gpsp/mips/mips_emit.h

2822 lines
153 KiB
C

/* gameplaySP
*
* Copyright (C) 2006 Exophase <exophase@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef MIPS_EMIT_H
#define MIPS_EMIT_H
#include "mips/mips_codegen.h"
// Pointers to default handlers.
// Use IWRAM as default, assume aligned by default too
#define execute_load_u8 tmemld[0][3]
#define execute_load_s8 tmemld[1][3]
#define execute_load_u16 tmemld[2][3]
#define execute_load_s16 tmemld[4][3]
#define execute_load_u32 tmemld[6][3]
#define execute_aligned_load32 tmemld[10][3]
#define execute_store_u8 tmemst[0][3]
#define execute_store_u16 tmemst[1][3]
#define execute_store_u32 tmemst[2][3]
#define execute_aligned_store32 tmemst[3][3]
u32 mips_update_gba(u32 pc);
// Although these are defined as a function, don't call them as
// such (jump to it instead)
void mips_indirect_branch_arm(u32 address);
void mips_indirect_branch_thumb(u32 address);
void mips_indirect_branch_dual(u32 address);
u32 execute_read_cpsr();
u32 execute_read_spsr();
void execute_swi(u32 pc);
void mips_cheat_hook(void);
u32 execute_spsr_restore(u32 address);
void execute_store_cpsr(u32 new_cpsr, u32 store_mask);
void execute_store_spsr(u32 new_spsr, u32 store_mask);
#define reg_base mips_reg_s0
#define reg_cycles mips_reg_s1
#define reg_a0 mips_reg_a0
#define reg_a1 mips_reg_a1
#define reg_a2 mips_reg_a2
#define reg_rv mips_reg_v0
#define reg_pc mips_reg_s3
#define reg_temp mips_reg_at
#define reg_zero mips_reg_zero
#define reg_n_cache mips_reg_s4
#define reg_z_cache mips_reg_s5
#define reg_c_cache mips_reg_s6
#define reg_v_cache mips_reg_s7
#define reg_r0 mips_reg_v1
#define reg_r1 mips_reg_a3
#define reg_r2 mips_reg_t0
#define reg_r3 mips_reg_t1
#define reg_r4 mips_reg_t2
#define reg_r5 mips_reg_t3
#define reg_r6 mips_reg_t4
#define reg_r7 mips_reg_t5
#define reg_r8 mips_reg_t6
#define reg_r9 mips_reg_t7
#define reg_r10 mips_reg_s2
#define reg_r11 mips_reg_t8
#define reg_r12 mips_reg_t9
#define reg_r13 mips_reg_gp
#define reg_r14 mips_reg_fp
// Writing to r15 goes straight to a0, to be chained with other ops
u32 arm_to_mips_reg[] =
{
reg_r0,
reg_r1,
reg_r2,
reg_r3,
reg_r4,
reg_r5,
reg_r6,
reg_r7,
reg_r8,
reg_r9,
reg_r10,
reg_r11,
reg_r12,
reg_r13,
reg_r14,
reg_a0,
reg_a1,
reg_a2
};
#define arm_reg_a0 15
#define arm_reg_a1 16
#define arm_reg_a2 17
#define generate_load_reg(ireg, reg_index) \
mips_emit_addu(ireg, arm_to_mips_reg[reg_index], reg_zero) \
#define generate_load_imm(ireg, imm) \
if(((s32)imm >= -32768) && ((s32)imm <= 32767)) { \
mips_emit_addiu(ireg, reg_zero, imm); \
} else if(((u32)imm >> 16) == 0x0000) { \
mips_emit_ori(ireg, reg_zero, imm); \
} else { \
mips_emit_lui(ireg, imm >> 16); \
if (((u32)(imm) & 0x0000FFFF)) { \
mips_emit_ori(ireg, ireg, (imm) & 0xFFFF); \
} \
} \
#define generate_load_pc(ireg, new_pc) \
{ \
s32 pc_delta = (new_pc) - (stored_pc); \
if((pc_delta >= -32768) && (pc_delta <= 32767)) { \
mips_emit_addiu(ireg, reg_pc, pc_delta); \
} else { \
generate_load_imm(ireg, (new_pc)); \
} \
} \
#define generate_store_reg(ireg, reg_index) \
mips_emit_addu(arm_to_mips_reg[reg_index], ireg, reg_zero) \
#define generate_alu_imm(imm_type, reg_type, ireg_dest, ireg_src, imm) \
if(((s32)imm >= -32768) && ((s32)imm <= 32767)) \
{ \
mips_emit_##imm_type(ireg_dest, ireg_src, imm); \
} \
else \
{ \
generate_load_imm(reg_temp, imm); \
mips_emit_##reg_type(ireg_dest, ireg_src, reg_temp); \
} \
#define generate_alu_immu(imm_type, reg_type, ireg_dest, ireg_src, imm) \
if(((u32)imm >= 0) && ((u32)imm <= 65535)) \
{ \
mips_emit_##imm_type(ireg_dest, ireg_src, imm); \
} \
else \
{ \
generate_load_imm(reg_temp, imm); \
mips_emit_##reg_type(ireg_dest, ireg_src, reg_temp); \
} \
#define generate_mov(ireg_dest, ireg_src) \
mips_emit_addu(ireg_dest, ireg_src, reg_zero) \
#define generate_multiply_s64() \
mips_emit_mult(arm_to_mips_reg[rm], arm_to_mips_reg[rs]) \
#define generate_multiply_u64() \
mips_emit_multu(arm_to_mips_reg[rm], arm_to_mips_reg[rs]) \
#define generate_multiply_s64_add() \
mips_emit_madd(arm_to_mips_reg[rm], arm_to_mips_reg[rs]) \
#define generate_multiply_u64_add() \
mips_emit_maddu(arm_to_mips_reg[rm], arm_to_mips_reg[rs]) \
#define generate_function_call(function_location) \
mips_emit_jal(mips_absolute_offset(function_location)); \
mips_emit_nop() \
#define generate_raw_u32(value) \
*((u32 *)translation_ptr) = (value); \
translation_ptr += 4 \
#define generate_function_call_swap_delay(function_location) \
{ \
u32 delay_instruction = address32(translation_ptr, -4); \
translation_ptr -= 4; \
mips_emit_jal(mips_absolute_offset(function_location)); \
address32(translation_ptr, 0) = delay_instruction; \
translation_ptr += 4; \
} \
#define generate_function_return_swap_delay() \
{ \
u32 delay_instruction = address32(translation_ptr, -4); \
translation_ptr -= 4; \
mips_emit_jr(mips_reg_ra); \
address32(translation_ptr, 0) = delay_instruction; \
translation_ptr += 4; \
} \
#define generate_swap_delay() \
{ \
u32 delay_instruction = address32(translation_ptr, -8); \
u32 branch_instruction = address32(translation_ptr, -4); \
branch_instruction = (branch_instruction & 0xFFFF0000) | \
(((branch_instruction & 0x0000FFFF) + 1) & 0x0000FFFF); \
address32(translation_ptr, -8) = branch_instruction; \
address32(translation_ptr, -4) = delay_instruction; \
} \
#define generate_cycle_update() \
if(cycle_count != 0) \
{ \
mips_emit_addiu(reg_cycles, reg_cycles, -cycle_count); \
cycle_count = 0; \
} \
#define generate_cycle_update_force() \
mips_emit_addiu(reg_cycles, reg_cycles, -cycle_count); \
cycle_count = 0 \
#define generate_branch_patch_conditional(dest, offset) \
*((u16 *)(dest)) = mips_relative_offset(dest, offset) \
#define generate_branch_patch_unconditional(dest, offset) \
