|
{ \
|
|
extract_bits(reg_c_cache, arm_to_mips_reg[_rm], (_shift - 1), 1); \
|
|
mips_emit_sra(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
|
|
} \
|
|
else \
|
|
{ \
|
|
mips_emit_sra(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], 31); \
|
|
mips_emit_andi(reg_c_cache, arm_to_mips_reg[arm_reg], 1); \
|
|
} \
|
|
_rm = arm_reg \
|
|
|
|
#define generate_shift_imm_ror_flags(arm_reg, _rm, _shift) \
|
|
check_load_reg_pc(arm_reg, _rm, 8); \
|
|
if(_shift != 0) \
|
|
{ \
|
|
extract_bits(reg_c_cache, arm_to_mips_reg[_rm], (_shift - 1), 1); \
|
|
rotate_right(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], \
|
|
reg_temp, _shift); \
|
|
} \
|
|
else \
|
|
{ /* Special case: RRX (carry update) */ \
|
|
mips_emit_sll(reg_temp, reg_c_cache, 31); \
|
|
mips_emit_andi(reg_c_cache, arm_to_mips_reg[_rm], 1); \
|
|
mips_emit_srl(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], 1); \
|
|
mips_emit_or(arm_to_mips_reg[arm_reg], arm_to_mips_reg[arm_reg],reg_temp);\
|
|
} \
|
|
_rm = arm_reg \
|
|
|
|
#define generate_shift_reg_lsl_no_flags(_rm, _rs) \
|
|
mips_emit_sltiu(reg_temp, arm_to_mips_reg[_rs], 32); \
|
|
mips_emit_sllv(reg_a0, arm_to_mips_reg[_rm], arm_to_mips_reg[_rs]); \
|
|
mips_emit_movz(reg_a0, reg_zero, reg_temp) \
|
|
|
|
#define generate_shift_reg_lsr_no_flags(_rm, _rs) \
|
|
mips_emit_sltiu(reg_temp, arm_to_mips_reg[_rs], 32); \
|
|
mips_emit_srlv(reg_a0, arm_to_mips_reg[_rm], arm_to_mips_reg[_rs]); \
|
|
mips_emit_movz(reg_a0, reg_zero, reg_temp) \
|
|
|
|
#define generate_shift_reg_asr_no_flags(_rm, _rs) \
|
|
mips_emit_sltiu(reg_temp, arm_to_mips_reg[_rs], 32); \
|
|
mips_emit_b(bne, reg_temp, reg_zero, 2); \
|
|
mips_emit_srav(reg_a0, arm_to_mips_reg[_rm], arm_to_mips_reg[_rs]); \
|
|
mips_emit_sra(reg_a0, reg_a0, 31) \
|
|
|
|
#define generate_shift_reg_ror_no_flags(_rm, _rs) \
|
|
rotate_right_var(reg_a0, arm_to_mips_reg[_rm], \
|
|
reg_temp, arm_to_mips_reg[_rs]) \
|
|
|
|
#define generate_shift_reg_lsl_flags(_rm, _rs) \
|
|
{ \
|
|
u32 shift_reg = _rs; \
|
|
check_load_reg_pc(arm_reg_a1, shift_reg, 8); \
|
|
generate_load_reg_pc(reg_a0, _rm, 12); \
|
|
/* Only load the result on zero, no shift */ \
|
|
mips_emit_b(beq, arm_to_mips_reg[shift_reg], reg_zero, 7); \
|
|
generate_swap_delay(); \
|
|
mips_emit_addiu(reg_temp, arm_to_mips_reg[shift_reg], -1); \
|
|
mips_emit_sllv(reg_a0, reg_a0, reg_temp); \
|
|
mips_emit_srl(reg_c_cache, reg_a0, 31); \
|
|
mips_emit_sltiu(reg_temp, arm_to_mips_reg[shift_reg], 33); \
|
|
mips_emit_sll(reg_a0, reg_a0, 1); \
|
|
/* Result and flag to be zero if shift is 33+ */ \
|
|
mips_emit_movz(reg_c_cache, reg_zero, reg_temp); \
|
|
mips_emit_movz(reg_a0, reg_zero, reg_temp); \
|
|
} \
|
|
|
|
#define generate_shift_reg_lsr_flags(_rm, _rs) \
|
|
{ \
|
|
u32 shift_reg = _rs; \
|
|
check_load_reg_pc(arm_reg_a1, shift_reg, 8); \
|
|
generate_load_reg_pc(reg_a0, _rm, 12); \
|
|
/* Only load the result on zero, no shift */ \
|
|
mips_emit_b(beq, arm_to_mips_reg[shift_reg], reg_zero, 7); \
|
|
generate_swap_delay(); \
|
|
mips_emit_addiu(reg_temp, arm_to_mips_reg[shift_reg], -1); \
|
|
mips_emit_srlv(reg_a0, reg_a0, reg_temp); \
|
|
mips_emit_andi(reg_c_cache, reg_a0, 1); \
|
|
mips_emit_sltiu(reg_temp, arm_to_mips_reg[shift_reg], 33); \
|
|
mips_emit_srl(reg_a0, reg_a0, 1); \
|
|
/* Result and flag to be zero if shift is 33+ */ \
|
|
mips_emit_movz(reg_c_cache, reg_zero, reg_temp); \
|
|
mips_emit_movz(reg_a0, reg_zero, reg_temp); \
|
|
} \
|
|
|
|
#define generate_shift_reg_asr_flags(_rm, _rs) \
|
|
generate_load_reg_pc(reg_a1, _rs, 8); \
|
|
generate_load_reg_pc(reg_a0, _rm, 12); \
|
|
/* Only load the result on zero, no shift */ \
|
|
mips_emit_b(beq, reg_a1, reg_zero, 7); \
|
|
generate_swap_delay(); \
|
|
/* Cap shift at 32, since it's equivalent */ \
|
|
mips_emit_addiu(reg_temp, reg_zero, 32); \
|
|
mips_emit_srl(reg_rv, reg_a1, 5); \
|
|
mips_emit_movn(reg_a1, reg_temp, reg_rv); \
|
|
mips_emit_addiu(reg_temp, reg_a1, -1); \
|
|
mips_emit_srav(reg_a0, reg_a0, reg_temp); \
|
|
mips_emit_andi(reg_c_cache, reg_a0, 1); \
|
|
mips_emit_sra(reg_a0, reg_a0, 1); \
|
|
|
|
#define generate_shift_reg_ror_flags(_rm, _rs) \
|
|
mips_emit_b(beq, arm_to_mips_reg[_rs], reg_zero, 3); \
|
|
mips_emit_addiu(reg_temp, arm_to_mips_reg[_rs], -1); \
|
|
mips_emit_srlv(reg_temp, arm_to_mips_reg[_rm], reg_temp); \
|
|
mips_emit_andi(reg_c_cache, reg_temp, 1); \
|
|
rotate_right_var(reg_a0, arm_to_mips_reg[_rm], \
|
|
reg_temp, arm_to_mips_reg[_rs]) \
|
|
|
|
#define generate_shift_imm(arm_reg, name, flags_op) \
|
|
u32 shift = (opcode >> 7) & 0x1F; \
|
|
generate_shift_imm_##name##_##flags_op(arm_reg, rm, shift) \
|
|
|
|
#define generate_shift_reg(arm_reg, name, flags_op) \
|
|
u32 rs = ((opcode >> 8) & 0x0F); \
|
|
generate_shift_reg_##name##_##flags_op(rm, rs); \
|
|
rm = arm_reg \
|
|
|
|
// Made functions due to the macro expansion getting too large.
|
|
// Returns a new rm if it redirects it (which will happen on most of these
|
|
// cases)
|
|
|
|
#define generate_load_rm_sh_builder(flags_op) \
|
|
u32 generate_load_rm_sh_##flags_op(u32 rm) \
|
|
{ \
|
|
switch((opcode >> 4) & 0x07) \
|
|
{ \
|
|
/* LSL imm */ \
|
|
case 0x0: \
|
|
{ \
|
|
generate_shift_imm(arm_reg_a0, lsl, flags_op); \
|
|
break; \
|
|
} \
|
|
\
|
|
/* LSL reg */ \
|
|
case 0x1: \
|
|
{ \
|
|
generate_shift_reg(arm_reg_a0, lsl, flags_op); \
|
|
break; \
|
|
} \
|
|
\
|
|
/* LSR imm */ \
|
|
case 0x2: \
|
|
{ \
|
|
generate_shift_imm(arm_reg_a0, lsr, flags_op); \
|
|
break; \
|
|
} \
|
|
\
|
|
/* LSR reg */ \
|
|
case 0x3: \
|
|
{ \
|
|
generate_shift_reg(arm_reg_a0, lsr, flags_op); \
|
|
break; \
|
|
} \
|
|
\
|
|
/* ASR imm */ \
|
|
case 0x4: \
|
|
{ \
|
|
generate_shift_imm(arm_reg_a0, asr, flags_op); \
|
|
break; \
|
|
} \
|
|
\
|
|
/* ASR reg */ \
|
|
case 0x5: \
|
|
{ \
|
|
generate_shift_reg(arm_reg_a0, asr, flags_op); \
|
|
break; \
|
|
} \
|
|
\
|
|
/* ROR imm */ \
|
|
case 0x6: \
|
|
{ \
|
|
generate_shift_imm(arm_reg_a0, ror, flags_op); \
|
|
break; \
|
|
} \
|
|
\
|
|
/* ROR reg */ \
|
|
case 0x7: \
|
|
{ \
|
|
generate_shift_reg(arm_reg_a0, ror, flags_op); \
|
|
break; \
|
|
} \
|
|
} \
|
|
\
|
|
return rm; \
|
|
} \
|
|
|
|
#define generate_block_extra_vars() \
|
|
u32 stored_pc = pc; \
|
|
u8 *update_trampoline \
|
|
|
|
#define generate_block_extra_vars_arm() \
|
|
generate_block_extra_vars(); \
|
|
generate_load_rm_sh_builder(flags); \
|
|
generate_load_rm_sh_builder(no_flags); \
|
|
\
|
|
u32 generate_load_offset_sh(u32 rm) \
|
|
{ \
|
|
switch((opcode >> 5) & 0x03) \
|
|
{ \
|
|
/* LSL imm */ \
|
|
case 0x0: \
|
|
{ \
|
|
generate_shift_imm(arm_reg_a1, lsl, no_flags); \
|
|
break; \
|
|
} \
|
|
\
|
|
/* LSR imm */ \
|
|
case 0x1: \
|
|
{ \
|
|
generate_shift_imm(arm_reg_a1, lsr, no_flags); \
|
|
break; \
|
|
} \
|
|
\
|
|
/* ASR imm */ \
|
|
case 0x2: \
|
|
{ \
|
|
generate_shift_imm(arm_reg_a1, asr, no_flags); \
|
|
break; \
|
|
} \
|
|
\
|
|
/* ROR imm */ \
|
|
case 0x3: \
|
|
{ \
|
|
generate_shift_imm(arm_reg_a1, ror, no_flags); \
|
|
break; \
|
|
} \
|
|
} \
|
|
\
|
|
return rm; \
|
|
} \
|
|
|
|
#define generate_indirect_branch_arm() \
|
|
{ \
|
|
if(condition == 0x0E) \
|
|
{ \
|
|
generate_indirect_branch_cycle_update(arm); \
|
|
} \
|
|
else \
|
|
{ \
|
|
generate_indirect_branch_no_cycle_update(arm); \
|
|
} \
|
|
} \
|
|
|
|
#define generate_indirect_branch_dual() \
|
|
{ \
|
|
if(condition == 0x0E) \
|
|
{ \
|
|
generate_indirect_branch_cycle_update(dual); \
|
|
} \
|
|
else \
|
|
{ \
|
|
generate_indirect_branch_no_cycle_update(dual); \
|
|
} \
|
|
} \
|
|
|
|
#define generate_block_extra_vars_thumb() \
|
|
generate_block_extra_vars() \
|
|
|
|
// It should be okay to still generate result flags, spsr will overwrite them.
|
|
// This is pretty infrequent (returning from interrupt handlers, et al) so
|
|
// probably not worth optimizing for.
|
|
|
|
u32 execute_spsr_restore_body(u32 address)
|
|
{
|
|
set_cpu_mode(cpu_modes[reg[REG_CPSR] & 0x1F]);
|
|
if((io_registers[REG_IE] & io_registers[REG_IF]) &&
|
|
io_registers[REG_IME] && ((reg[REG_CPSR] & 0x80) == 0))
|
|
{
|
|
reg_mode[MODE_IRQ][6] = address + 4;
|
|
spsr[MODE_IRQ] = reg[REG_CPSR];
|
|
reg[REG_CPSR] = 0xD2;
|
|
address = 0x00000018;
|
|
set_cpu_mode(MODE_IRQ);
|
|
}
|
|
|
|
if(reg[REG_CPSR] & 0x20)
|
|
address |= 0x01;
|
|
|
|
return address;
|
|
}
|
|
|
|
typedef enum
|
|
{
|
|
CONDITION_TRUE,
|
|
CONDITION_FALSE,
|
|
CONDITION_EQUAL,
|
|
CONDITION_NOT_EQUAL
|
|
} condition_check_type;
|
|
|
|
|
|
#define generate_condition_eq() \
|
|
mips_emit_b_filler(beq, reg_z_cache, reg_zero, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_ne() \
|
|
mips_emit_b_filler(bne, reg_z_cache, reg_zero, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_cs() \
|
|
mips_emit_b_filler(beq, reg_c_cache, reg_zero, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_cc() \
|
|
mips_emit_b_filler(bne, reg_c_cache, reg_zero, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_mi() \
|
|
mips_emit_b_filler(beq, reg_n_cache, reg_zero, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_pl() \
|
|
mips_emit_b_filler(bne, reg_n_cache, reg_zero, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_vs() \
|
|
mips_emit_b_filler(beq, reg_v_cache, reg_zero, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_vc() \
|
|
mips_emit_b_filler(bne, reg_v_cache, reg_zero, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_hi() \
|
|
mips_emit_xori(reg_temp, reg_c_cache, 1); \
|
|
mips_emit_or(reg_temp, reg_temp, reg_z_cache); \
|
|
mips_emit_b_filler(bne, reg_temp, reg_zero, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_ls() \
|
|
mips_emit_xori(reg_temp, reg_c_cache, 1); \
|
|
mips_emit_or(reg_temp, reg_temp, reg_z_cache); \
|
|
mips_emit_b_filler(beq, reg_temp, reg_zero, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_ge() \
|
|
mips_emit_b_filler(bne, reg_n_cache, reg_v_cache, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_lt() \
|
|
mips_emit_b_filler(beq, reg_n_cache, reg_v_cache, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_gt() \
|
|
mips_emit_xor(reg_temp, reg_n_cache, reg_v_cache); \
|
|
mips_emit_or(reg_temp, reg_temp, reg_z_cache); \
|
|
mips_emit_b_filler(bne, reg_temp, reg_zero, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition_le() \
|
|
mips_emit_xor(reg_temp, reg_n_cache, reg_v_cache); \
|
|
mips_emit_or(reg_temp, reg_temp, reg_z_cache); \
|
|
mips_emit_b_filler(beq, reg_temp, reg_zero, backpatch_address); \
|
|
generate_cycle_update_force() \
|
|
|
|
#define generate_condition() \
|
|
switch(condition) \
|
|
{ \
|
|
case 0x0: \
|
|
generate_condition_eq(); \
|
|
break; \
|
|
\
|
|
case 0x1: \
|
|
generate_condition_ne(); \
|
|
break; \
|
|
\
|
|
case 0x2: \
|
|
generate_condition_cs(); \
|
|
break; \
|
|
\
|
|
case 0x3: \
|
|
generate_condition_cc(); \
|
|
break; \
|
|
\
|
|
case 0x4: \
|
|
generate_condition_mi(); \
|
|
break; \
|
|
\
|
|
case 0x5: \
|
|
generate_condition_pl(); \
|
|
break; \
|
|
\
|
|
case 0x6: \
|
|
generate_condition_vs(); \
|
|
break; \
|
|
\
|
|
case 0x7: \
|
|
generate_condition_vc(); \
|
|
break; \
|
|
\
|
|
case 0x8: \
|
|
generate_condition_hi(); \
|
|
break; \
|
|
\
|
|
case 0x9: \
|
|
generate_condition_ls(); \
|
|
break; \
|
|
\
|
|
case 0xA: \
|
|
generate_condition_ge(); \
|
|
break; \
|
|
\
|
|
case 0xB: \
|
|
generate_condition_lt(); \
|
|
break; \
|
|
\
|
|
case 0xC: \
|
|
generate_condition_gt(); \
|
|
break; \
|
|
\
|
|
case 0xD: \
|
|
generate_condition_le(); \
|
|
break; \
|
|
\
|
|
case 0xE: \
|
|
break; \
|
|
\
|
|
case 0xF: \
|
|
break; \
|
|
} \
|
|
|
|
#define generate_branch() \
|
|
{ \
|
|
if(condition == 0x0E) \
|
|
{ \
|
|
generate_branch_cycle_update( \
|
|
block_exits[block_exit_position].branch_source, \
|
|
block_exits[block_exit_position].branch_target); \
|
|
} \
|
|
else \
|
|
{ \
|
|
generate_branch_no_cycle_update( \
|
|
block_exits[block_exit_position].branch_source, \
|
|
block_exits[block_exit_position].branch_target); \
|
|
} \
|
|
block_exit_position++; \
|
|
} \
|
|
|
|
#define generate_op_and_reg(_rd, _rn, _rm) \
|
|
mips_emit_and(_rd, _rn, _rm) \
|
|
|
|
#define generate_op_orr_reg(_rd, _rn, _rm) \
|
|
mips_emit_or(_rd, _rn, _rm) \
|
|
|
|
#define generate_op_eor_reg(_rd, _rn, _rm) \
|
|
mips_emit_xor(_rd, _rn, _rm) \
|
|
|
|
#define generate_op_bic_reg(_rd, _rn, _rm) \
|
|
mips_emit_nor(reg_temp, _rm, reg_zero); \
|
|
mips_emit_and(_rd, _rn, reg_temp) \
|
|
|
|
#define generate_op_sub_reg(_rd, _rn, _rm) \
|
|
mips_emit_subu(_rd, _rn, _rm) \
|
|
|
|
#define generate_op_rsb_reg(_rd, _rn, _rm) \
|
|
mips_emit_subu(_rd, _rm, _rn) \
|
|
|
|
#define generate_op_sbc_reg(_rd, _rn, _rm) \
|
|
mips_emit_subu(_rd, _rn, _rm); \
|
|
mips_emit_xori(reg_temp, reg_c_cache, 1); \
|
|
mips_emit_subu(_rd, _rd, reg_temp) \
|
|
|
|
#define generate_op_rsc_reg(_rd, _rn, _rm) \
|
|
mips_emit_addu(reg_temp, _rm, reg_c_cache); \
|
|
mips_emit_addiu(reg_temp, reg_temp, -1); \
|
|
mips_emit_subu(_rd, reg_temp, _rn) \
|
|
|
|
#define generate_op_add_reg(_rd, _rn, _rm) \
|
|
mips_emit_addu(_rd, _rn, _rm) \
|
|
|
|
#define generate_op_adc_reg(_rd, _rn, _rm) \
|
|
mips_emit_addu(reg_temp, _rm, reg_c_cache); \
|
|
mips_emit_addu(_rd, _rn, reg_temp) \
|
|
|
|
#define generate_op_mov_reg(_rd, _rn, _rm) \
|
|
mips_emit_addu(_rd, _rm, reg_zero) \
|
|
|
|
#define generate_op_mvn_reg(_rd, _rn, _rm) \
|
|
mips_emit_nor(_rd, _rm, reg_zero) \
|
|
|
|
#define generate_op_imm_wrapper(name, _rd, _rn) \
|
|
if(imm != 0) \
|
|
{ \
|
|
generate_load_imm(reg_a0, imm); \
|
|
generate_op_##name##_reg(_rd, _rn, reg_a0); \
|
|
} \
|
|
else \
|
|
{ \
|
|
generate_op_##name##_reg(_rd, _rn, reg_zero); \
|
|
} \
|
|
|
|
#define generate_op_and_imm(_rd, _rn) \
|
|
generate_alu_immu(andi, and, _rd, _rn, imm) \
|
|
|
|
#define generate_op_orr_imm(_rd, _rn) \
|
|
generate_alu_immu(ori, or, _rd, _rn, imm) \
|
|
|
|
#define generate_op_eor_imm(_rd, _rn) \
|
|
generate_alu_immu(xori, xor, _rd, _rn, imm) \
|
|
|
|
#define generate_op_bic_imm(_rd, _rn) \
|
|
generate_alu_immu(andi, and, _rd, _rn, (~imm)) \
|
|
|
|
#define generate_op_sub_imm(_rd, _rn) \
|
|
generate_alu_imm(addiu, addu, _rd, _rn, (-imm)) \
|
|
|
|
#define generate_op_rsb_imm(_rd, _rn) \
|
|
if(imm != 0) \
|
|
{ \
|
|
generate_load_imm(reg_temp, imm); \
|
|
mips_emit_subu(_rd, reg_temp, _rn); \
|
|
} \
|
|
else \
|
|
{ \
|
|
mips_emit_subu(_rd, reg_zero, _rn); \
|
|
} \
|
|
|
|
#define generate_op_sbc_imm(_rd, _rn) \
|
|
generate_op_imm_wrapper(sbc, _rd, _rn) \
|
|
|
|
#define generate_op_rsc_imm(_rd, _rn) \
|
|
generate_op_imm_wrapper(rsc, _rd, _rn) \
|
|
|
|
#define generate_op_add_imm(_rd, _rn) \
|
|
generate_alu_imm(addiu, addu, _rd, _rn, imm) \
|
|
|
|
#define generate_op_adc_imm(_rd, _rn) \
|
|
generate_op_imm_wrapper(adc, _rd, _rn) \
|
|
|
|
#define generate_op_mov_imm(_rd, _rn) \
|
|
generate_load_imm(_rd, imm) \
|
|
|
|
#define generate_op_mvn_imm(_rd, _rn) \
|
|
generate_load_imm(_rd, (~imm)) \
|
|
|
|
#define generate_op_logic_flags(_rd) \
|
|
if(check_generate_n_flag) \
|
|
{ \
|
|
mips_emit_srl(reg_n_cache, _rd, 31); \
|
|
} \
|
|
if(check_generate_z_flag) \
|
|
{ \
|
|
mips_emit_sltiu(reg_z_cache, _rd, 1); \
|
|
} \
|
|
|
|
#define generate_op_sub_flags_prologue(_rn, _rm) \
|
|
if(check_generate_c_flag) \
|
|
{ \
|
|
mips_emit_sltu(reg_c_cache, _rn, _rm); \
|
|
mips_emit_xori(reg_c_cache, reg_c_cache, 1); \
|
|
} \
|
|
if(check_generate_v_flag) \
|
|
{ \
|
|
mips_emit_slt(reg_v_cache, _rn, _rm); \
|
|
} \
|
|
|
|
#define generate_op_sub_flags_epilogue(_rd) \
|
|
generate_op_logic_flags(_rd); \
|
|
if(check_generate_v_flag) \
|
|
{ \
|
|
if(!check_generate_n_flag) \
|
|
{ \
|
|
mips_emit_srl(reg_n_cache, _rd, 31); \
|
|
} \
|
|
mips_emit_xor(reg_v_cache, reg_v_cache, reg_n_cache); \
|
|
} \
|
|
|
|
#define generate_add_flags_prologue(_rn, _rm) \
|
|
if(check_generate_c_flag | check_generate_v_flag) \
|
|
{ \
|
|
mips_emit_addu(reg_c_cache, _rn, reg_zero); \
|
|
} \
|
|
if(check_generate_v_flag) \
|
|
{ \
|
|
mips_emit_slt(reg_v_cache, _rm, reg_zero); \
|
|
} \
|
|
|
|
#define generate_add_flags_epilogue(_rd) \
|
|
if(check_generate_v_flag) \
|
|
{ \
|
|
mips_emit_slt(reg_a0, _rd, reg_c_cache); \
|
|
mips_emit_xor(reg_v_cache, reg_v_cache, reg_a0); \
|
|
} \
|
|
if(check_generate_c_flag) \
|
|
{ \
|
|
mips_emit_sltu(reg_c_cache, _rd, reg_c_cache); \
|
|
} \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_ands_reg(_rd, _rn, _rm) \
|
|
mips_emit_and(_rd, _rn, _rm); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_orrs_reg(_rd, _rn, _rm) \
|
|
mips_emit_or(_rd, _rn, _rm); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_eors_reg(_rd, _rn, _rm) \
|
|
mips_emit_xor(_rd, _rn, _rm); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_bics_reg(_rd, _rn, _rm) \
|
|
mips_emit_nor(reg_temp, _rm, reg_zero); \
|
|
mips_emit_and(_rd, _rn, reg_temp); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_subs_reg(_rd, _rn, _rm) \
|
|
generate_op_sub_flags_prologue(_rn, _rm); \
|
|
mips_emit_subu(_rd, _rn, _rm); \
|
|
generate_op_sub_flags_epilogue(_rd) \
|
|
|
|
#define generate_op_rsbs_reg(_rd, _rn, _rm) \
|
|
generate_op_sub_flags_prologue(_rm, _rn); \
|
|
mips_emit_subu(_rd, _rm, _rn); \
|
|
generate_op_sub_flags_epilogue(_rd) \
|
|
|
|
#define generate_op_sbcs_reg(_rd, _rn, _rm) \
|
|
mips_emit_subu(_rd, _rn, _rm); \
|
|
mips_emit_xori(reg_temp, reg_c_cache, 1); \
|
|
generate_op_sub_flags_prologue(_rd, reg_temp); \
|
|
mips_emit_subu(_rd, _rd, reg_temp); \
|
|
generate_op_sub_flags_epilogue(_rd) \
|
|
|
|
#define generate_op_rscs_reg(_rd, _rn, _rm) \
|
|
mips_emit_addu(reg_temp, _rm, reg_c_cache); \
|
|
mips_emit_addiu(reg_temp, reg_temp, -1); \
|
|
generate_op_sub_flags_prologue(reg_temp, _rn); \
|
|
mips_emit_subu(_rd, reg_temp, _rn); \
|
|
generate_op_sub_flags_epilogue(_rd) \
|
|
|
|
#define generate_op_adds_reg(_rd, _rn, _rm) \
|
|
generate_add_flags_prologue(_rn, _rm); \
|
|
mips_emit_addu(_rd, _rn, _rm); \
|
|
generate_add_flags_epilogue(_rd) \
|
|
|
|
#define generate_op_adcs_reg(_rd, _rn, _rm) \
|
|
mips_emit_addu(reg_temp, _rm, reg_c_cache); \
|
|
generate_add_flags_prologue(_rn, _rm); \
|
|
mips_emit_addu(_rd, _rn, reg_temp); \
|
|
generate_add_flags_epilogue(_rd) \
|
|
|
|
#define generate_op_movs_reg(_rd, _rn, _rm) \
|
|
mips_emit_addu(_rd, _rm, reg_zero); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_mvns_reg(_rd, _rn, _rm) \
|
|
mips_emit_nor(_rd, _rm, reg_zero); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_neg_reg(_rd, _rn, _rm) \
|
|
generate_op_subs_reg(_rd, reg_zero, _rm) \
|
|
|
|
#define generate_op_muls_reg(_rd, _rn, _rm) \
|
|
mips_emit_multu(_rn, _rm); \
|
|
mips_emit_mflo(_rd); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_cmp_reg(_rd, _rn, _rm) \
|
|
generate_op_subs_reg(reg_temp, _rn, _rm) \
|
|
|
|
#define generate_op_cmn_reg(_rd, _rn, _rm) \
|
|
generate_op_adds_reg(reg_temp, _rn, _rm) \
|
|
|
|
#define generate_op_tst_reg(_rd, _rn, _rm) \
|
|
generate_op_ands_reg(reg_temp, _rn, _rm) \
|
|
|
|
#define generate_op_teq_reg(_rd, _rn, _rm) \
|
|
generate_op_eors_reg(reg_temp, _rn, _rm) \
|
|
|
|
#define generate_op_ands_imm(_rd, _rn) \
|
|
generate_alu_immu(andi, and, _rd, _rn, imm); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_orrs_imm(_rd, _rn) \
|
|
generate_alu_immu(ori, or, _rd, _rn, imm); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_eors_imm(_rd, _rn) \
|
|
generate_alu_immu(xori, xor, _rd, _rn, imm); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_bics_imm(_rd, _rn) \
|
|
generate_alu_immu(andi, and, _rd, _rn, (~imm)); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_subs_imm(_rd, _rn) \
|
|
generate_op_imm_wrapper(subs, _rd, _rn) \
|
|
|
|
#define generate_op_rsbs_imm(_rd, _rn) \
|
|
generate_op_imm_wrapper(rsbs, _rd, _rn) \
|
|
|
|
#define generate_op_sbcs_imm(_rd, _rn) \
|
|
generate_op_imm_wrapper(sbcs, _rd, _rn) \
|
|
|
|
#define generate_op_rscs_imm(_rd, _rn) \
|
|
generate_op_imm_wrapper(rscs, _rd, _rn) \
|
|
|
|
#define generate_op_adds_imm(_rd, _rn) \
|
|
generate_op_imm_wrapper(adds, _rd, _rn) \
|
|
|
|