*((u32 *)(dest)) = (mips_opcode_j << 26) | \
((mips_absolute_offset(offset)) & 0x3FFFFFF) \
#define generate_branch_no_cycle_update(writeback_location, new_pc) \
if(pc == idle_loop_target_pc) \
{ \
generate_load_pc(reg_a0, new_pc); \
mips_emit_lui(reg_cycles, 0); \
generate_function_call_swap_delay(mips_update_gba); \
mips_emit_j_filler(writeback_location); \
mips_emit_nop(); \
} \
else \
{ \
generate_load_pc(reg_a0, new_pc); \
mips_emit_bltzal(reg_cycles, \
mips_relative_offset(translation_ptr, update_trampoline)); \
generate_swap_delay(); \
mips_emit_j_filler(writeback_location); \
mips_emit_nop(); \
} \
#define generate_branch_cycle_update(writeback_location, new_pc) \
generate_cycle_update(); \
generate_branch_no_cycle_update(writeback_location, new_pc) \
// a0 holds the destination
#define generate_indirect_branch_cycle_update(type) \
mips_emit_j(mips_absolute_offset(mips_indirect_branch_##type)); \
generate_cycle_update_force() \
#define generate_indirect_branch_no_cycle_update(type) \
mips_emit_j(mips_absolute_offset(mips_indirect_branch_##type)); \
mips_emit_nop() \
#define block_prologue_size 16
#define generate_block_prologue() \
update_trampoline = translation_ptr; \
mips_emit_j(mips_absolute_offset(mips_update_gba)); \
mips_emit_nop(); \
spaccess_trampoline = translation_ptr; \
mips_emit_j(mips_absolute_offset(&rom_translation_cache[EWRAM_SPM_OFF])); \
mips_emit_nop(); \
generate_load_imm(reg_pc, stored_pc) \
#define check_generate_n_flag (flag_status & 0x08)
#define check_generate_z_flag (flag_status & 0x04)
#define check_generate_c_flag (flag_status & 0x02)
#define check_generate_v_flag (flag_status & 0x01)
#define generate_load_reg_pc(ireg, reg_index, pc_offset) \
if(reg_index == REG_PC) \
{ \
generate_load_pc(ireg, (pc + pc_offset)); \
} \
else \
{ \
generate_load_reg(ireg, reg_index); \
} \
#define check_load_reg_pc(arm_reg, reg_index, pc_offset) \
if(reg_index == REG_PC) \
{ \
reg_index = arm_reg; \
generate_load_pc(arm_to_mips_reg[arm_reg], (pc + pc_offset)); \
} \
#define check_store_reg_pc_no_flags(reg_index) \
if(reg_index == REG_PC) \
{ \
generate_indirect_branch_arm(); \
} \
#define check_store_reg_pc_flags(reg_index) \
if(reg_index == REG_PC) \
{ \
generate_function_call(execute_spsr_restore); \
generate_indirect_branch_dual(); \
} \
#define generate_shift_imm_lsl_no_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
mips_emit_sll(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
_rm = arm_reg; \
} \
#define generate_shift_imm_lsr_no_flags(arm_reg, _rm, _shift) \
if(_shift != 0) \
{ \
check_load_reg_pc(arm_reg, _rm, 8); \
mips_emit_srl(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
} \
else \
{ \
mips_emit_addu(arm_to_mips_reg[arm_reg], reg_zero, reg_zero); \
} \
_rm = arm_reg \
#define generate_shift_imm_asr_no_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
mips_emit_sra(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
} \
else \
{ \
mips_emit_sra(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], 31); \
} \
_rm = arm_reg \
#define generate_shift_imm_ror_no_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
rotate_right(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], \
reg_temp, _shift); \
} \
else \
{ /* Special case: RRX (no carry update) */ \
mips_emit_srl(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], 1); \
insert_bits(arm_to_mips_reg[arm_reg], reg_c_cache, reg_temp, 31, 1); \
} \
_rm = arm_reg \
#define generate_shift_imm_lsl_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
extract_bits(reg_c_cache, arm_to_mips_reg[_rm], (32 - _shift), 1); \
mips_emit_sll(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
_rm = arm_reg; \
} \
#define generate_shift_imm_lsr_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
extract_bits(reg_c_cache, arm_to_mips_reg[_rm], (_shift - 1), 1); \
mips_emit_srl(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
} \
else \
{ \
mips_emit_srl(reg_c_cache, arm_to_mips_reg[_rm], 31); \
mips_emit_addu(arm_to_mips_reg[arm_reg], reg_zero, reg_zero); \
} \
_rm = arm_reg \
#define generate_shift_imm_asr_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
extract_bits(reg_c_cache, arm_to_mips_reg[_rm], (_shift - 1), 1); \
mips_emit_sra(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
} \
else \
{ \
mips_emit_sra(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], 31); \
mips_emit_andi(reg_c_cache, arm_to_mips_reg[arm_reg], 1); \
} \
_rm = arm_reg \
#define generate_shift_imm_ror_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
extract_bits(reg_c_cache, arm_to_mips_reg[_rm], (_shift - 1), 1); \
rotate_right(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], \
reg_temp, _shift); \
} \
else \
{ /* Special case: RRX (carry update) */ \
mips_emit_sll(reg_temp, reg_c_cache, 31); \
mips_emit_andi(reg_c_cache, arm_to_mips_reg[_rm], 1); \
mips_emit_srl(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], 1); \
mips_emit_or(arm_to_mips_reg[arm_reg], arm_to_mips_reg[arm_reg],reg_temp);\
} \
_rm = arm_reg \
#define generate_shift_reg_lsl_no_flags(_rm, _rs) \
mips_emit_sltiu(reg_temp, arm_to_mips_reg[_rs], 32); \
mips_emit_sllv(reg_a0, arm_to_mips_reg[_rm], arm_to_mips_reg[_rs]); \
mips_emit_movz(reg_a0, reg_zero, reg_temp) \
#define generate_shift_reg_lsr_no_flags(_rm, _rs) \
mips_emit_sltiu(reg_temp, arm_to_mips_reg[_rs], 32); \
mips_emit_srlv(reg_a0, arm_to_mips_reg[_rm], arm_to_mips_reg[_rs]); \
mips_emit_movz(reg_a0, reg_zero, reg_temp) \
#define generate_shift_reg_asr_no_flags(_rm, _rs) \
mips_emit_sltiu(reg_temp, arm_to_mips_reg[_rs], 32); \
mips_emit_b(bne, reg_temp, reg_zero, 2); \
mips_emit_srav(reg_a0, arm_to_mips_reg[_rm], arm_to_mips_reg[_rs]); \
mips_emit_sra(reg_a0, reg_a0, 31) \
#define generate_shift_reg_ror_no_flags(_rm, _rs) \
rotate_right_var(reg_a0, arm_to_mips_reg[_rm], \
reg_temp, arm_to_mips_reg[_rs]) \
#define generate_shift_reg_lsl_flags(_rm, _rs) \
{ \
u32 shift_reg = _rs; \
check_load_reg_pc(arm_reg_a1, shift_reg, 8); \
generate_load_reg_pc(reg_a0, _rm, 12); \
/* Only load the result on zero, no shift */ \
mips_emit_b(beq, arm_to_mips_reg[shift_reg], reg_zero, 7); \
generate_swap_delay(); \
mips_emit_addiu(reg_temp, arm_to_mips_reg[shift_reg], -1); \
mips_emit_sllv(reg_a0, reg_a0, reg_temp); \
mips_emit_srl(reg_c_cache, reg_a0, 31); \
mips_emit_sltiu(reg_temp, arm_to_mips_reg[shift_reg], 33); \
mips_emit_sll(reg_a0, reg_a0, 1); \
/* Result and flag to be zero if shift is 33+ */ \
mips_emit_movz(reg_c_cache, reg_zero, reg_temp); \
mips_emit_movz(reg_a0, reg_zero, reg_temp); \
} \
#define generate_shift_reg_lsr_flags(_rm, _rs) \
{ \
u32 shift_reg = _rs; \
check_load_reg_pc(arm_reg_a1, shift_reg, 8); \
generate_load_reg_pc(reg_a0, _rm, 12); \
/* Only load the result on zero, no shift */ \
mips_emit_b(beq, arm_to_mips_reg[shift_reg], reg_zero, 7); \
generate_swap_delay(); \
mips_emit_addiu(reg_temp, arm_to_mips_reg[shift_reg], -1); \
mips_emit_srlv(reg_a0, reg_a0, reg_temp); \
mips_emit_andi(reg_c_cache, reg_a0, 1); \
mips_emit_sltiu(reg_temp, arm_to_mips_reg[shift_reg], 33); \
mips_emit_srl(reg_a0, reg_a0, 1); \
/* Result and flag to be zero if shift is 33+ */ \
mips_emit_movz(reg_c_cache, reg_zero, reg_temp); \
mips_emit_movz(reg_a0, reg_zero, reg_temp); \
} \
#define generate_shift_reg_asr_flags(_rm, _rs) \
generate_load_reg_pc(reg_a1, _rs, 8); \
generate_load_reg_pc(reg_a0, _rm, 12); \
/* Only load the result on zero, no shift */ \
mips_emit_b(beq, reg_a1, reg_zero, 7); \
generate_swap_delay(); \
/* Cap shift at 32, since it's equivalent */ \
mips_emit_addiu(reg_temp, reg_zero, 32); \
mips_emit_srl(reg_rv, reg_a1, 5); \
mips_emit_movn(reg_a1, reg_temp, reg_rv); \
mips_emit_addiu(reg_temp, reg_a1, -1); \
mips_emit_srav(reg_a0, reg_a0, reg_temp); \
mips_emit_andi(reg_c_cache, reg_a0, 1); \
mips_emit_sra(reg_a0, reg_a0, 1); \
#define generate_shift_reg_ror_flags(_rm, _rs) \
mips_emit_b(beq, arm_to_mips_reg[_rs], reg_zero, 3); \
mips_emit_addiu(reg_temp, arm_to_mips_reg[_rs], -1); \
mips_emit_srlv(reg_temp, arm_to_mips_reg[_rm], reg_temp); \
mips_emit_andi(reg_c_cache, reg_temp, 1); \
rotate_right_var(reg_a0, arm_to_mips_reg[_rm], \
reg_temp, arm_to_mips_reg[_rs]) \
#define generate_shift_imm(arm_reg, name, flags_op) \
u32 shift = (opcode >> 7) & 0x1F; \
generate_shift_imm_##name##_##flags_op(arm_reg, rm, shift) \
#define generate_shift_reg(arm_reg, name, flags_op) \
u32 rs = ((opcode >> 8) & 0x0F); \
generate_shift_reg_##name##_##flags_op(rm, rs); \
rm = arm_reg \
// Made functions due to the macro expansion getting too large.
// Returns a new rm if it redirects it (which will happen on most of these
// cases)
#define generate_load_rm_sh_builder(flags_op) \
u32 generate_load_rm_sh_##flags_op(u32 rm) \
{ \
switch((opcode >> 4) & 0x07) \
{ \
case 0x0: /* LSL imm */ \
{ \
generate_shift_imm(arm_reg_a0, lsl, flags_op); \
break; \
} \
case 0x1: /* LSL reg */ \
{ \
generate_shift_reg(arm_reg_a0, lsl, flags_op); \
break; \
} \
case 0x2: /* LSR imm */ \
{ \
generate_shift_imm(arm_reg_a0, lsr, flags_op); \
break; \
} \
case 0x3: /* LSR reg */ \
{ \
generate_shift_reg(arm_reg_a0, lsr, flags_op); \
break; \
} \
case 0x4: /* ASR imm */ \
{ \
generate_shift_imm(arm_reg_a0, asr, flags_op); \
break; \
} \
case 0x5: /* ASR reg */ \
{ \
generate_shift_reg(arm_reg_a0, asr, flags_op); \
break; \
} \
case 0x6: /* ROR imm */ \
{ \
generate_shift_imm(arm_reg_a0, ror, flags_op); \
break; \
} \
case 0x7: /* ROR reg */ \
{ \
generate_shift_reg(arm_reg_a0, ror, flags_op); \
break; \
} \
} \
\
return rm; \
} \
#define generate_block_extra_vars() \
u32 stored_pc = pc; \
u8 *update_trampoline; \
u8 *spaccess_trampoline; \
#define generate_block_extra_vars_arm() \
generate_block_extra_vars(); \
generate_load_rm_sh_builder(flags); \
generate_load_rm_sh_builder(no_flags); \
\
u32 generate_load_offset_sh(u32 rm) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 0x0: /* LSL imm */ \
{ \
generate_shift_imm(arm_reg_a1, lsl, no_flags); \
break; \
} \
case 0x1: /* LSR imm */ \
{ \
generate_shift_imm(arm_reg_a1, lsr, no_flags); \
break; \
} \
case 0x2: /* ASR imm */ \
{ \
generate_shift_imm(arm_reg_a1, asr, no_flags); \
break; \
} \
case 0x3: /* ROR imm */ \
{ \
generate_shift_imm(arm_reg_a1, ror, no_flags); \
break; \
} \
} \
return rm; \
} \
#define generate_indirect_branch_arm() \
{ \
if(condition == 0x0E) \
{ \
generate_indirect_branch_cycle_update(arm); \
} \
else \
{ \
generate_indirect_branch_no_cycle_update(arm); \
} \
} \
#define generate_indirect_branch_dual() \
{ \
if(condition == 0x0E) \
{ \
generate_indirect_branch_cycle_update(dual); \
} \
else \
{ \
generate_indirect_branch_no_cycle_update(dual); \
} \
} \
#define generate_block_extra_vars_thumb() \
generate_block_extra_vars() \
// It should be okay to still generate result flags, spsr will overwrite them.
// This is pretty infrequent (returning from interrupt handlers, et al) so
// probably not worth optimizing for.
u32 execute_spsr_restore_body(u32 address)
{
set_cpu_mode(cpu_modes[reg[REG_CPSR] & 0xF]);
if((io_registers[REG_IE] & io_registers[REG_IF]) &&
io_registers[REG_IME] && ((reg[REG_CPSR] & 0x80) == 0))
{
REG_MODE(MODE_IRQ)[6] = address + 4;
REG_SPSR(MODE_IRQ) = reg[REG_CPSR];
reg[REG_CPSR] = 0xD2;
address = 0x00000018;
set_cpu_mode(MODE_IRQ);
}
if(reg[REG_CPSR] & 0x20)
address |= 0x01;
return address;
}
// These generate a branch on the opposite condition on purpose.