#define generate_op_adcs_imm(_rd, _rn) \
|
|
generate_op_imm_wrapper(adcs, _rd, _rn) \
|
|
|
|
#define generate_op_movs_imm(_rd, _rn) \
|
|
generate_load_imm(_rd, imm); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_mvns_imm(_rd, _rn) \
|
|
generate_load_imm(_rd, (~imm)); \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define generate_op_cmp_imm(_rd, _rn) \
|
|
generate_op_imm_wrapper(cmp, _rd, _rn) \
|
|
|
|
#define generate_op_cmn_imm(_rd, _rn) \
|
|
generate_op_imm_wrapper(cmn, _rd, _rn) \
|
|
|
|
#define generate_op_tst_imm(_rd, _rn) \
|
|
generate_op_ands_imm(reg_temp, _rn) \
|
|
|
|
#define generate_op_teq_imm(_rd, _rn) \
|
|
generate_op_eors_imm(reg_temp, _rn) \
|
|
|
|
#define arm_generate_op_load_yes() \
|
|
generate_load_reg_pc(reg_a1, rn, 8) \
|
|
|
|
#define arm_generate_op_load_no() \
|
|
|
|
#define arm_op_check_yes() \
|
|
check_load_reg_pc(arm_reg_a1, rn, 8) \
|
|
|
|
#define arm_op_check_no() \
|
|
|
|
#define arm_generate_op_reg_flags(name, load_op) \
|
|
arm_decode_data_proc_reg(opcode); \
|
|
if(check_generate_c_flag) \
|
|
{ \
|
|
rm = generate_load_rm_sh_flags(rm); \
|
|
} \
|
|
else \
|
|
{ \
|
|
rm = generate_load_rm_sh_no_flags(rm); \
|
|
} \
|
|
\
|
|
arm_op_check_##load_op(); \
|
|
generate_op_##name##_reg(arm_to_mips_reg[rd], arm_to_mips_reg[rn], \
|
|
arm_to_mips_reg[rm]) \
|
|
|
|
#define arm_generate_op_reg(name, load_op) \
|
|
arm_decode_data_proc_reg(opcode); \
|
|
rm = generate_load_rm_sh_no_flags(rm); \
|
|
arm_op_check_##load_op(); \
|
|
generate_op_##name##_reg(arm_to_mips_reg[rd], arm_to_mips_reg[rn], \
|
|
arm_to_mips_reg[rm]) \
|
|
|
|
#define arm_generate_op_imm(name, load_op) \
|
|
arm_decode_data_proc_imm(opcode); \
|
|
ror(imm, imm, imm_ror); \
|
|
arm_op_check_##load_op(); \
|
|
generate_op_##name##_imm(arm_to_mips_reg[rd], arm_to_mips_reg[rn]) \
|
|
|
|
#define arm_generate_op_imm_flags(name, load_op) \
|
|
arm_generate_op_imm(name, load_op) \
|
|
|
|
#define arm_data_proc(name, type, flags_op) \
|
|
{ \
|
|
arm_generate_op_##type(name, yes); \
|
|
check_store_reg_pc_##flags_op(rd); \
|
|
} \
|
|
|
|
#define arm_data_proc_test(name, type) \
|
|
{ \
|
|
arm_generate_op_##type(name, yes); \
|
|
} \
|
|
|
|
#define arm_data_proc_unary(name, type, flags_op) \
|
|
{ \
|
|
arm_generate_op_##type(name, no); \
|
|
check_store_reg_pc_##flags_op(rd); \
|
|
} \
|
|
|
|
#define arm_multiply_flags_yes(_rd) \
|
|
generate_op_logic_flags(_rd) \
|
|
|
|
#define arm_multiply_flags_no(_rd) \
|
|
|
|
#define arm_multiply_add_no() \
|
|
mips_emit_mflo(arm_to_mips_reg[rd]) \
|
|
|
|
#define arm_multiply_add_yes() \
|
|
mips_emit_mflo(reg_temp); \
|
|
mips_emit_addu(arm_to_mips_reg[rd], reg_temp, arm_to_mips_reg[rn]) \
|
|
|
|
#define arm_multiply(add_op, flags) \
|
|
{ \
|
|
arm_decode_multiply(); \
|
|
mips_emit_multu(arm_to_mips_reg[rm], arm_to_mips_reg[rs]); \
|
|
arm_multiply_add_##add_op(); \
|
|
arm_multiply_flags_##flags(arm_to_mips_reg[rd]); \
|
|
} \
|
|
|
|
#define arm_multiply_long_flags_yes(_rdlo, _rdhi) \
|
|
mips_emit_sltiu(reg_z_cache, _rdlo, 1); \
|
|
mips_emit_sltiu(reg_a0, _rdhi, 1); \
|
|
mips_emit_and(reg_z_cache, reg_z_cache, reg_a0); \
|
|
mips_emit_srl(reg_n_cache, _rdhi, 31); \
|
|
|
|
#define arm_multiply_long_flags_no(_rdlo, _rdhi) \
|
|
|
|
#define arm_multiply_long_add_yes(name) \
|
|
mips_emit_mtlo(arm_to_mips_reg[rdlo]); \
|
|
mips_emit_mthi(arm_to_mips_reg[rdhi]); \
|
|
generate_multiply_##name() \
|
|
|
|
#define arm_multiply_long_add_no(name) \
|
|
generate_multiply_##name() \
|
|
|
|
#define arm_multiply_long(name, add_op, flags) \
|
|
{ \
|
|
arm_decode_multiply_long(); \
|
|
arm_multiply_long_add_##add_op(name); \
|
|
mips_emit_mflo(arm_to_mips_reg[rdlo]); \
|
|
mips_emit_mfhi(arm_to_mips_reg[rdhi]); \
|
|
arm_multiply_long_flags_##flags(arm_to_mips_reg[rdlo], \
|
|
arm_to_mips_reg[rdhi]); \
|
|
} \
|
|
|
|
#define arm_psr_read(op_type, psr_reg) \
|
|
generate_function_call(execute_read_##psr_reg); \
|
|
generate_store_reg(reg_rv, rd) \
|
|
|
|
u32 execute_store_cpsr_body(u32 _cpsr, u32 store_mask, u32 address)
|
|
{
|
|
reg[REG_CPSR] = _cpsr;
|
|
if(store_mask & 0xFF)
|
|
{
|
|
set_cpu_mode(cpu_modes[_cpsr & 0x1F]);
|
|
if((io_registers[REG_IE] & io_registers[REG_IF]) &&
|
|
io_registers[REG_IME] && ((_cpsr & 0x80) == 0))
|
|
{
|
|
reg_mode[MODE_IRQ][6] = address + 4;
|
|
spsr[MODE_IRQ] = _cpsr;
|
|
reg[REG_CPSR] = 0xD2;
|
|
set_cpu_mode(MODE_IRQ);
|
|
return 0x00000018;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define arm_psr_load_new_reg() \
|
|
generate_load_reg(reg_a0, rm) \
|
|
|
|
#define arm_psr_load_new_imm() \
|
|
generate_load_imm(reg_a0, imm) \
|
|
|
|
#define arm_psr_store(op_type, psr_reg) \
|
|
arm_psr_load_new_##op_type(); \
|
|
generate_load_imm(reg_a1, psr_masks[psr_field]); \
|
|
generate_load_pc(reg_a2, (pc + 4)); \
|
|
generate_function_call_swap_delay(execute_store_##psr_reg) \
|
|
|
|
#define arm_psr(op_type, transfer_type, psr_reg) \
|
|
{ \
|
|
arm_decode_psr_##op_type(opcode); \
|
|
arm_psr_##transfer_type(op_type, psr_reg); \
|
|
} \
|
|
|
|
#define thumb_load_pc_pool_const(rd, value) \
|
|
generate_load_imm(arm_to_mips_reg[rd], (value)); \
|
|
|
|
#define arm_access_memory_load(mem_type) \
|
|
cycle_count += 2; \
|
|
mips_emit_jal(mips_absolute_offset(execute_load_##mem_type)); \
|
|
generate_load_pc(reg_a1, (pc + 8)); \
|
|
generate_store_reg(reg_rv, rd); \
|
|
check_store_reg_pc_no_flags(rd) \
|
|
|
|
#define arm_access_memory_store(mem_type) \
|
|
cycle_count++; \
|
|
generate_load_pc(reg_a2, (pc + 4)); \
|
|
generate_load_reg_pc(reg_a1, rd, 12); \
|
|
generate_function_call_swap_delay(execute_store_##mem_type) \
|
|
|
|
#define arm_access_memory_reg_pre_up() \
|
|
mips_emit_addu(reg_a0, arm_to_mips_reg[rn], arm_to_mips_reg[rm]) \
|
|
|
|
#define arm_access_memory_reg_pre_down() \
|
|
mips_emit_subu(reg_a0, arm_to_mips_reg[rn], arm_to_mips_reg[rm]) \
|
|
|
|
#define arm_access_memory_reg_pre(adjust_dir) \
|
|
check_load_reg_pc(arm_reg_a0, rn, 8); \
|
|
arm_access_memory_reg_pre_##adjust_dir() \
|
|
|
|
#define arm_access_memory_reg_pre_wb(adjust_dir) \
|
|
arm_access_memory_reg_pre(adjust_dir); \
|
|
generate_store_reg(reg_a0, rn) \
|
|
|
|
#define arm_access_memory_reg_post_up() \
|
|
mips_emit_addu(arm_to_mips_reg[rn], arm_to_mips_reg[rn], \
|
|
arm_to_mips_reg[rm]) \
|
|
|
|
#define arm_access_memory_reg_post_down() \
|
|
mips_emit_subu(arm_to_mips_reg[rn], arm_to_mips_reg[rn], \
|
|
arm_to_mips_reg[rm]) \
|
|
|
|
#define arm_access_memory_reg_post(adjust_dir) \
|
|
generate_load_reg(reg_a0, rn); \
|
|
arm_access_memory_reg_post_##adjust_dir() \
|
|
|
|
#define arm_access_memory_imm_pre_up() \
|
|
mips_emit_addiu(reg_a0, arm_to_mips_reg[rn], offset) \
|
|
|
|
#define arm_access_memory_imm_pre_down() \
|
|
mips_emit_addiu(reg_a0, arm_to_mips_reg[rn], -offset) \
|
|
|
|
#define arm_access_memory_imm_pre(adjust_dir) \
|
|
check_load_reg_pc(arm_reg_a0, rn, 8); \
|
|
arm_access_memory_imm_pre_##adjust_dir() \
|
|
|
|
#define arm_access_memory_imm_pre_wb(adjust_dir) \
|
|
arm_access_memory_imm_pre(adjust_dir); \
|
|
generate_store_reg(reg_a0, rn) \
|
|
|
|
#define arm_access_memory_imm_post_up() \
|
|
mips_emit_addiu(arm_to_mips_reg[rn], arm_to_mips_reg[rn], offset) \
|
|
|
|
#define arm_access_memory_imm_post_down() \
|
|
mips_emit_addiu(arm_to_mips_reg[rn], arm_to_mips_reg[rn], -offset) \
|
|
|
|
#define arm_access_memory_imm_post(adjust_dir) \
|
|
generate_load_reg(reg_a0, rn); \
|
|
arm_access_memory_imm_post_##adjust_dir() \
|
|
|
|
#define arm_data_trans_reg(adjust_op, adjust_dir) \
|
|
arm_decode_data_trans_reg(); \
|
|
rm = generate_load_offset_sh(rm); \
|
|
arm_access_memory_reg_##adjust_op(adjust_dir) \
|
|
|
|
#define arm_data_trans_imm(adjust_op, adjust_dir) \
|
|
arm_decode_data_trans_imm(); \
|
|
arm_access_memory_imm_##adjust_op(adjust_dir) \
|
|
|
|
#define arm_data_trans_half_reg(adjust_op, adjust_dir) \
|
|
arm_decode_half_trans_r(); \
|
|
arm_access_memory_reg_##adjust_op(adjust_dir) \
|
|
|
|
#define arm_data_trans_half_imm(adjust_op, adjust_dir) \
|
|
arm_decode_half_trans_of(); \
|
|
arm_access_memory_imm_##adjust_op(adjust_dir) \
|
|
|
|
#define arm_access_memory(access_type, direction, adjust_op, mem_type, \
|
|
offset_type) \
|
|
{ \
|
|
arm_data_trans_##offset_type(adjust_op, direction); \
|
|
arm_access_memory_##access_type(mem_type); \
|
|
} \
|
|
|
|
#define word_bit_count(word) \
|
|
(bit_count[word >> 8] + bit_count[word & 0xFF]) \
|
|
|
|
#define arm_block_memory_load() \
|
|
generate_function_call_swap_delay(execute_aligned_load32); \
|
|
generate_store_reg(reg_rv, i) \
|
|
|
|
#define arm_block_memory_store() \
|
|
generate_load_reg_pc(reg_a1, i, 8); \
|
|
generate_function_call_swap_delay(execute_aligned_store32) \
|
|
|
|
#define arm_block_memory_final_load() \
|
|
arm_block_memory_load() \
|
|
|
|
#define arm_block_memory_final_store() \
|
|
generate_load_pc(reg_a2, (pc + 4)); \
|
|
mips_emit_jal(mips_absolute_offset(execute_store_u32)); \
|
|
generate_load_reg(reg_a1, i) \
|
|
|
|
#define arm_block_memory_adjust_pc_store() \
|
|
|
|
#define arm_block_memory_adjust_pc_load() \
|
|
if(reg_list & 0x8000) \
|
|
{ \
|
|
generate_mov(reg_a0, reg_rv); \
|
|
generate_indirect_branch_arm(); \
|
|
} \
|
|
|
|
#define arm_block_memory_sp_load() \
|
|
mips_emit_lw(arm_to_mips_reg[i], reg_a1, offset); \
|
|
|
|
#define arm_block_memory_sp_store() \
|
|
{ \
|
|
u32 store_reg = i; \
|
|
check_load_reg_pc(arm_reg_a0, store_reg, 8); \
|
|
mips_emit_sw(arm_to_mips_reg[store_reg], reg_a1, offset); \
|
|
} \
|
|
|
|
#define arm_block_memory_sp_adjust_pc_store() \
|
|
|
|
#define arm_block_memory_sp_adjust_pc_load() \
|
|
if(reg_list & 0x8000) \
|
|
{ \
|
|
generate_indirect_branch_arm(); \
|
|
} \
|
|
|
|
#define arm_block_memory_offset_down_a() \
|
|
mips_emit_addiu(reg_a2, base_reg, (-((word_bit_count(reg_list) * 4) - 4))) \
|
|
|
|
#define arm_block_memory_offset_down_b() \
|
|
mips_emit_addiu(reg_a2, base_reg, (word_bit_count(reg_list) * -4)) \
|
|
|
|
#define arm_block_memory_offset_no() \
|
|
mips_emit_addu(reg_a2, base_reg, reg_zero) \
|
|
|
|
#define arm_block_memory_offset_up() \
|
|
mips_emit_addiu(reg_a2, base_reg, 4) \
|
|
|
|
#define arm_block_memory_writeback_down() \
|
|
mips_emit_addiu(base_reg, base_reg, (-(word_bit_count(reg_list) * 4))) \
|
|
|
|
#define arm_block_memory_writeback_up() \
|
|
mips_emit_addiu(base_reg, base_reg, (word_bit_count(reg_list) * 4)) \
|
|
|
|
#define arm_block_memory_writeback_no()
|
|
|
|
// Only emit writeback if the register is not in the list
|
|
|
|
#define arm_block_memory_writeback_load(writeback_type) \
|
|
if(!((reg_list >> rn) & 0x01)) \
|
|
{ \
|
|
arm_block_memory_writeback_##writeback_type(); \
|
|
} \
|
|
|
|
#define arm_block_memory_writeback_store(writeback_type) \
|
|
arm_block_memory_writeback_##writeback_type() \
|
|
|
|
#define arm_block_memory(access_type, offset_type, writeback_type, s_bit) \
|
|
{ \
|
|
arm_decode_block_trans(); \
|
|
u32 i; \
|
|
u32 offset = 0; \
|
|
u32 base_reg = arm_to_mips_reg[rn]; \
|
|
\
|
|
arm_block_memory_offset_##offset_type(); \
|
|
arm_block_memory_writeback_##access_type(writeback_type); \
|
|
\
|
|
if((rn == REG_SP) && iwram_stack_optimize) \
|
|
{ \
|
|
mips_emit_andi(reg_a1, reg_a2, 0x7FFC); \
|
|
generate_load_imm(reg_a0, ((u32)(iwram + 0x8000))); \
|
|
mips_emit_addu(reg_a1, reg_a1, reg_a0); \
|
|
\
|
|
for(i = 0; i < 16; i++) \
|
|
{ \
|
|
if((reg_list >> i) & 0x01) \
|
|
{ \
|
|
cycle_count++; \
|
|
arm_block_memory_sp_##access_type(); \
|
|
offset += 4; \
|
|
} \
|
|
} \
|
|
\
|
|
arm_block_memory_sp_adjust_pc_##access_type(); \
|
|
} \
|
|
else \
|
|
{ \
|
|
emit_align_reg(reg_a2, 2); \
|
|
\
|
|
for(i = 0; i < 16; i++) \
|
|
{ \
|
|
if((reg_list >> i) & 0x01) \
|
|
{ \
|
|
cycle_count++; \
|
|
mips_emit_addiu(reg_a0, reg_a2, offset); \
|
|
if(reg_list & ~((2 << i) - 1)) \
|
|
{ \
|
|
arm_block_memory_##access_type(); \
|
|
offset += 4; \
|
|
} \
|
|
else \
|
|
{ \
|
|
arm_block_memory_final_##access_type(); \
|
|
break; \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
arm_block_memory_adjust_pc_##access_type(); \
|
|
} \
|
|
} \
|
|
|
|
// ARM: rn *must* be different from rm and rd. rm *can* be the same as rd.