// For ARM mode we aim to skip instructions (therefore opposite)
// In Thumb mode we skip the conditional branch in a similar way
#define generate_condition_eq() \
mips_emit_b_filler(beq, reg_z_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_ne() \
mips_emit_b_filler(bne, reg_z_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_cs() \
mips_emit_b_filler(beq, reg_c_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_cc() \
mips_emit_b_filler(bne, reg_c_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_mi() \
mips_emit_b_filler(beq, reg_n_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_pl() \
mips_emit_b_filler(bne, reg_n_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_vs() \
mips_emit_b_filler(beq, reg_v_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_vc() \
mips_emit_b_filler(bne, reg_v_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_hi() \
mips_emit_xori(reg_temp, reg_c_cache, 1); \
mips_emit_or(reg_temp, reg_temp, reg_z_cache); \
mips_emit_b_filler(bne, reg_temp, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_ls() \
mips_emit_xori(reg_temp, reg_c_cache, 1); \
mips_emit_or(reg_temp, reg_temp, reg_z_cache); \
mips_emit_b_filler(beq, reg_temp, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_ge() \
mips_emit_b_filler(bne, reg_n_cache, reg_v_cache, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_lt() \
mips_emit_b_filler(beq, reg_n_cache, reg_v_cache, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_gt() \
mips_emit_xor(reg_temp, reg_n_cache, reg_v_cache); \
mips_emit_or(reg_temp, reg_temp, reg_z_cache); \
mips_emit_b_filler(bne, reg_temp, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_le() \
mips_emit_xor(reg_temp, reg_n_cache, reg_v_cache); \
mips_emit_or(reg_temp, reg_temp, reg_z_cache); \
mips_emit_b_filler(beq, reg_temp, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition() \
switch(condition) \
{ \
case 0x0: generate_condition_eq(); break; \
case 0x1: generate_condition_ne(); break; \
case 0x2: generate_condition_cs(); break; \
case 0x3: generate_condition_cc(); break; \
case 0x4: generate_condition_mi(); break; \
case 0x5: generate_condition_pl(); break; \
case 0x6: generate_condition_vs(); break; \
case 0x7: generate_condition_vc(); break; \
case 0x8: generate_condition_hi(); break; \
case 0x9: generate_condition_ls(); break; \
case 0xA: generate_condition_ge(); break; \
case 0xB: generate_condition_lt(); break; \
case 0xC: generate_condition_gt(); break; \
case 0xD: generate_condition_le(); break; \
default: \
break; \
} \
#define generate_branch() \
{ \
if(condition == 0x0E) \
{ \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
} \
else \
{ \
generate_branch_no_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
} \
block_exit_position++; \
} \
#define generate_op_and_reg(_rd, _rn, _rm) \
mips_emit_and(_rd, _rn, _rm) \
#define generate_op_orr_reg(_rd, _rn, _rm) \
mips_emit_or(_rd, _rn, _rm) \
#define generate_op_eor_reg(_rd, _rn, _rm) \
mips_emit_xor(_rd, _rn, _rm) \
#define generate_op_bic_reg(_rd, _rn, _rm) \
mips_emit_nor(reg_temp, _rm, reg_zero); \
mips_emit_and(_rd, _rn, reg_temp) \
#define generate_op_sub_reg(_rd, _rn, _rm) \
mips_emit_subu(_rd, _rn, _rm) \
#define generate_op_rsb_reg(_rd, _rn, _rm) \
mips_emit_subu(_rd, _rm, _rn) \
#define generate_op_sbc_reg(_rd, _rn, _rm) \
mips_emit_subu(_rd, _rn, _rm); \
mips_emit_xori(reg_temp, reg_c_cache, 1); \
mips_emit_subu(_rd, _rd, reg_temp) \
#define generate_op_rsc_reg(_rd, _rn, _rm) \
mips_emit_addu(reg_temp, _rm, reg_c_cache); \
mips_emit_addiu(reg_temp, reg_temp, -1); \
mips_emit_subu(_rd, reg_temp, _rn) \
#define generate_op_add_reg(_rd, _rn, _rm) \
mips_emit_addu(_rd, _rn, _rm) \
#define generate_op_adc_reg(_rd, _rn, _rm) \
mips_emit_addu(reg_temp, _rm, reg_c_cache); \
mips_emit_addu(_rd, _rn, reg_temp) \
#define generate_op_mov_reg(_rd, _rn, _rm) \
mips_emit_addu(_rd, _rm, reg_zero) \
#define generate_op_mvn_reg(_rd, _rn, _rm) \
mips_emit_nor(_rd, _rm, reg_zero) \
#define generate_op_imm_wrapper(name, _rd, _rn) \
if(imm != 0) \
{ \
generate_load_imm(reg_a0, imm); \
generate_op_##name##_reg(_rd, _rn, reg_a0); \
} \
else \
{ \
generate_op_##name##_reg(_rd, _rn, reg_zero); \
} \
#define generate_op_and_imm(_rd, _rn) \
generate_alu_immu(andi, and, _rd, _rn, imm) \
#define generate_op_orr_imm(_rd, _rn) \
generate_alu_immu(ori, or, _rd, _rn, imm) \
#define generate_op_eor_imm(_rd, _rn) \
generate_alu_immu(xori, xor, _rd, _rn, imm) \
#define generate_op_bic_imm(_rd, _rn) \
generate_alu_immu(andi, and, _rd, _rn, (~imm)) \
#define generate_op_sub_imm(_rd, _rn) \
generate_alu_imm(addiu, addu, _rd, _rn, (-imm)) \
#define generate_op_rsb_imm(_rd, _rn) \
if(imm != 0) \
{ \
generate_load_imm(reg_temp, imm); \
mips_emit_subu(_rd, reg_temp, _rn); \
} \
else \
{ \
mips_emit_subu(_rd, reg_zero, _rn); \
} \
#define generate_op_sbc_imm(_rd, _rn) \
generate_op_imm_wrapper(sbc, _rd, _rn) \
#define generate_op_rsc_imm(_rd, _rn) \
generate_op_imm_wrapper(rsc, _rd, _rn) \
#define generate_op_add_imm(_rd, _rn) \
generate_alu_imm(addiu, addu, _rd, _rn, imm) \
#define generate_op_adc_imm(_rd, _rn) \
generate_op_imm_wrapper(adc, _rd, _rn) \
#define generate_op_mov_imm(_rd, _rn) \
generate_load_imm(_rd, imm) \
#define generate_op_mvn_imm(_rd, _rn) \
generate_load_imm(_rd, (~imm)) \
#define generate_op_logic_flags(_rd) \
if(check_generate_n_flag) \
{ \
mips_emit_srl(reg_n_cache, _rd, 31); \
} \
if(check_generate_z_flag) \
{ \
mips_emit_sltiu(reg_z_cache, _rd, 1); \
} \
#define generate_op_ands_reg(_rd, _rn, _rm) \
mips_emit_and(_rd, _rn, _rm); \
generate_op_logic_flags(_rd) \
#define generate_op_orrs_reg(_rd, _rn, _rm) \
mips_emit_or(_rd, _rn, _rm); \
generate_op_logic_flags(_rd) \
#define generate_op_eors_reg(_rd, _rn, _rm) \
mips_emit_xor(_rd, _rn, _rm); \
generate_op_logic_flags(_rd) \
#define generate_op_bics_reg(_rd, _rn, _rm) \
mips_emit_nor(reg_temp, _rm, reg_zero); \
mips_emit_and(_rd, _rn, reg_temp); \
generate_op_logic_flags(_rd) \
#define generate_op_subs_reg(_rd, _rn, _rm) \
if(check_generate_c_flag) \
{ \
mips_emit_sltu(reg_c_cache, _rn, _rm); \
mips_emit_xori(reg_c_cache, reg_c_cache, 1); \
} \
if(check_generate_v_flag) \
{ \
mips_emit_slt(reg_v_cache, _rn, _rm); \
} \
mips_emit_subu(_rd, _rn, _rm); \
generate_op_logic_flags(_rd); \
if(check_generate_v_flag) \
{ \
if(!check_generate_n_flag) \
{ \
mips_emit_srl(reg_n_cache, _rd, 31); \
} \
mips_emit_xor(reg_v_cache, reg_v_cache, reg_n_cache); \
} \
#define generate_op_rsbs_reg(_rd, _rn, _rm) \
generate_op_subs_reg(_rd, _rm, _rn)
#define generate_op_sbcs_reg(_rd, _rn, _rm) \
mips_emit_xori(reg_temp, reg_c_cache, 1); \
if(check_generate_c_flag) \
{ \
mips_emit_sltu(reg_c_cache, _rm, _rn); \
mips_emit_sltu(reg_rv, _rn, _rm); \
mips_emit_xori(reg_rv, reg_rv, 1); \
mips_emit_movz(reg_c_cache, reg_rv, reg_temp); \
} \
if(check_generate_v_flag) \
{ \
mips_emit_xor(reg_v_cache, _rn, _rm); \
mips_emit_nor(reg_rv, _rm, reg_zero); \
} \
mips_emit_subu(_rd, _rn, _rm); \
mips_emit_subu(_rd, _rd, reg_temp); \
if(check_generate_v_flag) \
{ \
mips_emit_xor(reg_rv, reg_rv, _rd); \
mips_emit_and(reg_v_cache, reg_v_cache, reg_rv); \
mips_emit_srl(reg_v_cache, reg_v_cache, 31); \
} \
generate_op_logic_flags(_rd); \
#define generate_op_rscs_reg(_rd, _rn, _rm) \
generate_op_sbcs_reg(_rd, _rm, _rn)
#define generate_op_adds_reg(_rd, _rn, _rm) \
if(check_generate_c_flag | check_generate_v_flag) \
{ \
mips_emit_addu(reg_c_cache, _rn, reg_zero); \
} \
if(check_generate_v_flag) \
{ \
mips_emit_slt(reg_v_cache, _rm, reg_zero); \
} \
mips_emit_addu(_rd, _rn, _rm); \
if(check_generate_v_flag) \
{ \
mips_emit_slt(reg_a0, _rd, reg_c_cache); \
mips_emit_xor(reg_v_cache, reg_v_cache, reg_a0); \
} \
if(check_generate_c_flag) \
{ \
mips_emit_sltu(reg_c_cache, _rd, reg_c_cache); \
} \
generate_op_logic_flags(_rd) \
#define generate_op_adcs_reg(_rd, _rn, _rm) \
if(check_generate_v_flag) \
{ \
mips_emit_xor(reg_v_cache, _rn, _rm); \
mips_emit_nor(reg_v_cache, reg_v_cache, reg_zero); \
mips_emit_addu(reg_rv, _rn, reg_zero); \
} \
mips_emit_addu(reg_a2, _rn, _rm); \
if(check_generate_c_flag) \
{ \
mips_emit_sltu(reg_temp, reg_a2, _rm); \
} \
mips_emit_addu(_rd, reg_a2, reg_c_cache); \
if(check_generate_v_flag) \
{ \
mips_emit_xor(reg_rv, reg_rv, _rd); \
mips_emit_and(reg_v_cache, reg_rv, reg_v_cache); \
mips_emit_srl(reg_v_cache, reg_v_cache, 31); \
} \
if(check_generate_c_flag) \
{ \
mips_emit_sltu(reg_c_cache, _rd, reg_c_cache); \
mips_emit_or(reg_c_cache, reg_temp, reg_c_cache); \
} \
generate_op_logic_flags(_rd) \
#define generate_op_movs_reg(_rd, _rn, _rm) \
mips_emit_addu(_rd, _rm, reg_zero); \
generate_op_logic_flags(_rd) \
#define generate_op_mvns_reg(_rd, _rn, _rm) \
mips_emit_nor(_rd, _rm, reg_zero); \
generate_op_logic_flags(_rd) \
#define generate_op_neg_reg(_rd, _rn, _rm) \
generate_op_subs_reg(_rd, reg_zero, _rm) \
#define generate_op_muls_reg(_rd, _rn, _rm) \
mips_emit_multu(_rn, _rm); \
mips_emit_mflo(_rd); \
generate_op_logic_flags(_rd) \
#define generate_op_cmp_reg(_rd, _rn, _rm) \
generate_op_subs_reg(reg_temp, _rn, _rm) \
#define generate_op_cmn_reg(_rd, _rn, _rm) \
generate_op_adds_reg(reg_temp, _rn, _rm) \
#define generate_op_tst_reg(_rd, _rn, _rm) \
generate_op_ands_reg(reg_temp, _rn, _rm) \
#define generate_op_teq_reg(_rd, _rn, _rm) \
generate_op_eors_reg(reg_temp, _rn, _rm) \
#define generate_op_ands_imm(_rd, _rn) \
generate_alu_immu(andi, and, _rd, _rn, imm); \
generate_op_logic_flags(_rd) \
#define generate_op_orrs_imm(_rd, _rn) \
generate_alu_immu(ori, or, _rd, _rn, imm); \
generate_op_logic_flags(_rd) \
#define generate_op_eors_imm(_rd, _rn) \
generate_alu_immu(xori, xor, _rd, _rn, imm); \
generate_op_logic_flags(_rd) \
#define generate_op_bics_imm(_rd, _rn) \
generate_alu_immu(andi, and, _rd, _rn, (~imm)); \
generate_op_logic_flags(_rd) \
#define generate_op_subs_imm(_rd, _rn) \
generate_op_imm_wrapper(subs, _rd, _rn) \
#define generate_op_rsbs_imm(_rd, _rn) \
generate_op_imm_wrapper(rsbs, _rd, _rn) \
#define generate_op_sbcs_imm(_rd, _rn) \
generate_op_imm_wrapper(sbcs, _rd, _rn) \
#define generate_op_rscs_imm(_rd, _rn) \
generate_op_imm_wrapper(rscs, _rd, _rn) \
#define generate_op_adds_imm(_rd, _rn) \
generate_op_imm_wrapper(adds, _rd, _rn) \
#define generate_op_adcs_imm(_rd, _rn) \
generate_op_imm_wrapper(adcs, _rd, _rn) \
#define generate_op_movs_imm(_rd, _rn) \
generate_load_imm(_rd, imm); \
generate_op_logic_flags(_rd) \
#define generate_op_mvns_imm(_rd, _rn) \
generate_load_imm(_rd, (~imm)); \
generate_op_logic_flags(_rd) \
#define generate_op_cmp_imm(_rd, _rn) \
generate_op_imm_wrapper(cmp, _rd, _rn) \
#define generate_op_cmn_imm(_rd, _rn) \
generate_op_imm_wrapper(cmn, _rd, _rn) \
#define generate_op_tst_imm(_rd, _rn) \
generate_op_ands_imm(reg_temp, _rn) \
#define generate_op_teq_imm(_rd, _rn) \
generate_op_eors_imm(reg_temp, _rn) \