|
|
|
|
#define arm_swap(type) \
|
|
{ \
|
|
arm_decode_swap(); \
|
|
cycle_count += 3; \
|
|
mips_emit_jal(mips_absolute_offset(execute_load_##type)); \
|
|
generate_load_reg(reg_a0, rn); \
|
|
generate_load_reg(reg_a0, rn); \
|
|
generate_load_reg(reg_a1, rm); \
|
|
mips_emit_jal(mips_absolute_offset(execute_store_##type)); \
|
|
generate_store_reg(reg_rv, rd); \
|
|
} \
|
|
|
|
#define thumb_generate_op_load_yes(_rs) \
|
|
generate_load_reg(reg_a1, _rs) \
|
|
|
|
#define thumb_generate_op_load_no(_rs) \
|
|
|
|
#define thumb_generate_op_reg(name, _rd, _rs, _rn) \
|
|
generate_op_##name##_reg(arm_to_mips_reg[_rd], \
|
|
arm_to_mips_reg[_rs], arm_to_mips_reg[_rn]) \
|
|
|
|
#define thumb_generate_op_imm(name, _rd, _rs, _rn) \
|
|
generate_op_##name##_imm(arm_to_mips_reg[_rd], arm_to_mips_reg[_rs]) \
|
|
|
|
// Types: add_sub, add_sub_imm, alu_op, imm
|
|
// Affects N/Z/C/V flags
|
|
|
|
#define thumb_data_proc(type, name, rn_type, _rd, _rs, _rn) \
|
|
{ \
|
|
thumb_decode_##type(); \
|
|
thumb_generate_op_##rn_type(name, _rd, _rs, _rn); \
|
|
} \
|
|
|
|
#define thumb_data_proc_test(type, name, rn_type, _rs, _rn) \
|
|
{ \
|
|
thumb_decode_##type(); \
|
|
thumb_generate_op_##rn_type(name, 0, _rs, _rn); \
|
|
} \
|
|
|
|
#define thumb_data_proc_unary(type, name, rn_type, _rd, _rn) \
|
|
{ \
|
|
thumb_decode_##type(); \
|
|
thumb_generate_op_##rn_type(name, _rd, 0, _rn); \
|
|
} \
|
|
|
|
#define check_store_reg_pc_thumb(_rd) \
|
|
if(_rd == REG_PC) \
|
|
{ \
|
|
generate_indirect_branch_cycle_update(thumb); \
|
|
} \
|
|
|
|
#define thumb_data_proc_hi(name) \
|
|
{ \
|
|
thumb_decode_hireg_op(); \
|
|
u32 dest_rd = rd; \
|
|
check_load_reg_pc(arm_reg_a0, rs, 4); \
|
|
check_load_reg_pc(arm_reg_a1, rd, 4); \
|
|
generate_op_##name##_reg(arm_to_mips_reg[dest_rd], arm_to_mips_reg[rd], \
|
|
arm_to_mips_reg[rs]); \
|
|
check_store_reg_pc_thumb(dest_rd); \
|
|
} \
|
|
|
|
#define thumb_data_proc_test_hi(name) \
|
|
{ \
|
|
thumb_decode_hireg_op(); \
|
|
check_load_reg_pc(arm_reg_a0, rs, 4); \
|
|
check_load_reg_pc(arm_reg_a1, rd, 4); \
|
|
generate_op_##name##_reg(reg_temp, arm_to_mips_reg[rd], \
|
|
arm_to_mips_reg[rs]); \
|
|
} \
|
|
|
|
#define thumb_data_proc_mov_hi() \
|
|
{ \
|
|
thumb_decode_hireg_op(); \
|
|
check_load_reg_pc(arm_reg_a0, rs, 4); \
|
|
mips_emit_addu(arm_to_mips_reg[rd], arm_to_mips_reg[rs], reg_zero); \
|
|
check_store_reg_pc_thumb(rd); \
|
|
} \
|
|
|
|
#define thumb_load_pc(_rd) \
|
|
{ \
|
|
thumb_decode_imm(); \
|
|
generate_load_pc(arm_to_mips_reg[_rd], (((pc & ~2) + 4) + (imm * 4))); \
|
|
} \
|
|
|
|
#define thumb_load_sp(_rd) \
|
|
{ \
|
|
thumb_decode_imm(); \
|
|
mips_emit_addiu(arm_to_mips_reg[_rd], reg_r13, (imm * 4)); \
|
|
} \
|
|
|
|
#define thumb_adjust_sp_up() \
|
|
mips_emit_addiu(reg_r13, reg_r13, (imm * 4)); \
|
|
|
|
#define thumb_adjust_sp_down() \
|
|
mips_emit_addiu(reg_r13, reg_r13, -(imm * 4)); \
|
|
|
|
#define thumb_adjust_sp(direction) \
|
|
{ \
|
|
thumb_decode_add_sp(); \
|
|
thumb_adjust_sp_##direction(); \
|
|
} \
|
|
|
|
// Decode types: shift, alu_op
|
|
// Operation types: lsl, lsr, asr, ror
|
|
// Affects N/Z/C flags
|
|
|
|
#define thumb_generate_shift_imm(name) \
|
|
if(check_generate_c_flag) \
|
|
{ \
|
|
generate_shift_imm_##name##_flags(rd, rs, imm); \
|
|
} \
|
|
else \
|
|
{ \
|
|
generate_shift_imm_##name##_no_flags(rd, rs, imm); \
|
|
} \
|
|
if(rs != rd) \
|
|
{ \
|
|
mips_emit_addu(arm_to_mips_reg[rd], arm_to_mips_reg[rs], reg_zero); \
|
|
} \
|
|
|
|
#define thumb_generate_shift_reg(name) \
|
|
{ \
|
|
u32 original_rd = rd; \
|
|
if(check_generate_c_flag) \
|
|
{ \
|
|
generate_shift_reg_##name##_flags(rd, rs); \
|
|
} \
|
|
else \
|
|
{ \
|
|
generate_shift_reg_##name##_no_flags(rd, rs); \
|
|
} \
|
|
mips_emit_addu(arm_to_mips_reg[original_rd], reg_a0, reg_zero); \
|
|
} \
|
|
|
|
#define thumb_shift(decode_type, op_type, value_type) \
|
|
{ \
|
|
thumb_decode_##decode_type(); \
|
|
thumb_generate_shift_##value_type(op_type); \
|
|
generate_op_logic_flags(arm_to_mips_reg[rd]); \
|
|
} \
|
|
|
|
// Operation types: imm, mem_reg, mem_imm
|
|
|
|
#define thumb_access_memory_load(mem_type, reg_rd) \
|
|
cycle_count += 2; \
|
|
mips_emit_jal(mips_absolute_offset(execute_load_##mem_type)); \
|
|
generate_load_pc(reg_a1, (pc + 4)); \
|
|
generate_store_reg(reg_rv, reg_rd) \
|
|
|
|
#define thumb_access_memory_store(mem_type, reg_rd) \
|
|
cycle_count++; \
|
|
generate_load_pc(reg_a2, (pc + 2)); \
|
|
mips_emit_jal(mips_absolute_offset(execute_store_##mem_type)); \
|
|
generate_load_reg(reg_a1, reg_rd) \
|
|
|
|
#define thumb_access_memory_generate_address_pc_relative(offset, reg_rb, \
|
|
reg_ro) \
|
|
generate_load_pc(reg_a0, (offset)) \
|
|
|
|
#define thumb_access_memory_generate_address_reg_imm(offset, reg_rb, reg_ro) \
|
|
mips_emit_addiu(reg_a0, arm_to_mips_reg[reg_rb], (offset)) \
|
|
|
|
#define thumb_access_memory_generate_address_reg_imm_sp(offset, reg_rb, reg_ro) \
|
|
mips_emit_addiu(reg_a0, arm_to_mips_reg[reg_rb], (offset * 4)) \
|
|
|
|
#define thumb_access_memory_generate_address_reg_reg(offset, reg_rb, reg_ro) \
|
|
mips_emit_addu(reg_a0, arm_to_mips_reg[reg_rb], arm_to_mips_reg[reg_ro]) \
|
|
|
|
#define thumb_access_memory(access_type, op_type, reg_rd, reg_rb, reg_ro, \
|
|
address_type, offset, mem_type) \
|
|
{ \
|
|
thumb_decode_##op_type(); \
|
|
thumb_access_memory_generate_address_##address_type(offset, reg_rb, \
|
|
reg_ro); \
|
|
thumb_access_memory_##access_type(mem_type, reg_rd); \
|
|
} \
|
|
|
|
|
|
#define thumb_block_address_preadjust_no(base_reg) \
|
|
mips_emit_addu(reg_a2, arm_to_mips_reg[base_reg], reg_zero) \
|
|
|
|
#define thumb_block_address_preadjust_up(base_reg) \
|
|
mips_emit_addiu(reg_a2, arm_to_mips_reg[base_reg], \
|
|
(bit_count[reg_list] * 4)); \
|
|
mips_emit_addu(arm_to_mips_reg[base_reg], reg_a2, reg_zero) \
|
|
|
|
#define thumb_block_address_preadjust_down(base_reg) \
|
|
mips_emit_addiu(reg_a2, arm_to_mips_reg[base_reg], \
|
|
-(bit_count[reg_list] * 4)); \
|
|
mips_emit_addu(arm_to_mips_reg[base_reg], reg_a2, reg_zero) \
|
|
|
|
#define thumb_block_address_preadjust_push_lr(base_reg) \
|
|
mips_emit_addiu(reg_a2, arm_to_mips_reg[base_reg], \
|
|
-((bit_count[reg_list] + 1) * 4)); \
|
|
mips_emit_addu(arm_to_mips_reg[base_reg], reg_a2, reg_zero) \
|
|
|
|
#define thumb_block_address_postadjust_no(base_reg) \
|
|
|
|
#define thumb_block_address_postadjust_up(base_reg) \
|
|
mips_emit_addiu(arm_to_mips_reg[base_reg], reg_a2, \
|
|
(bit_count[reg_list] * 4)) \
|
|
|
|
#define thumb_block_address_postadjust_down(base_reg) \
|
|
mips_emit_addiu(arm_to_mips_reg[base_reg], reg_a2, \
|
|
-(bit_count[reg_list] * 4)) \
|
|
|
|
#define thumb_block_address_postadjust_pop_pc(base_reg) \
|
|
mips_emit_addiu(arm_to_mips_reg[base_reg], reg_a2, \
|
|
((bit_count[reg_list] * 4) + 4)) \
|
|
|
|
#define thumb_block_address_postadjust_push_lr(base_reg) \
|
|
|
|
#define thumb_block_memory_load() \
|
|
generate_function_call_swap_delay(execute_aligned_load32); \
|
|
generate_store_reg(reg_rv, i) \
|
|
|
|
#define thumb_block_memory_store() \
|
|
mips_emit_jal(mips_absolute_offset(execute_aligned_store32)); \
|
|
generate_load_reg(reg_a1, i) \
|
|
|
|
#define thumb_block_memory_final_load() \
|
|
thumb_block_memory_load() \
|
|
|
|
#define thumb_block_memory_final_store() \
|
|
generate_load_pc(reg_a2, (pc + 2)); \
|
|
mips_emit_jal(mips_absolute_offset(execute_store_u32)); \
|
|
generate_load_reg(reg_a1, i) \
|
|
|
|
#define thumb_block_memory_final_no(access_type) \
|
|
thumb_block_memory_final_##access_type() \
|
|
|
|
#define thumb_block_memory_final_up(access_type) \
|
|
thumb_block_memory_final_##access_type() \
|
|
|
|
#define thumb_block_memory_final_down(access_type) \
|
|
thumb_block_memory_final_##access_type() \
|
|
|
|