#define arm_generate_op_load_yes() \
generate_load_reg_pc(reg_a1, rn, 8) \
#define arm_generate_op_load_no() \
#define arm_op_check_yes() \
check_load_reg_pc(arm_reg_a1, rn, 8) \
#define arm_op_check_no() \
#define arm_generate_op_reg_flags(name, load_op) \
arm_decode_data_proc_reg(opcode); \
if(check_generate_c_flag) \
{ \
rm = generate_load_rm_sh_flags(rm); \
} \
else \
{ \
rm = generate_load_rm_sh_no_flags(rm); \
} \
\
arm_op_check_##load_op(); \
generate_op_##name##_reg(arm_to_mips_reg[rd], arm_to_mips_reg[rn], \
arm_to_mips_reg[rm]) \
#define arm_generate_op_reg(name, load_op) \
arm_decode_data_proc_reg(opcode); \
rm = generate_load_rm_sh_no_flags(rm); \
arm_op_check_##load_op(); \
generate_op_##name##_reg(arm_to_mips_reg[rd], arm_to_mips_reg[rn], \
arm_to_mips_reg[rm]) \
#define arm_generate_op_imm(name, load_op) \
arm_decode_data_proc_imm(opcode); \
ror(imm, imm, imm_ror); \
arm_op_check_##load_op(); \
generate_op_##name##_imm(arm_to_mips_reg[rd], arm_to_mips_reg[rn]) \
#define arm_generate_op_imm_flags(name, load_op) \
arm_decode_data_proc_imm(opcode); \
ror(imm, imm, imm_ror); \
if(check_generate_c_flag && (imm_ror != 0)) \
{ /* Generate carry flag from integer rotation */ \
mips_emit_addiu(reg_c_cache, reg_zero, ((imm) >> 31)); \
} \
arm_op_check_##load_op(); \
generate_op_##name##_imm(arm_to_mips_reg[rd], arm_to_mips_reg[rn]) \
#define arm_data_proc(name, type, flags_op) \
{ \
arm_generate_op_##type(name, yes); \
check_store_reg_pc_##flags_op(rd); \
} \
#define arm_data_proc_test(name, type) \
{ \
arm_generate_op_##type(name, yes); \
} \
#define arm_data_proc_unary(name, type, flags_op) \
{ \
arm_generate_op_##type(name, no); \
check_store_reg_pc_##flags_op(rd); \
} \
#define arm_multiply_flags_yes(_rd) \
generate_op_logic_flags(_rd) \
#define arm_multiply_flags_no(_rd) \
#define arm_multiply_add_no() \
mips_emit_mflo(arm_to_mips_reg[rd]) \
#define arm_multiply_add_yes() \
mips_emit_mflo(reg_temp); \
mips_emit_addu(arm_to_mips_reg[rd], reg_temp, arm_to_mips_reg[rn]) \
#define arm_multiply(add_op, flags) \
{ \
arm_decode_multiply(); \
mips_emit_multu(arm_to_mips_reg[rm], arm_to_mips_reg[rs]); \
arm_multiply_add_##add_op(); \
arm_multiply_flags_##flags(arm_to_mips_reg[rd]); \
} \
#define arm_multiply_long_flags_yes(_rdlo, _rdhi) \
mips_emit_sltiu(reg_z_cache, _rdlo, 1); \
mips_emit_sltiu(reg_a0, _rdhi, 1); \
mips_emit_and(reg_z_cache, reg_z_cache, reg_a0); \
mips_emit_srl(reg_n_cache, _rdhi, 31); \
#define arm_multiply_long_flags_no(_rdlo, _rdhi) \
#define arm_multiply_long_add_yes(name) \
mips_emit_mtlo(arm_to_mips_reg[rdlo]); \
mips_emit_mthi(arm_to_mips_reg[rdhi]); \
generate_multiply_##name() \
#define arm_multiply_long_add_no(name) \
generate_multiply_##name() \
#define arm_multiply_long(name, add_op, flags) \
{ \
arm_decode_multiply_long(); \
arm_multiply_long_add_##add_op(name); \
mips_emit_mflo(arm_to_mips_reg[rdlo]); \
mips_emit_mfhi(arm_to_mips_reg[rdhi]); \
arm_multiply_long_flags_##flags(arm_to_mips_reg[rdlo], \
arm_to_mips_reg[rdhi]); \
} \
#define arm_psr_read(op_type, psr_reg) \
generate_function_call(execute_read_##psr_reg); \
generate_store_reg(reg_rv, rd) \
u32 execute_store_cpsr_body(u32 _cpsr, u32 address)
{
set_cpu_mode(cpu_modes[_cpsr & 0xF]);
if((io_registers[REG_IE] & io_registers[REG_IF]) &&
io_registers[REG_IME] && ((_cpsr & 0x80) == 0))
{
REG_MODE(MODE_IRQ)[6] = address + 4;
REG_SPSR(MODE_IRQ) = _cpsr;
reg[REG_CPSR] = 0xD2;
set_cpu_mode(MODE_IRQ);
return 0x00000018;
}
return 0;
}
#define arm_psr_load_new_reg() \
generate_load_reg(reg_a0, rm) \
#define arm_psr_load_new_imm() \
generate_load_imm(reg_a0, imm) \
#define arm_psr_store_spsr() \
generate_load_imm(reg_a1, spsr_masks[psr_pfield]); \
generate_function_call_swap_delay(execute_store_spsr) \
#define arm_psr_store_cpsr() \
generate_load_pc(reg_a1, (pc)); \
generate_function_call_swap_delay(execute_store_cpsr); \
generate_raw_u32(cpsr_masks[psr_pfield][0]); \
generate_raw_u32(cpsr_masks[psr_pfield][1]); \
#define arm_psr_store(op_type, psr_reg) \
arm_psr_load_new_##op_type(); \
arm_psr_store_##psr_reg(); \
#define arm_psr(op_type, transfer_type, psr_reg) \
{ \
arm_decode_psr_##op_type(opcode); \
arm_psr_##transfer_type(op_type, psr_reg); \
} \
#define thumb_load_pc_pool_const(rd, value) \
generate_load_imm(arm_to_mips_reg[rd], (value)); \
#define arm_access_memory_load(mem_type) \
cycle_count += 2; \
mips_emit_jal(mips_absolute_offset(execute_load_##mem_type)); \
generate_load_pc(reg_a1, (pc)); \
generate_store_reg(reg_rv, rd); \
check_store_reg_pc_no_flags(rd) \
#define arm_access_memory_store(mem_type) \
cycle_count++; \
generate_load_pc(reg_a2, (pc + 4)); \
generate_load_reg_pc(reg_a1, rd, 12); \
generate_function_call_swap_delay(execute_store_##mem_type) \
#define arm_access_memory_reg_pre_up() \
mips_emit_addu(reg_a0, arm_to_mips_reg[rn], arm_to_mips_reg[rm]) \
#define arm_access_memory_reg_pre_down() \
mips_emit_subu(reg_a0, arm_to_mips_reg[rn], arm_to_mips_reg[rm]) \
#define arm_access_memory_reg_pre(adjust_dir) \
check_load_reg_pc(arm_reg_a0, rn, 8); \
arm_access_memory_reg_pre_##adjust_dir() \
#define arm_access_memory_reg_pre_wb(adjust_dir) \
arm_access_memory_reg_pre(adjust_dir); \
generate_store_reg(reg_a0, rn) \
#define arm_access_memory_reg_post_up() \
mips_emit_addu(arm_to_mips_reg[rn], arm_to_mips_reg[rn], \
arm_to_mips_reg[rm]) \
#define arm_access_memory_reg_post_down() \
mips_emit_subu(arm_to_mips_reg[rn], arm_to_mips_reg[rn], \
arm_to_mips_reg[rm]) \
#define arm_access_memory_reg_post(adjust_dir) \
generate_load_reg(reg_a0, rn); \
arm_access_memory_reg_post_##adjust_dir() \
#define arm_access_memory_imm_pre_up() \
mips_emit_addiu(reg_a0, arm_to_mips_reg[rn], offset) \
#define arm_access_memory_imm_pre_down() \
mips_emit_addiu(reg_a0, arm_to_mips_reg[rn], -offset) \
#define arm_access_memory_imm_pre(adjust_dir) \
check_load_reg_pc(arm_reg_a0, rn, 8); \
arm_access_memory_imm_pre_##adjust_dir() \
#define arm_access_memory_imm_pre_wb(adjust_dir) \
arm_access_memory_imm_pre(adjust_dir); \
generate_store_reg(reg_a0, rn) \
#define arm_access_memory_imm_post_up() \
mips_emit_addiu(arm_to_mips_reg[rn], arm_to_mips_reg[rn], offset) \
#define arm_access_memory_imm_post_down() \
mips_emit_addiu(arm_to_mips_reg[rn], arm_to_mips_reg[rn], -offset) \
#define arm_access_memory_imm_post(adjust_dir) \
generate_load_reg(reg_a0, rn); \
arm_access_memory_imm_post_##adjust_dir() \
#define arm_data_trans_reg(adjust_op, adjust_dir) \
arm_decode_data_trans_reg(); \
rm = generate_load_offset_sh(rm); \
arm_access_memory_reg_##adjust_op(adjust_dir) \
#define arm_data_trans_imm(adjust_op, adjust_dir) \
arm_decode_data_trans_imm(); \
arm_access_memory_imm_##adjust_op(adjust_dir) \
#define arm_data_trans_half_reg(adjust_op, adjust_dir) \
arm_decode_half_trans_r(); \
arm_access_memory_reg_##adjust_op(adjust_dir) \
#define arm_data_trans_half_imm(adjust_op, adjust_dir) \
arm_decode_half_trans_of(); \
arm_access_memory_imm_##adjust_op(adjust_dir) \
#define arm_access_memory(access_type, direction, adjust_op, mem_type, \
offset_type) \
{ \
arm_data_trans_##offset_type(adjust_op, direction); \
arm_access_memory_##access_type(mem_type); \
} \
#define word_bit_count(word) \
(bit_count[word >> 8] + bit_count[word & 0xFF]) \
#define arm_block_memory_load() \
generate_function_call_swap_delay(execute_aligned_load32); \
generate_store_reg(reg_rv, i) \
#define arm_block_memory_store() \
generate_load_reg_pc(reg_a1, i, 8); \
generate_function_call_swap_delay(execute_aligned_store32) \
#define arm_block_memory_final_load() \
arm_block_memory_load() \
#define arm_block_memory_final_store() \
generate_load_pc(reg_a2, (pc + 4)); \
mips_emit_jal(mips_absolute_offset(execute_store_u32)); \
generate_load_reg(reg_a1, i) \
#define arm_block_memory_adjust_pc_store() \
#define arm_block_memory_adjust_pc_load() \
if(reg_list & 0x8000) \
{ \
generate_mov(reg_a0, reg_rv); \
generate_indirect_branch_arm(); \
} \
#define arm_block_memory_sp_load() \
mips_emit_lw(arm_to_mips_reg[i], reg_a1, offset); \
#define arm_block_memory_sp_store() \
{ \
u32 store_reg = i; \
check_load_reg_pc(arm_reg_a0, store_reg, 8); \
mips_emit_sw(arm_to_mips_reg[store_reg], reg_a1, offset); \
} \
#define arm_block_memory_sp_adjust_pc_store() \
#define arm_block_memory_sp_adjust_pc_load() \
if(reg_list & 0x8000) \
{ \
generate_indirect_branch_arm(); \
} \
#define arm_block_memory_offset_down_a() \
mips_emit_addiu(reg_a2, base_reg, (-((word_bit_count(reg_list) * 4) - 4))) \
#define arm_block_memory_offset_down_b() \
mips_emit_addiu(reg_a2, base_reg, (word_bit_count(reg_list) * -4)) \
#define arm_block_memory_offset_no() \
mips_emit_addu(reg_a2, base_reg, reg_zero) \
#define arm_block_memory_offset_up() \
mips_emit_addiu(reg_a2, base_reg, 4) \
#define arm_block_memory_writeback_down() \
mips_emit_addiu(base_reg, base_reg, (-(word_bit_count(reg_list) * 4))) \
#define arm_block_memory_writeback_up() \
mips_emit_addiu(base_reg, base_reg, (word_bit_count(reg_list) * 4)) \
#define arm_block_memory_writeback_no()
// Only emit writeback if the register is not in the list
#define arm_block_memory_writeback_load(writeback_type) \
if(!((reg_list >> rn) & 0x01)) \
{ \
arm_block_memory_writeback_##writeback_type(); \
} \
#define arm_block_memory_writeback_store(writeback_type) \
arm_block_memory_writeback_##writeback_type() \
#define arm_block_memory(access_type, offset_type, writeback_type, s_bit) \
{ \
arm_decode_block_trans(); \
u32 i; \
u32 offset = 0; \
u32 base_reg = arm_to_mips_reg[rn]; \
\
arm_block_memory_offset_##offset_type(); \
arm_block_memory_writeback_##access_type(writeback_type); \
\
if(rn == REG_SP) \
{ \
/* Assume IWRAM, the most common path by far */ \
mips_emit_andi(reg_a1, reg_a2, 0x7FFC); \
/* Check the 23rd bit to differenciate IW/EW RAMs */ \
mips_emit_srl(reg_temp, reg_a2, 24); \
mips_emit_sll(reg_temp, reg_temp, 31); \
mips_emit_bgezal(reg_temp, \
mips_relative_offset(translation_ptr, spaccess_trampoline)); \
/* Delay slot, will be overwritten anyway */ \
mips_emit_lui(reg_a0, ((u32)(iwram + 0x8000 + 0x8000) >> 16)); \
mips_emit_addu(reg_a1, reg_a1, reg_a0); \
offset = (u32)(iwram + 0x8000) & 0xFFFF; \
\
for(i = 0; i < 16; i++) \
{ \
if((reg_list >> i) & 0x01) \
{ \
cycle_count++; \
arm_block_memory_sp_##access_type(); \
offset += 4; \
} \
} \
\
arm_block_memory_sp_adjust_pc_##access_type(); \
} \
else \
{ \
emit_align_reg(reg_a2, 2); \
\
for(i = 0; i < 16; i++) \
{ \
if((reg_list >> i) & 0x01) \
{ \
cycle_count++; \
mips_emit_addiu(reg_a0, reg_a2, offset); \
if(reg_list & ~((2 << i) - 1)) \
{ \
arm_block_memory_##access_type(); \
offset += 4; \
} \
else \
{ \
arm_block_memory_final_##access_type(); \
break; \
} \
} \
} \
\
arm_block_memory_adjust_pc_##access_type(); \
} \
} \
// ARM: rn *must* be different from rm and rd. rm *can* be the same as rd.