#define thumb_block_memory_final_push_lr(access_type) \
|
|
thumb_block_memory_##access_type() \
|
|
|
|
#define thumb_block_memory_final_pop_pc(access_type) \
|
|
thumb_block_memory_##access_type() \
|
|
|
|
#define thumb_block_memory_extra_no() \
|
|
|
|
#define thumb_block_memory_extra_up() \
|
|
|
|
#define thumb_block_memory_extra_down() \
|
|
|
|
#define thumb_block_memory_extra_push_lr() \
|
|
mips_emit_addiu(reg_a0, reg_a2, (bit_count[reg_list] * 4)); \
|
|
mips_emit_jal(mips_absolute_offset(execute_aligned_store32)); \
|
|
generate_load_reg(reg_a1, REG_LR) \
|
|
|
|
#define thumb_block_memory_extra_pop_pc() \
|
|
mips_emit_jal(mips_absolute_offset(execute_aligned_load32)); \
|
|
mips_emit_addiu(reg_a0, reg_a2, (bit_count[reg_list] * 4)); \
|
|
generate_mov(reg_a0, reg_rv); \
|
|
generate_indirect_branch_cycle_update(thumb) \
|
|
|
|
#define thumb_block_memory_sp_load() \
|
|
mips_emit_lw(arm_to_mips_reg[i], reg_a1, offset) \
|
|
|
|
#define thumb_block_memory_sp_store() \
|
|
mips_emit_sw(arm_to_mips_reg[i], reg_a1, offset) \
|
|
|
|
#define thumb_block_memory_sp_extra_no() \
|
|
|
|
#define thumb_block_memory_sp_extra_up() \
|
|
|
|
#define thumb_block_memory_sp_extra_down() \
|
|
|
|
#define thumb_block_memory_sp_extra_pop_pc() \
|
|
mips_emit_lw(reg_a0, reg_a1, (bit_count[reg_list] * 4)); \
|
|
generate_indirect_branch_cycle_update(thumb) \
|
|
|
|
#define thumb_block_memory_sp_extra_push_lr() \
|
|
mips_emit_sw(reg_r14, reg_a1, (bit_count[reg_list] * 4)) \
|
|
|
|
#define thumb_block_memory(access_type, pre_op, post_op, base_reg) \
|
|
{ \
|
|
thumb_decode_rlist(); \
|
|
u32 i; \
|
|
u32 offset = 0; \
|
|
\
|
|
thumb_block_address_preadjust_##pre_op(base_reg); \
|
|
thumb_block_address_postadjust_##post_op(base_reg); \
|
|
\
|
|
if((base_reg == REG_SP) && iwram_stack_optimize) \
|
|
{ \
|
|
mips_emit_andi(reg_a1, reg_a2, 0x7FFC); \
|
|
generate_load_imm(reg_a0, ((u32)(iwram + 0x8000))); \
|
|
mips_emit_addu(reg_a1, reg_a1, reg_a0); \
|
|
\
|
|
for(i = 0; i < 8; i++) \
|
|
{ \
|
|
if((reg_list >> i) & 0x01) \
|
|
{ \
|
|
cycle_count++; \
|
|
thumb_block_memory_sp_##access_type(); \
|
|
offset += 4; \
|
|
} \
|
|
} \
|
|
\
|
|
thumb_block_memory_sp_extra_##post_op(); \
|
|
} \
|
|
else \
|
|
{ \
|
|
emit_align_reg(reg_a2, 2); \
|
|
\
|
|
for(i = 0; i < 8; i++) \
|
|
{ \
|
|
if((reg_list >> i) & 0x01) \
|
|
{ \
|
|
cycle_count++; \
|
|
mips_emit_addiu(reg_a0, reg_a2, offset); \
|
|
if(reg_list & ~((2 << i) - 1)) \
|
|
{ \
|
|
thumb_block_memory_##access_type(); \
|
|
offset += 4; \
|
|
} \
|
|
else \
|
|
{ \
|
|
thumb_block_memory_final_##post_op(access_type); \
|
|
break; \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
thumb_block_memory_extra_##post_op(); \
|
|
} \
|
|
}
|
|
|
|
|
|
|
|
#define thumb_conditional_branch(condition) \
|
|
{ \
|
|
condition_check_type condition_check; \
|
|
generate_condition_##condition(); \
|
|
generate_branch_no_cycle_update( \
|
|
block_exits[block_exit_position].branch_source, \
|
|
block_exits[block_exit_position].branch_target); \
|
|
generate_branch_patch_conditional(backpatch_address, translation_ptr); \
|
|
block_exit_position++; \
|
|
} \
|
|
|
|
#define arm_conditional_block_header() \
|
|
generate_condition(); \
|
|
|
|
#define arm_b() \
|
|
generate_branch() \
|
|
|
|
#define arm_bl() \
|
|
generate_load_pc(reg_r14, (pc + 4)); \
|
|
generate_branch() \
|
|
|
|
#define arm_bx() \
|
|
arm_decode_branchx(opcode); \
|
|
generate_load_reg(reg_a0, rn); \
|
|
/*generate_load_pc(reg_a2, pc);*/ \
|
|
generate_indirect_branch_dual() \
|
|
|
|
#define arm_swi() \
|
|
generate_load_pc(reg_a0, (pc + 4)); \
|
|
generate_function_call_swap_delay(execute_swi); \
|
|
generate_branch() \
|
|
|
|
#define thumb_b() \
|
|
generate_branch_cycle_update( \
|
|
block_exits[block_exit_position].branch_source, \
|
|
block_exits[block_exit_position].branch_target); \
|
|
block_exit_position++ \
|
|
|
|
#define thumb_bl() \
|
|
generate_load_pc(reg_r14, ((pc + 2) | 0x01)); \
|
|
generate_branch_cycle_update( \
|
|
block_exits[block_exit_position].branch_source, \
|
|
block_exits[block_exit_position].branch_target); \
|
|
block_exit_position++ \
|
|
|
|
#define thumb_blh() \
|
|
{ \
|
|
thumb_decode_branch(); \
|
|
generate_alu_imm(addiu, addu, reg_a0, reg_r14, (offset * 2)); \
|
|
generate_load_pc(reg_r14, ((pc + 2) | 0x01)); \
|
|
generate_indirect_branch_cycle_update(dual); \
|
|
break; \
|
|
} \
|
|
|
|
#define thumb_bx() \
|
|
{ \
|
|
thumb_decode_hireg_op(); \
|
|
generate_load_reg_pc(reg_a0, rs, 4); \
|
|
/*generate_load_pc(reg_a2, pc);*/ \
|
|
generate_indirect_branch_cycle_update(dual); \
|
|
} \
|
|
|
|
#define thumb_process_cheats() \
|
|
generate_function_call(mips_cheat_hook);
|
|
|
|
#define arm_process_cheats() \
|
|
generate_function_call(mips_cheat_hook);
|
|
|
|
#ifdef TRACE_INSTRUCTIONS
|
|
void trace_instruction(u32 pc, u32 mode)
|
|
{
|
|
if (mode)
|
|
printf("Executed arm %x\n", pc);
|
|
else
|
|
printf("Executed thumb %x\n", pc);
|
|
}
|
|
|
|
#define emit_trace_instruction(pc, mode) \
|
|
emit_save_regs(false); \
|
|
generate_load_imm(reg_a0, pc); \
|
|
generate_load_imm(reg_a1, mode); \
|
|
genccall(&trace_instruction); \
|
|
mips_emit_nop(); \
|
|
emit_restore_regs(false)
|
|
#define emit_trace_thumb_instruction(pc) emit_trace_instruction(pc, 0)
|
|
#define emit_trace_arm_instruction(pc) emit_trace_instruction(pc, 1)
|
|
#else
|
|
#define emit_trace_thumb_instruction(pc)
|
|
#define emit_trace_arm_instruction(pc)
|
|
#endif
|
|
|
|
#define thumb_swi() \
|
|
generate_load_pc(reg_a0, (pc + 2)); \
|
|
generate_function_call_swap_delay(execute_swi); \
|
|
generate_branch_cycle_update( \
|
|
block_exits[block_exit_position].branch_source, \
|
|
block_exits[block_exit_position].branch_target); \
|
|
block_exit_position++ \
|
|
|
|
#define arm_hle_div(cpu_mode) \
|
|
mips_emit_div(reg_r0, reg_r1); \
|
|
mips_emit_mflo(reg_r0); \
|
|
mips_emit_mfhi(reg_r1); \
|
|
mips_emit_sra(reg_a0, reg_r0, 31); \
|
|
mips_emit_xor(reg_r3, reg_r0, reg_a0); \
|
|
mips_emit_subu(reg_r3, reg_r3, reg_a0); \
|
|
|
|
#define arm_hle_div_arm(cpu_mode) \
|
|
mips_emit_div(reg_r1, reg_r0); \
|
|
mips_emit_mflo(reg_r0); \
|
|
mips_emit_mfhi(reg_r1); \
|
|
mips_emit_sra(reg_a0, reg_r0, 31); \
|
|
mips_emit_xor(reg_r3, reg_r0, reg_a0); \
|
|
mips_emit_subu(reg_r3, reg_r3, reg_a0); \
|
|
|
|
|
|
#define generate_translation_gate(type) \
|
|
generate_load_pc(reg_a0, pc); \
|
|
generate_indirect_branch_no_cycle_update(type) \
|
|
|
|
#define generate_update_pc_reg() \
|
|
generate_load_pc(reg_a0, pc); \
|
|
mips_emit_sw(reg_a0, reg_base, (REG_PC * 4)) \
|
|
|
|
// Some macros to wrap device-specific instructions
|
|
|
|
/* MIPS32R2 and PSP support ins, ext, seb, rotr */
|
|
#ifdef MIPS_HAS_R2_INSTS
|
|
// Inserts LSB bits into another register
|
|
#define insert_bits(rdest, rsrc, rtemp, pos, size) \
|
|
mips_emit_ins(rdest, rsrc, pos, size);
|
|
// Doubles a byte into a halfword
|
|
#define double_byte(reg, rtmp) \
|
|
mips_emit_ins(reg, reg, 8, 8);
|
|
// Clears numbits at LSB position (to align an address)
|
|
#define emit_align_reg(reg, numbits) \
|
|
mips_emit_ins(reg, reg_zero, 0, numbits)
|
|
// Extract a bitfield (pos, size) to a register
|
|
#define extract_bits(rt, rs, pos, size) \
|
|
mips_emit_ext(rt, rs, pos, size)
|
|
// Extends signed byte to u32
|
|
#define extend_byte_signed(rt, rs) \
|
|
mips_emit_seb(rt, rs)
|
|
// Rotates a word using a temp reg if necessary
|
|
#define rotate_right(rdest, rsrc, rtemp, amount) \
|
|
mips_emit_rotr(rdest, rsrc, amount);
|
|
// Same but variable amount rotation (register)
|
|
#define rotate_right_var(rdest, rsrc, rtemp, ramount) \
|
|
mips_emit_rotrv(rdest, rsrc, ramount);
|
|
#else
|
|
// Inserts LSB bits into another register
|
|
// *assumes dest bits are cleared*!
|
|
#define insert_bits(rdest, rsrc, rtemp, pos, size) \
|
|
mips_emit_sll(rtemp, rsrc, 32 - size); \
|
|
mips_emit_srl(rtemp, rtemp, 32 - size - pos); \
|
|
mips_emit_or(rdest, rdest, rtemp);
|
|
// Doubles a byte into a halfword
|
|
#define double_byte(reg, rtmp) \
|
|
mips_emit_sll(rtmp, reg, 8); \
|
|
mips_emit_andi(reg, reg, 0xff); \
|
|
mips_emit_or(reg, reg, rtmp);
|
|
// Clears numbits at LSB position (to align an address)
|
|
#define emit_align_reg(reg, numbits) \
|
|
mips_emit_srl(reg, reg, numbits); \
|
|
mips_emit_sll(reg, reg, numbits)
|
|
// Extract a bitfield (pos, size) to a register
|
|
#define extract_bits(rt, rs, pos, size) \
|
|
mips_emit_sll(rt, rs, 32 - ((pos) + (size))); \
|
|
mips_emit_srl(rt, rt, 32 - (size))
|
|
// Extends signed byte to u32
|
|
#define extend_byte_signed(rt, rs) \
|
|
mips_emit_sll(rt, rs, 24); \
|
|
mips_emit_sra(rt, rt, 24)
|
|
// Rotates a word (uses temp reg)
|
|
#define rotate_right(rdest, rsrc, rtemp, amount) \
|
|
mips_emit_sll(rtemp, rsrc, 32 - (amount)); \
|
|
mips_emit_srl(rdest, rsrc, (amount)); \
|
|
mips_emit_or(rdest, rdest, rtemp)
|
|
// Variable rotation using temp reg (dst != src)
|
|
#define rotate_right_var(rdest, rsrc, rtemp, ramount) \
|
|
mips_emit_andi(rtemp, ramount, 0x1F); \
|
|
mips_emit_srlv(rdest, rsrc, rtemp); \
|
|
mips_emit_subu(rtemp, reg_zero, rtemp); \
|
|
mips_emit_addiu(rtemp, rtemp, 32); \
|
|
mips_emit_sllv(rtemp, rsrc, rtemp); \
|
|
mips_emit_or(rdest, rdest, rtemp)
|
|
|
|
#endif
|
|
|
|
|
|
// Register save layout as follows:
|
|
#define ReOff_RegPC (REG_PC * 4) // REG_PC
|
|
#define ReOff_CPSR (REG_CPSR * 4) // REG_CPSR
|
|
#define ReOff_SaveR1 (REG_SAVE * 4) // 3 save scratch regs
|
|
#define ReOff_SaveR2 (REG_SAVE2 * 4)
|
|
#define ReOff_SaveR3 (REG_SAVE3 * 4)
|
|
#define ReOff_OamUpd (OAM_UPDATED*4) // OAM_UPDATED
|
|
#define ReOff_GP_Save (REG_SAVE4 * 4) // GP_SAVE
|
|
|
|
// Saves all regs to their right slot and loads gp
|
|
#define emit_save_regs(save_a2) { \
|
|
int i; \
|
|
for (i = 0; i < 15; i++) { \
|
|
mips_emit_sw(arm_to_mips_reg[i], reg_base, 4 * i); \
|
|
} \
|
|
if (save_a2) { \
|
|
mips_emit_sw(reg_a2, reg_base, ReOff_SaveR2); \
|
|
} \
|
|
/* Load the gp pointer, used by C code */ \
|
|
mips_emit_lw(mips_reg_gp, reg_base, ReOff_GP_Save); \
|
|
}
|
|
|
|
// Restores the registers from their slot
|
|
#define emit_restore_regs(restore_a2) { \
|
|
int i; \
|
|
if (restore_a2) { \
|
|
mips_emit_lw(reg_a2, reg_base, ReOff_SaveR2); \
|
|
} \
|
|
for (i = 0; i < 15; i++) { \
|
|
mips_emit_lw(arm_to_mips_reg[i], reg_base, 4 * i); \
|
|
} \
|
|
}
|
|
|
|
// Emits a function call for a read or a write (for special stuff like flash)
|
|
#define emit_mem_call_ds(fnptr, mask) \
|
|
mips_emit_sw(mips_reg_ra, reg_base, ReOff_SaveR1); \
|
|
emit_save_regs(true); \
|
|
genccall(fnptr); \
|
|
mips_emit_andi(reg_a0, reg_a0, (mask)); \
|
|
mips_emit_lw(mips_reg_ra, reg_base, ReOff_SaveR1); \
|
|
emit_restore_regs(true);
|
|
|
|
#define emit_mem_call(fnptr, mask) \
|
|
emit_mem_call_ds(fnptr, mask) \
|
|
mips_emit_jr(mips_reg_ra); \
|
|
mips_emit_nop();
|
|
|
|
// Pointer table to stubs, indexed by type and region
|
|
extern u32 tmemld[11][16];
|
|
extern u32 tmemst[ 4][16];
|
|
extern u32 thnjal[15*16];
|
|
void smc_write();
|
|
cpu_alert_type write_io_register8 (u32 address, u32 value);
|
|
cpu_alert_type write_io_register16(u32 address, u32 value);
|
|
cpu_alert_type write_io_register32(u32 address, u32 value);
|
|
void write_io_epilogue();
|
|
|
|
// This is a pointer table to the open load stubs, used by the BIOS (optimization)
|
|
u32* openld_core_ptrs[11];
|
|
|
|
const u8 ldopmap[6][2] = { {0, 1}, {1, 2}, {2, 4}, {4, 6}, {6, 10}, {10, 11} };
|
|
const u8 ldhldrtbl[11] = {0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5};
|
|
#define ld_phndlr_branch(memop) \
|
|
(((u32*)&rom_translation_cache[ldhldrtbl[(memop)]*16*4]) - ((u32*)translation_ptr + 1))
|
|
|
|
#define st_phndlr_branch(memop) \
|
|
(((u32*)&rom_translation_cache[((memop) + 6)*16*4]) - ((u32*)translation_ptr + 1))
|
|
|
|
#define branch_handlerid(phndlrid) \
|
|
(((u32*)&rom_translation_cache[(phndlrid)*16*4]) - ((u32*)translation_ptr + 1))
|
|
|
|
#define branch_offset(ptr) \
|
|
(((u32*)ptr) - ((u32*)translation_ptr + 1))
|
|
|
|
static void emit_mem_access_loadop(
|
|
u8 *translation_ptr,
|
|
u32 base_addr, unsigned size, unsigned alignment, bool signext)
|
|
{
|
|
switch (size) {
|
|
case 2:
|
|
mips_emit_lw(reg_rv, reg_rv, (base_addr & 0xffff));
|
|
break;
|
|
case 1:
|
|
if (signext) {
|
|
// Load 16 with sign extension is essentially a load byte
|
|
if (alignment) {
|
|
mips_emit_lb(reg_rv, reg_rv, (base_addr & 0xffff));
|
|
} else {
|
|
mips_emit_lh(reg_rv, reg_rv, (base_addr & 0xffff));
|
|
}
|
|
} else {
|
|
mips_emit_lhu(reg_rv, reg_rv, (base_addr & 0xffff));
|
|
}
|
|
break;
|
|
default:
|
|
if (signext) {
|
|
mips_emit_lb(reg_rv, reg_rv, (base_addr & 0xffff));
|
|
} else {
|
|
mips_emit_lbu(reg_rv, reg_rv, (base_addr & 0xffff));
|
|
}
|
|
break;
|
|
};
|
|
}
|
|
|
|
#ifdef PIC
|
|
#define genccall(fn) \
|
|
mips_emit_lui(mips_reg_t9, ((u32)fn) >> 16); \
|
|
mips_emit_ori(mips_reg_t9, mips_reg_t9, ((u32)fn)); \
|
|
mips_emit_jalr(mips_reg_t9);
|
|
#else
|
|
#define genccall(fn) mips_emit_jal(((u32)fn) >> 2);
|
|
#endif
|
|
|
|
#define SMC_WRITE_OFF (10*16*4) /* 10 handlers (16 insts) */
|
|
|
|
// Describes a "plain" memory are, that is, an area that is just accessed
|
|
// as normal memory (with some caveats tho).
|
|
typedef struct {
|
|
void *emitter;
|
|
unsigned region; // Region ID (top 8 bits)
|
|
unsigned memsize; // 0 byte, 1 halfword, 2 word
|
|
bool check_smc; // Whether the memory can contain code
|
|
bool bus16; // Whether it can only be accessed at 16bit
|
|
u32 baseptr; // Memory base address.
|
|
u32 baseoff; // Offset from base_reg
|
|
} t_stub_meminfo;
|
|
|
|
// Generates the stub to access memory for a given region, access type,
|
|
// size and misalignment.
|
|
// Handles "special" cases like weirdly mapped memory
|
|
static void emit_pmemld_stub(
|
|
unsigned memop_number, const t_stub_meminfo *meminfo,
|
|
bool signext, unsigned size,
|
|
unsigned alignment, bool aligned,
|
|
u8 **tr_ptr)
|
|
{
|
|
u8 *translation_ptr = *tr_ptr;
|
|
unsigned region = meminfo->region;
|
|
u32 base_addr = meminfo->baseptr;
|
|
|
|
if (region >= 9 && region <= 11) {
|
|
// Use the same handler for these regions (just replicas)
|
|
tmemld[memop_number][region] = tmemld[memop_number][8];
|
|
return;
|
|
}
|
|
|
|
// Clean up one or two bits (to align access). It might already be aligned!
|
|
u32 memmask = (meminfo->memsize - 1);
|
|
memmask = (memmask >> size) << size; // Clear 1 or 2 (or none) bits
|
|
|
|
// Add the stub to the table (add the JAL instruction encoded already)
|
|
tmemld[memop_number][region] = (u32)translation_ptr;
|
|
|
|
// Size: 0 (8 bits), 1 (16 bits), 2 (32 bits)
|
|
// First check we are in the right memory region
|
|
unsigned regionbits = 8;
|
|
unsigned regioncheck = region;
|
|
if (region == 8) {
|
|
// This is an optimization for ROM regions
|
|
// For region 8-11 we reuse the same code (and have a more generic check)
|
|
// Region 12 is harder to cover without changing the check (shift + xor)
|
|
regionbits = 6;
|
|
regioncheck >>= 2; // Ignore the two LSB, don't care
|
|
}
|
|
|
|
// Address checking: jumps to handler if bad region/alignment
|
|
mips_emit_srl(reg_temp, reg_a0, (32 - regionbits));
|
|
if (!aligned && size != 0) { // u8 or aligned u32 dont need to check alignment bits
|
|
insert_bits(reg_temp, reg_a0, reg_rv, regionbits, size); // Add 1 or 2 bits of alignment
|
|
}
|
|
if (regioncheck || alignment) { // If region and alignment are zero, can skip
|
|
mips_emit_xori(reg_temp, reg_temp, regioncheck | (alignment << regionbits));
|
|
}
|
|
|
|
// The patcher to use depends on ld/st, access size, and sign extension
|
|
// (so there's 10 of them). They live in the top stub addresses.
|
|
mips_emit_b(bne, reg_zero, reg_temp, ld_phndlr_branch(memop_number));
|
|
|
|
// BIOS region requires extra checks for protected reads
|
|
if (region == 0) {
|
|
// BIOS is *not* mirrored, check that
|
|
mips_emit_srl(reg_rv, reg_a0, 14);
|
|
mips_emit_b(bne, reg_zero, reg_rv, branch_offset(openld_core_ptrs[memop_number]));
|
|
|
|
// Check whether the read is allowed. Only within BIOS! (Ignore aligned, bad a1)
|
|
if (!aligned) {
|
|
mips_emit_srl(reg_temp, reg_a1, 14);
|
|
mips_emit_b(bne, reg_zero, reg_temp, branch_offset(openld_core_ptrs[memop_number]));
|
|
}
|
|
}
|
|
|
|
if (region >= 8 && region <= 12) {
|
|
u8 *jmppatch;
|
|
// ROM area: might need to load the ROM on-demand
|
|
mips_emit_srl(reg_rv, reg_a0, 15); // 32KB page number
|
|
mips_emit_sll(reg_rv, reg_rv, 2); // (word indexed)
|
|
mips_emit_addu(reg_rv, reg_rv, reg_base); // base + offset
|
|
|
|
mips_emit_lw(reg_rv, reg_rv, 0x8000); // base[offset-0x8000]
|
|
mips_emit_b_filler(bne, reg_rv, reg_zero, jmppatch); // if not null, can skip load page
|
|
mips_emit_andi(reg_temp, reg_a0, memmask); // Get the lowest 15 bits [delay]
|
|
|
|
// This code call the C routine to map the relevant ROM page
|
|
emit_save_regs(aligned);
|
|
mips_emit_sw(mips_reg_ra, reg_base, ReOff_SaveR3);
|
|
extract_bits(reg_a0, reg_a0, 15, 10); // a0 = (addr >> 15) & 0x3ff
|
|
genccall(&load_gamepak_page);
|
|
mips_emit_sw(reg_temp, reg_base, ReOff_SaveR1);
|
|
|
|
mips_emit_lw(reg_temp, reg_base, ReOff_SaveR1);
|
|
emit_restore_regs(aligned);
|
|
mips_emit_lw(mips_reg_ra, reg_base, ReOff_SaveR3);
|
|
|
|
generate_branch_patch_conditional(jmppatch, translation_ptr);
|
|
// Now we can proceed to load, place addr in the right register
|
|
mips_emit_addu(reg_rv, reg_rv, reg_temp);
|
|
} else if (region == 14) {
|
|
// Read from flash, is a bit special, fn call
|
|
emit_mem_call_ds(&read_backup, 0xFFFF);
|
|
if (!size && signext) {
|
|
extend_byte_signed(reg_rv, reg_rv);
|
|
} else if (size == 1 && alignment) {
|
|
extend_byte_signed(reg_rv, reg_rv);
|
|
} else if (size == 2) {
|
|
rotate_right(reg_rv, reg_rv, reg_temp, 8 * alignment);
|
|
}
|
|
generate_function_return_swap_delay();
|
|
*tr_ptr = translation_ptr;
|
|
return;
|
|
} else {
|
|
// Generate upper bits of the addr and do addr mirroring
|
|
// (The address hi16 is rounded up since load uses signed offset)
|
|
if (!meminfo->baseoff) {
|
|
mips_emit_lui(reg_rv, ((base_addr + 0x8000) >> 16));
|
|
} else {
|
|
base_addr = meminfo->baseoff;
|
|
}
|
|
|
|
if (region == 2) {
|
|
// Can't do EWRAM with an `andi` instruction (18 bits mask)
|
|
extract_bits(reg_a0, reg_a0, 0, 18); // &= 0x3ffff
|
|
if (!aligned && alignment != 0) {
|
|
emit_align_reg(reg_a0, size); // addr & ~1/2 (align to size)
|
|
}
|
|
// Need to insert a zero in the addr (due to how it's mapped)
|
|
mips_emit_addu(reg_rv, reg_rv, reg_a0); // Adds to the base addr
|
|
} else if (region == 6) {
|
|
// VRAM is mirrored every 128KB but the last 32KB is mapped to the previous
|
|
extract_bits(reg_temp, reg_a0, 15, 2); // Extract bits 15 and 16
|
|
mips_emit_addiu(reg_temp, reg_temp, -3); // Check for 3 (last block)
|
|
if (!aligned && alignment != 0) {
|
|
emit_align_reg(reg_a0, size); // addr & ~1/2 (align to size)
|
|
}
|
|
extract_bits(reg_a0, reg_a0, 0, 17); // addr & 0x1FFFF [delay]
|
|
mips_emit_b(bne, reg_zero, reg_temp, 1); // Skip unless last block
|
|
generate_swap_delay();
|
|
mips_emit_addiu(reg_a0, reg_a0, 0x8000); // addr - 0x8000 (mirror last block)
|
|
mips_emit_addu(reg_rv, reg_rv, reg_a0); // addr = base + adjusted offset
|
|
} else {
|
|
// Generate regular (<=32KB) mirroring
|
|
mips_reg_number breg = (meminfo->baseoff ? reg_base : reg_rv);
|
|
mips_emit_andi(reg_temp, reg_a0, memmask); // Clear upper bits (mirroring)
|
|
mips_emit_addu(reg_rv, breg, reg_temp); // Adds to base addr
|
|
}
|
|
}
|
|
|
|
// Emit load operation
|
|
emit_mem_access_loadop(translation_ptr, base_addr, size, alignment, signext);
|
|
translation_ptr += 4;
|
|
|
|
if (!(alignment == 0 || (size == 1 && signext))) {
|
|
// Unaligned accesses require rotation, except for size=1 & signext
|
|
rotate_right(reg_rv, reg_rv, reg_temp, alignment * 8);
|
|
}
|
|
|
|
generate_function_return_swap_delay(); // Return. Move prev inst to delay slot
|
|
*tr_ptr = translation_ptr;
|
|
}
|
|
|
|
// Generates the stub to store memory for a given region and size
|
|
// Handles "special" cases like weirdly mapped memory
|
|
static void emit_pmemst_stub(
|
|
unsigned memop_number, const t_stub_meminfo *meminfo,
|
|
unsigned size, bool aligned, u8 **tr_ptr)
|
|
{
|
|
u8 *translation_ptr = *tr_ptr;
|
|
unsigned region = meminfo->region;
|
|
u32 base_addr = meminfo->baseptr;
|
|
|
|
// Palette, VRAM and OAM cannot be really byte accessed (use a 16 bit store)
|
|
bool doubleaccess = (size == 0 && meminfo->bus16);
|
|
unsigned realsize = size;
|
|
if (doubleaccess)
|
|
realsize = 1;
|
|
|
|
// Clean up one or two bits (to align access). It might already be aligned!
|
|
u32 memmask = (meminfo->memsize - 1);
|
|
memmask = (memmask >> realsize) << realsize;
|
|
|
|
// Add the stub to the table (add the JAL instruction encoded already)
|
|
tmemst[memop_number][region] = (u32)translation_ptr;
|
|
|
|
// First check we are in the right memory region (same as loads)
|
|
mips_emit_srl(reg_temp, reg_a0, 24);
|
|
mips_emit_xori(reg_temp, reg_temp, region);
|
|
mips_emit_b(bne, reg_zero, reg_temp, st_phndlr_branch(memop_number));
|
|
|
|
mips_emit_lui(reg_rv, ((base_addr + 0x8000) >> 16));
|
|
|
|
if (doubleaccess) {
|
|
double_byte(reg_a1, reg_temp); // value = value | (value << 8)
|
|
}
|
|
|
|
if (region == 2) {
|
|
// Can't do EWRAM with an `andi` instruction (18 bits mask)
|
|
extract_bits(reg_a0, reg_a0, 0, 18); // &= 0x3ffff
|
|
if (!aligned && realsize != 0) {
|
|
emit_align_reg(reg_a0, size); // addr & ~1/2 (align to size)
|
|
}
|
|
// Need to insert a zero in the addr (due to how it's mapped)
|
|
mips_emit_addu(reg_rv, reg_rv, reg_a0); // Adds to the base addr
|
|
} else if (region == 6) {
|
|
// VRAM is mirrored every 128KB but the last 32KB is mapped to the previous
|
|
extract_bits(reg_temp, reg_a0, 15, 2); // Extract bits 15 and 16
|
|
mips_emit_addiu(reg_temp, reg_temp, -3); // Check for 3 (last block)
|
|
if (!aligned && realsize != 0) {
|
|
emit_align_reg(reg_a0, realsize); // addr & ~1/2 (align to size)
|
|
}
|
|
extract_bits(reg_a0, reg_a0, 0, 17); // addr & 0x1FFFF [delay]
|
|
mips_emit_b(bne, reg_zero, reg_temp, 1); // Skip next inst unless last block
|
|
generate_swap_delay();
|
|
mips_emit_addiu(reg_a0, reg_a0, 0x8000); // addr - 0x8000 (mirror last block)
|
|
mips_emit_addu(reg_rv, reg_rv, reg_a0); // addr = base + adjusted offset
|
|
} else {
|
|
// Generate regular (<=32KB) mirroring
|
|
mips_emit_andi(reg_a0, reg_a0, memmask); // Clear upper bits (mirroring)
|
|
mips_emit_addu(reg_rv, reg_rv, reg_a0); // Adds to base addr
|
|
}
|
|
|
|
// Generate SMC write and tracking
|
|
// TODO: Should we have SMC checks here also for aligned?
|
|
if (meminfo->check_smc && !aligned) {
|
|
if (region == 2) {
|
|
mips_emit_lui(reg_temp, 0x40000 >> 16);
|
|
mips_emit_addu(reg_temp, reg_rv, reg_temp); // SMC lives after the ewram
|
|
} else {
|
|
mips_emit_addiu(reg_temp, reg_rv, 0x8000); // -32KB is the addr of the SMC buffer
|
|
}
|
|
if (realsize == 2) {
|
|
mips_emit_lw(reg_temp, reg_temp, base_addr);
|
|
} else if (realsize == 1) {
|
|
mips_emit_lh(reg_temp, reg_temp, base_addr);
|
|
} else {
|
|
mips_emit_lb(reg_temp, reg_temp, base_addr);
|
|
}
|
|
// If the data is non zero, we just wrote over code
|
|
// Local-jump to the smc_write (which lives at offset:0)
|
|
mips_emit_b(bne, reg_zero, reg_temp, branch_offset(&rom_translation_cache[SMC_WRITE_OFF]));
|
|
}
|
|
|
|
// Store the data (delay slot from the SMC branch)
|
|
if (realsize == 2) {
|
|
mips_emit_sw(reg_a1, reg_rv, base_addr);
|
|
} else if (realsize == 1) {
|
|
mips_emit_sh(reg_a1, reg_rv, base_addr);
|
|
} else {
|
|
mips_emit_sb(reg_a1, reg_rv, base_addr);
|
|
}
|
|
|
|
// Post processing store:
|
|
// Signal that OAM was updated
|
|
if (region == 7) {
|
|
// Write any nonzero data
|
|
mips_emit_sw(reg_base, reg_base, ReOff_OamUpd);
|
|
generate_function_return_swap_delay();
|
|
}
|
|
else {
|
|
mips_emit_jr(mips_reg_ra);
|
|
mips_emit_nop();
|
|
}
|
|
|
|
*tr_ptr = translation_ptr;
|
|
}
|
|
|
|
// Palette conversion functions. a1 contains the palette value (16 LSB)
|
|
// Places the result in reg_temp, can use a0 as temporary register
|
|
#ifdef USE_BGR_FORMAT
|
|
/* 0BGR to BGR565, only for PSP (uses ins) */
|
|
#define palette_convert() \
|
|
mips_emit_sll(reg_temp, reg_a1, 1); \
|
|
mips_emit_andi(reg_temp, reg_temp, 0xFFC0); \
|
|
mips_emit_ins(reg_temp, reg_a1, 0, 5);
|
|
#elif defined(USE_XBGR1555_FORMAT)
|
|
/* PS2's native format */
|
|
#define palette_convert() \
|
|
mips_emit_andi(reg_temp, reg_a1, 0x7FFF);
|
|
#else
|
|
/* 0BGR to RGB565 (clobbers a0) */
|
|
#ifdef MIPS_HAS_R2_INSTS
|
|
#define palette_convert() \
|
|
mips_emit_ext(reg_temp, reg_a1, 10, 5); \
|
|
mips_emit_ins(reg_temp, reg_a1, 11, 5); \
|
|
mips_emit_ext(reg_a0, reg_a1, 5, 5); \
|
|
mips_emit_ins(reg_temp, reg_a0, 6, 5);
|
|
#else
|
|
#define palette_convert() \
|
|
mips_emit_srl(reg_a0, reg_a1, 10); \
|
|
mips_emit_andi(reg_temp, reg_a0, 0x1F); \
|
|
mips_emit_sll(reg_a0, reg_a1, 1); \
|
|
mips_emit_andi(reg_a0, reg_a0, 0x7C0); \
|
|
mips_emit_or(reg_temp, reg_temp, reg_a0); \
|
|
mips_emit_andi(reg_a0, reg_a1, 0x1F); \
|
|
mips_emit_sll(reg_a0, reg_a0, 11); \
|
|
mips_emit_or(reg_temp, reg_temp, reg_a0);
|
|
#endif
|
|
#endif
|
|
|
|
// Palette is accessed differently and stored in a decoded manner
|
|
static void emit_palette_hdl(
|
|
unsigned memop_number, const t_stub_meminfo *meminfo,
|
|
unsigned size, bool aligned, u8 **tr_ptr)
|
|
{
|
|
u8 *translation_ptr = *tr_ptr;
|
|
|
|
// Palette cannot be accessed at byte level
|
|
unsigned realsize = size ? size : 1;
|
|
u32 memmask = (meminfo->memsize - 1);
|
|
memmask = (memmask >> realsize) << realsize;
|
|
|
|
// Add the stub to the table (add the JAL instruction encoded already)
|
|
tmemst[memop_number][5] = (u32)translation_ptr;
|
|
|
|
// First check we are in the right memory region (same as loads)
|
|
mips_emit_srl(reg_temp, reg_a0, 24);
|
|
mips_emit_xori(reg_temp, reg_temp, 5);
|
|
mips_emit_b(bne, reg_zero, reg_temp, st_phndlr_branch(memop_number));
|
|
mips_emit_andi(reg_rv, reg_a0, memmask); // Clear upper bits (mirroring)
|
|
if (size == 0) {
|
|
double_byte(reg_a1, reg_temp); // value = value | (value << 8)
|
|
}
|
|
mips_emit_addu(reg_rv, reg_rv, reg_base);
|
|
|
|
// Store the data in real palette memory
|
|
if (realsize == 2) {
|
|
mips_emit_sw(reg_a1, reg_rv, 0x100);
|
|
} else if (realsize == 1) {
|
|
mips_emit_sh(reg_a1, reg_rv, 0x100);
|
|
}
|
|
|
|
// Convert and store in mirror memory
|
|
palette_convert();
|
|
mips_emit_sh(reg_temp, reg_rv, 0x500);
|
|
|
|
if (size == 2) {
|
|
// Convert the second half-word also
|
|
mips_emit_srl(reg_a1, reg_a1, 16);
|
|
palette_convert();
|
|
mips_emit_sh(reg_temp, reg_rv, 0x502);
|
|
}
|
|
generate_function_return_swap_delay();
|
|
|
|
*tr_ptr = translation_ptr;
|
|
}
|
|
|
|
// This emits stubs for regions where writes have no side-effects
|
|
static void emit_ignorestore_stub(unsigned size, u8 **tr_ptr) {
|
|
u8 *translation_ptr = *tr_ptr;
|
|
|
|
// Region 0-1 (BIOS and ignore)
|
|
tmemst[size][0] = tmemst[size][1] = (u32)translation_ptr;
|
|
mips_emit_srl(reg_temp, reg_a0, 25); // Check 7 MSB to be zero
|
|
mips_emit_b(bne, reg_temp, reg_zero, st_phndlr_branch(size));
|
|
mips_emit_nop();
|
|
mips_emit_jr(mips_reg_ra);
|
|
mips_emit_nop();
|
|
|
|
// Region 9-C
|
|
tmemst[size][ 9] = tmemst[size][10] =
|
|
tmemst[size][11] = tmemst[size][12] = (u32)translation_ptr;
|
|
|
|
mips_emit_srl(reg_temp, reg_a0, 24);
|
|
mips_emit_addiu(reg_temp, reg_temp, -9);
|
|
mips_emit_srl(reg_temp, reg_temp, 2);
|
|
mips_emit_b(bne, reg_temp, reg_zero, st_phndlr_branch(size));
|
|
mips_emit_nop();
|
|
mips_emit_jr(mips_reg_ra);
|
|
mips_emit_nop();
|
|
|
|
// Region F or higher
|
|
tmemst[size][15] = (u32)translation_ptr;
|
|
mips_emit_srl(reg_temp, reg_a0, 24);
|
|
mips_emit_sltiu(reg_rv, reg_temp, 0x0F); // Is < 15?
|
|
mips_emit_b(bne, reg_rv, reg_zero, st_phndlr_branch(size));
|
|
mips_emit_nop();
|
|
mips_emit_jr(mips_reg_ra);
|
|
mips_emit_nop();
|
|
|
|
*tr_ptr = translation_ptr;
|
|
}
|
|
|
|
// Stubs for regions with EEPROM or flash/SRAM (also RTC)
|
|
static void emit_saveaccess_stub(u8 **tr_ptr) {
|
|
unsigned opt, i, strop;
|
|
u8 *translation_ptr = *tr_ptr;
|
|
|
|
// Writes to region 8 are directed to RTC (only 16 bit ones though)
|
|
tmemld[1][8] = (u32)translation_ptr;
|
|
emit_mem_call(&write_rtc, 0xFE);
|
|
|
|
// These are for region 0xD where EEPROM is mapped. Addr is ignored
|
|
// Value is limited to one bit (both reading and writing!)
|
|
u32 *read_hndlr = (u32*)translation_ptr;
|
|
emit_mem_call(&read_eeprom, 0x3FF);
|
|
u32 *write_hndlr = (u32*)translation_ptr;
|
|
emit_mem_call(&write_eeprom, 0x3FF);
|
|
|
|
// Map loads to the read handler.
|
|
for (opt = 0; opt < 6; opt++) {
|
|
// Unalignment is not relevant here, so map them all to the same handler.
|
|
for (i = ldopmap[opt][0]; i < ldopmap[opt][1]; i++)
|
|
tmemld[i][13] = (u32)translation_ptr;
|
|
// Emit just a check + patch jump
|
|
mips_emit_srl(reg_temp, reg_a0, 24);
|
|
mips_emit_xori(reg_rv, reg_temp, 0x0D);
|
|
mips_emit_b(bne, reg_rv, reg_zero, branch_handlerid(opt));
|
|
mips_emit_nop();
|
|
mips_emit_b(beq, reg_zero, reg_zero, branch_offset(read_hndlr));
|
|
}
|
|
// This is for stores
|
|
for (strop = 0; strop <= 3; strop++) {
|
|
tmemst[strop][13] = (u32)translation_ptr;
|
|
mips_emit_srl(reg_temp, reg_a0, 24);
|
|
mips_emit_xori(reg_rv, reg_temp, 0x0D);
|
|
mips_emit_b(bne, reg_rv, reg_zero, st_phndlr_branch(strop));
|
|
mips_emit_nop();
|
|
mips_emit_b(beq, reg_zero, reg_zero, branch_offset(write_hndlr));
|
|
}
|
|
|
|
// Flash/SRAM/Backup writes are only 8 byte supported
|
|
for (strop = 0; strop <= 3; strop++) {
|
|
tmemst[strop][14] = (u32)translation_ptr;
|
|
mips_emit_srl(reg_temp, reg_a0, 24);
|
|
mips_emit_xori(reg_rv, reg_temp, 0x0E);
|
|
mips_emit_b(bne, reg_rv, reg_zero, st_phndlr_branch(strop));
|
|
if (strop == 0) {
|
|
emit_mem_call(&write_backup, 0xFFFF);
|
|
} else {
|
|
mips_emit_nop();
|
|
mips_emit_jr(mips_reg_ra); // Does nothing in this case
|
|
mips_emit_nop();
|
|
}
|
|
}
|
|
|
|
// RTC writes, only for 16 bit accesses
|
|
for (strop = 0; strop <= 3; strop++) {
|
|
tmemst[strop][8] = (u32)translation_ptr;
|
|
mips_emit_srl(reg_temp, reg_a0, 24);
|
|
mips_emit_xori(reg_rv, reg_temp, 0x08);
|
|
mips_emit_b(bne, reg_rv, reg_zero, st_phndlr_branch(strop));
|
|
if (strop == 1) {
|
|
emit_mem_call(&write_rtc, 0xFF); // Addr
|
|
} else {
|
|
mips_emit_nop();
|
|
mips_emit_jr(mips_reg_ra); // Do nothing
|
|
mips_emit_nop();
|
|
}
|
|
}
|
|
|
|
// Region 4 writes
|
|
// I/O writes are also a bit special, they can trigger things like DMA, IRQs...
|
|
// Also: aligned (strop==3) accesses do not trigger IRQs
|
|
const u32 iowrtbl[] = {
|
|
(u32)&write_io_register8, (u32)&write_io_register16,
|
|
(u32)&write_io_register32, (u32)&write_io_register32 };
|
|
const u32 amsk[] = {0x3FF, 0x3FE, 0x3FC, 0x3FC};
|
|
for (strop = 0; strop <= 3; strop++) {
|
|
tmemst[strop][4] = (u32)translation_ptr;
|
|
mips_emit_srl(reg_temp, reg_a0, 24);
|
|
mips_emit_xori(reg_temp, reg_temp, 0x04);
|
|
mips_emit_b(bne, reg_zero, reg_temp, st_phndlr_branch(strop));
|
|
|
|
mips_emit_sw(mips_reg_ra, reg_base, ReOff_SaveR3); // Store the return addr
|
|
emit_save_regs(strop == 3);
|
|
mips_emit_andi(reg_a0, reg_a0, amsk[strop]);
|
|
genccall(iowrtbl[strop]);
|
|
|
|
if (strop < 3) {
|
|
mips_emit_sw(reg_a2, reg_base, ReOff_RegPC); // Save PC (delay)
|
|
mips_emit_j(((u32)&write_io_epilogue) >> 2);
|
|
mips_emit_nop();
|
|
} else {
|
|
mips_emit_nop();
|
|
mips_emit_lw(mips_reg_ra, reg_base, ReOff_SaveR3);
|
|
emit_restore_regs(true);
|
|
generate_function_return_swap_delay();
|
|
}
|
|
}
|
|
|
|
*tr_ptr = translation_ptr;
|
|
}
|
|
|
|
// Emits openload stub
|
|
// These are used for reading unmapped regions, we just make them go
|
|
// through the slow handler since should rarely happen.
|
|
static void emit_openload_stub(unsigned opt, bool signext, unsigned size, u8 **tr_ptr) {
|
|
int i;
|
|
const u32 hndreadtbl[] = {
|
|
(u32)&read_memory8, (u32)&read_memory16, (u32)&read_memory32,
|
|
(u32)&read_memory8s, (u32)&read_memory16s, (u32)&read_memory32 };
|
|
u8 *translation_ptr = *tr_ptr;
|
|
|
|
// This affects regions 1 and 15
|
|
for (i = ldopmap[opt][0]; i < ldopmap[opt][1]; i++)
|
|
tmemld[i][ 1] = tmemld[i][15] = (u32)translation_ptr;
|
|
|
|
// Alignment is ignored since the handlers do the magic for us
|
|
// Only check region match: if we are accessing a non-ignore region
|
|
mips_emit_srl(reg_temp, reg_a0, 24);
|
|
mips_emit_sltiu(reg_rv, reg_temp, 0x0F);
|
|
mips_emit_addiu(reg_temp, reg_temp, -1);
|
|
mips_emit_sltu(reg_temp, reg_zero, reg_temp);
|
|
mips_emit_and(reg_temp, reg_temp, reg_rv);
|
|
|
|
// Jump to patch handler
|
|
mips_emit_b(bne, reg_zero, reg_temp, branch_handlerid(opt));
|
|
|
|
// BIOS can jump here to do open loads
|
|
for (i = ldopmap[opt][0]; i < ldopmap[opt][1]; i++)
|
|
openld_core_ptrs[i] = (u32*)translation_ptr;
|
|
|
|
emit_save_regs(true);
|
|
mips_emit_sw(mips_reg_ra, reg_base, ReOff_SaveR1); // Delay slot
|
|
genccall(hndreadtbl[size + (signext ? 3 : 0)]);
|
|
if (opt < 5) {
|
|
mips_emit_sw(reg_a1, reg_base, ReOff_RegPC); // Save current PC
|
|
} else {
|
|
// Aligned loads do not hold PC in a1 (imprecision)
|
|
mips_emit_nop();
|
|
}
|
|
|
|
mips_emit_lw(mips_reg_ra, reg_base, ReOff_SaveR1);
|
|
emit_restore_regs(true);
|
|
generate_function_return_swap_delay();
|
|
|
|
*tr_ptr = translation_ptr;
|
|
}
|
|
|
|
typedef void (*sthldr_t)(
|
|
unsigned memop_number, const t_stub_meminfo *meminfo,
|
|
unsigned size, bool aligned, u8 **tr_ptr);
|
|
|
|
typedef void (*ldhldr_t)(
|
|
unsigned memop_number, const t_stub_meminfo *meminfo,
|
|
bool signext, unsigned size,
|
|
unsigned alignment, bool aligned,
|
|
u8 **tr_ptr);
|
|
|
|
// Generates a patch handler for a given access size
|
|
// It will detect the access alignment and memory region and load
|
|
// the corresponding handler from the table (at the right offset)
|
|
// and patch the jal instruction from where it was called.
|
|
static void emit_phand(
|
|
u8 **tr_ptr, unsigned size, unsigned toff,
|
|
bool check_alignment)
|
|
{
|
|
u8 *translation_ptr = *tr_ptr;
|
|
|
|
mips_emit_srl(reg_temp, reg_a0, 24);
|
|
#ifdef PSP
|
|
mips_emit_addiu(reg_rv, reg_zero, 15*4); // Table limit (max)
|
|
mips_emit_sll(reg_temp, reg_temp, 2); // Table is word indexed
|
|
mips_emit_min(reg_temp, reg_temp, reg_rv);// Do not overflow table
|
|
#else
|
|
mips_emit_sltiu(reg_rv, reg_temp, 0x0F); // Check for addr 0x1XXX.. 0xFXXX
|
|
mips_emit_sll(reg_temp, reg_temp, 2); // Table is word indexed
|
|
mips_emit_b(bne, reg_zero, reg_rv, 1); // Skip next inst if region is good
|
|
generate_swap_delay();
|
|
mips_emit_addiu(reg_temp, reg_zero, 15*4);// Simulate ld/st to 0x0FXXX (open/ignore)
|
|
#endif
|
|
|
|
// Stores or byte-accesses do not care about alignment
|
|
if (check_alignment) {
|
|
// Move alignment bits for the table lookup (1 or 2, to bits 6 and 7)
|
|
insert_bits(reg_temp, reg_a0, reg_rv, 6, size);
|
|
}
|
|
|
|
unsigned tbloff = 256 + 3*1024 + 220 + 4 * toff; // Skip regs and RAMs
|
|
unsigned tbloff2 = tbloff + 960; // JAL opcode table
|
|
mips_emit_addu(reg_temp, reg_temp, reg_base); // Add to the base_reg the table offset
|
|
mips_emit_lw(reg_rv, reg_temp, tbloff); // Get func addr from 1st table
|
|
mips_emit_lw(reg_temp, reg_temp, tbloff2); // Get opcode from 2nd table
|
|
mips_emit_sw(reg_temp, mips_reg_ra, -8); // Patch instruction!
|
|
|
|
#if defined(PSP)
|
|
mips_emit_cache(0x1A, mips_reg_ra, -8);
|
|
mips_emit_jr(reg_rv); // Jump directly to target for speed
|
|
mips_emit_cache(0x08, mips_reg_ra, -8);
|
|
#else
|
|
mips_emit_jr(reg_rv);
|
|
#ifdef MIPS_HAS_R2_INSTS
|
|
mips_emit_synci(mips_reg_ra, -8);
|
|
#endif
|
|
#endif
|
|
|
|
// Round up handlers to 16 instructions for easy addressing
|
|
// PSP/MIPS32r2 uses up to 12 insts
|
|
while (translation_ptr - *tr_ptr < 64) {
|
|
mips_emit_nop();
|
|
}
|
|
|
|
*tr_ptr = translation_ptr;
|
|
}
|
|
|
|
// This function emits the following stubs:
|
|
// - smc_write: Jumps to C code to trigger a cache flush
|
|
// - memop patcher: Patches a memop whenever it accesses the wrong mem region
|
|
// - mem stubs: There's stubs for load & store, and every memory region
|
|
// and possible operand size and misaligment (+sign extensions)
|
|
void init_emitter() {
|
|
int i;
|
|
// Initialize memory to a debuggable state
|
|
rom_cache_watermark = INITIAL_ROM_WATERMARK;
|
|
|
|
// Generates the trampoline and helper stubs that we need
|
|
u8 *translation_ptr = (u8*)&rom_translation_cache[0];
|
|
|
|
// Generate first the patch handlers
|
|
// We have 6+4 patchers, one per mem type (6 or 4)
|
|
|
|
// Calculate the offset into tmemld[10][XX];
|
|
emit_phand(&translation_ptr, 0, 0 * 16, false); // ld u8
|
|
emit_phand(&translation_ptr, 0, 1 * 16, false); // ld s8
|
|
emit_phand(&translation_ptr, 1, 2 * 16, true); // ld u16 + u16u1
|
|
emit_phand(&translation_ptr, 1, 4 * 16, true); // ld s16 + s16u1
|
|
emit_phand(&translation_ptr, 2, 6 * 16, true); // ld u32 (0/1/2/3u)
|
|
emit_phand(&translation_ptr, 2, 10 * 16, false); // ld aligned 32
|
|
// Store table is immediately after
|
|
emit_phand(&translation_ptr, 0, 11 * 16, false); // st u8
|
|
emit_phand(&translation_ptr, 1, 12 * 16, false); // st u16
|
|
emit_phand(&translation_ptr, 2, 13 * 16, false); // st u32
|
|
emit_phand(&translation_ptr, 2, 14 * 16, false); // st aligned 32
|
|
|
|
// This is just a trampoline (for the SMC branches)
|
|
mips_emit_j(((u32)&smc_write) >> 2);
|
|
mips_emit_nop();
|
|
|
|
// Generate the openload handlers (for accesses to unmapped mem)
|
|
emit_openload_stub(0, false, 0, &translation_ptr); // ld u8
|
|
emit_openload_stub(1, true, 0, &translation_ptr); // ld s8
|
|
emit_openload_stub(2, false, 1, &translation_ptr); // ld u16
|
|
emit_openload_stub(3, true, 1, &translation_ptr); // ld s16
|
|
emit_openload_stub(4, false, 2, &translation_ptr); // ld u32
|
|
emit_openload_stub(5, false, 2, &translation_ptr); // ld a32
|
|
|
|
// Here we emit the ignore store area, just checks and does nothing
|
|
for (i = 0; i < 4; i++)
|
|
emit_ignorestore_stub(i, &translation_ptr);
|
|
|
|
// Here go the save game handlers
|
|
emit_saveaccess_stub(&translation_ptr);
|
|
|
|
// Generate memory handlers
|
|
const t_stub_meminfo ldinfo [] = {
|
|
{ emit_pmemld_stub, 0, 0x4000, false, false, (u32)bios_rom, 0},
|
|
// 1 Open load / Ignore store
|
|
{ emit_pmemld_stub, 2, 0x8000, true, false, (u32)ewram, 0 }, // memsize wrong on purpose
|
|
{ emit_pmemld_stub, 3, 0x8000, true, false, (u32)&iwram[0x8000], 0 },
|
|
{ emit_pmemld_stub, 4, 0x400, false, false, (u32)io_registers, 0 },
|
|
{ emit_pmemld_stub, 5, 0x400, false, true, (u32)palette_ram, 0x100 },
|
|
{ emit_pmemld_stub, 6, 0x0, false, true, (u32)vram, 0 }, // same, vram is a special case
|
|
{ emit_pmemld_stub, 7, 0x400, false, true, (u32)oam_ram, 0x900 },
|
|
{ emit_pmemld_stub, 8, 0x8000, false, false, 0, 0 },
|
|
{ emit_pmemld_stub, 9, 0x8000, false, false, 0, 0 },
|
|
{ emit_pmemld_stub, 10, 0x8000, false, false, 0, 0 },
|
|
{ emit_pmemld_stub, 11, 0x8000, false, false, 0, 0 },
|
|
{ emit_pmemld_stub, 12, 0x8000, false, false, 0, 0 },
|
|
// 13 is EEPROM mapped already (a bit special)
|
|
{ emit_pmemld_stub, 14, 0, false, false, 0, 0 }, // Mapped via function call
|
|
// 15 Open load / Ignore store
|
|
};
|
|
|
|
for (i = 0; i < sizeof(ldinfo)/sizeof(ldinfo[0]); i++) {
|
|
ldhldr_t handler = (ldhldr_t)ldinfo[i].emitter;
|
|
/* region info signext sz al isaligned */
|
|
handler(0, &ldinfo[i], false, 0, 0, false, &translation_ptr); // ld u8
|
|
handler(1, &ldinfo[i], true, 0, 0, false, &translation_ptr); // ld s8
|
|
|
|
handler(2, &ldinfo[i], false, 1, 0, false, &translation_ptr); // ld u16
|
|
handler(3, &ldinfo[i], false, 1, 1, false, &translation_ptr); // ld u16u1
|
|
handler(4, &ldinfo[i], true, 1, 0, false, &translation_ptr); // ld s16
|
|
handler(5, &ldinfo[i], true, 1, 1, false, &translation_ptr); // ld s16u1
|
|
|
|
handler(6, &ldinfo[i], false, 2, 0, false, &translation_ptr); // ld u32
|
|
handler(7, &ldinfo[i], false, 2, 1, false, &translation_ptr); // ld u32u1
|
|
handler(8, &ldinfo[i], false, 2, 2, false, &translation_ptr); // ld u32u2
|
|
handler(9, &ldinfo[i], false, 2, 3, false, &translation_ptr); // ld u32u3
|
|
|
|
handler(10,&ldinfo[i], false, 2, 0, true, &translation_ptr); // aligned ld u32
|
|
}
|
|
|
|
const t_stub_meminfo stinfo [] = {
|
|
{ emit_pmemst_stub, 2, 0x8000, true, false, (u32)ewram, 0 },
|
|
{ emit_pmemst_stub, 3, 0x8000, true, false, (u32)&iwram[0x8000], 0 },
|
|
// I/O is special and mapped with a function call
|
|
{ emit_palette_hdl, 5, 0x400, false, true, (u32)palette_ram, 0x100 },
|
|
{ emit_pmemst_stub, 6, 0x0, false, true, (u32)vram, 0 }, // same, vram is a special case
|
|
{ emit_pmemst_stub, 7, 0x400, false, true, (u32)oam_ram, 0x900 },
|
|
};
|
|
|
|
// Store only for "regular"-ish mem regions
|
|
//
|
|
for (i = 0; i < sizeof(stinfo)/sizeof(stinfo[0]); i++) {
|
|
sthldr_t handler = (sthldr_t)stinfo[i].emitter;
|
|
handler(0, &stinfo[i], 0, false, &translation_ptr); // st u8
|
|
handler(1, &stinfo[i], 1, false, &translation_ptr); // st u16
|
|
handler(2, &stinfo[i], 2, false, &translation_ptr); // st u32
|
|
handler(3, &stinfo[i], 2, true, &translation_ptr); // st aligned 32
|
|
}
|
|
|
|
// Generate JAL tables
|
|
u32 *tmemptr = &tmemld[0][0];
|
|
for (i = 0; i < 15*16; i++)
|
|
thnjal[i] = ((tmemptr[i] >> 2) & 0x3FFFFFF) | (mips_opcode_jal << 26);
|
|
|
|
// Ensure rom flushes do not wipe this area
|
|
rom_cache_watermark = (u32)(translation_ptr - rom_translation_cache);
|
|
|
|
init_bios_hooks();
|
|
}
|
|
|
|
u32 execute_arm_translate_internal(u32 cycles, void *regptr);
|
|
u32 execute_arm_translate(u32 cycles) {
|
|
return execute_arm_translate_internal(cycles, ®[0]);
|
|
}
|
|
|
|
#endif
|
|
|
|
|