#define arm_swap(type) \
{ \
arm_decode_swap(); \
cycle_count += 3; \
mips_emit_jal(mips_absolute_offset(execute_load_##type)); \
generate_load_reg(reg_a0, rn); \
generate_load_reg(reg_a0, rn); \
generate_load_reg(reg_a1, rm); \
mips_emit_jal(mips_absolute_offset(execute_store_##type)); \
generate_store_reg(reg_rv, rd); \
} \
#define thumb_generate_op_load_yes(_rs) \
generate_load_reg(reg_a1, _rs) \
#define thumb_generate_op_load_no(_rs) \
#define thumb_generate_op_reg(name, _rd, _rs, _rn) \
generate_op_##name##_reg(arm_to_mips_reg[_rd], \
arm_to_mips_reg[_rs], arm_to_mips_reg[_rn]) \
#define thumb_generate_op_imm(name, _rd, _rs, _rn) \
generate_op_##name##_imm(arm_to_mips_reg[_rd], arm_to_mips_reg[_rs]) \
// Types: add_sub, add_sub_imm, alu_op, imm
// Affects N/Z/C/V flags
#define thumb_data_proc(type, name, rn_type, _rd, _rs, _rn) \
{ \
thumb_decode_##type(); \
thumb_generate_op_##rn_type(name, _rd, _rs, _rn); \
} \
#define thumb_data_proc_test(type, name, rn_type, _rs, _rn) \
{ \
thumb_decode_##type(); \
thumb_generate_op_##rn_type(name, 0, _rs, _rn); \
} \
#define thumb_data_proc_unary(type, name, rn_type, _rd, _rn) \
{ \
thumb_decode_##type(); \
thumb_generate_op_##rn_type(name, _rd, 0, _rn); \
} \
#define check_store_reg_pc_thumb(_rd) \
if(_rd == REG_PC) \
{ \
generate_indirect_branch_cycle_update(thumb); \
} \
#define thumb_data_proc_hi(name) \
{ \
thumb_decode_hireg_op(); \
u32 dest_rd = rd; \
check_load_reg_pc(arm_reg_a0, rs, 4); \
check_load_reg_pc(arm_reg_a1, rd, 4); \
generate_op_##name##_reg(arm_to_mips_reg[dest_rd], arm_to_mips_reg[rd], \
arm_to_mips_reg[rs]); \
check_store_reg_pc_thumb(dest_rd); \
} \
#define thumb_data_proc_test_hi(name) \
{ \
thumb_decode_hireg_op(); \
check_load_reg_pc(arm_reg_a0, rs, 4); \
check_load_reg_pc(arm_reg_a1, rd, 4); \
generate_op_##name##_reg(reg_temp, arm_to_mips_reg[rd], \
arm_to_mips_reg[rs]); \
} \
#define thumb_data_proc_mov_hi() \
{ \
thumb_decode_hireg_op(); \
check_load_reg_pc(arm_reg_a0, rs, 4); \
mips_emit_addu(arm_to_mips_reg[rd], arm_to_mips_reg[rs], reg_zero); \
check_store_reg_pc_thumb(rd); \
} \
#define thumb_load_pc(_rd) \
{ \
thumb_decode_imm(); \
generate_load_pc(arm_to_mips_reg[_rd], (((pc & ~2) + 4) + (imm * 4))); \
} \
#define thumb_load_sp(_rd) \
{ \
thumb_decode_imm(); \
mips_emit_addiu(arm_to_mips_reg[_rd], reg_r13, (imm * 4)); \
} \
#define thumb_adjust_sp_up() \
mips_emit_addiu(reg_r13, reg_r13, (imm * 4)); \
#define thumb_adjust_sp_down() \
mips_emit_addiu(reg_r13, reg_r13, -(imm * 4)); \
#define thumb_adjust_sp(direction) \
{ \
thumb_decode_add_sp(); \
thumb_adjust_sp_##direction(); \
} \
// Decode types: shift, alu_op
// Operation types: lsl, lsr, asr, ror
// Affects N/Z/C flags
#define thumb_generate_shift_imm(name) \
if(check_generate_c_flag) \
{ \
generate_shift_imm_##name##_flags(rd, rs, imm); \
} \
else \
{ \
generate_shift_imm_##name##_no_flags(rd, rs, imm); \
} \
if(rs != rd) \
{ \
mips_emit_addu(arm_to_mips_reg[rd], arm_to_mips_reg[rs], reg_zero); \
} \
#define thumb_generate_shift_reg(name) \
{ \
u32 original_rd = rd; \
if(check_generate_c_flag) \
{ \
generate_shift_reg_##name##_flags(rd, rs); \
} \
else \
{ \
generate_shift_reg_##name##_no_flags(rd, rs); \
} \
mips_emit_addu(arm_to_mips_reg[original_rd], reg_a0, reg_zero); \
} \
#define thumb_shift(decode_type, op_type, value_type) \
{ \
thumb_decode_##decode_type(); \
thumb_generate_shift_##value_type(op_type); \
generate_op_logic_flags(arm_to_mips_reg[rd]); \
} \
// Operation types: imm, mem_reg, mem_imm
#define thumb_access_memory_load(mem_type, reg_rd) \
cycle_count += 2; \
mips_emit_jal(mips_absolute_offset(execute_load_##mem_type)); \
generate_load_pc(reg_a1, (pc)); \
generate_store_reg(reg_rv, reg_rd) \
#define thumb_access_memory_store(mem_type, reg_rd) \
cycle_count++; \
generate_load_pc(reg_a2, (pc + 2)); \
mips_emit_jal(mips_absolute_offset(execute_store_##mem_type)); \
generate_load_reg(reg_a1, reg_rd) \
#define thumb_access_memory_generate_address_pc_relative(offset, reg_rb, \
reg_ro) \
generate_load_pc(reg_a0, (offset)) \
#define thumb_access_memory_generate_address_reg_imm(offset, reg_rb, reg_ro) \
mips_emit_addiu(reg_a0, arm_to_mips_reg[reg_rb], (offset)) \
#define thumb_access_memory_generate_address_reg_imm_sp(offset, reg_rb, reg_ro) \
mips_emit_addiu(reg_a0, arm_to_mips_reg[reg_rb], (offset * 4)) \
#define thumb_access_memory_generate_address_reg_reg(offset, reg_rb, reg_ro) \
mips_emit_addu(reg_a0, arm_to_mips_reg[reg_rb], arm_to_mips_reg[reg_ro]) \
#define thumb_access_memory(access_type, op_type, reg_rd, reg_rb, reg_ro, \
address_type, offset, mem_type) \
{ \
thumb_decode_##op_type(); \
thumb_access_memory_generate_address_##address_type(offset, reg_rb, \
reg_ro); \
thumb_access_memory_##access_type(mem_type, reg_rd); \
} \
#define thumb_block_address_preadjust_no(base_reg) \
mips_emit_addu(reg_a2, arm_to_mips_reg[base_reg], reg_zero) \
#define thumb_block_address_preadjust_down(base_reg) \
mips_emit_addiu(reg_a2, arm_to_mips_reg[base_reg], \
-(bit_count[reg_list] * 4)); \
mips_emit_addu(arm_to_mips_reg[base_reg], reg_a2, reg_zero) \
#define thumb_block_address_preadjust_push_lr(base_reg) \
mips_emit_addiu(reg_a2, arm_to_mips_reg[base_reg], \
-((bit_count[reg_list] + 1) * 4)); \
mips_emit_addu(arm_to_mips_reg[base_reg], reg_a2, reg_zero) \
#define thumb_block_address_postadjust_no(base_reg) \
#define thumb_block_address_postadjust_up(base_reg) \
mips_emit_addiu(arm_to_mips_reg[base_reg], reg_a2, \
(bit_count[reg_list] * 4)) \
#define thumb_block_address_postadjust_pop_pc(base_reg) \
mips_emit_addiu(arm_to_mips_reg[base_reg], reg_a2, \
((bit_count[reg_list] * 4) + 4)) \
#define thumb_block_address_postadjust_push_lr(base_reg) \
#define thumb_block_memory_load() \
generate_function_call_swap_delay(execute_aligned_load32); \
generate_store_reg(reg_rv, i) \
#define thumb_block_memory_store() \
mips_emit_jal(mips_absolute_offset(execute_aligned_store32)); \
generate_load_reg(reg_a1, i) \
#define thumb_block_memory_final_load() \
thumb_block_memory_load() \
#define thumb_block_memory_final_store() \
generate_load_pc(reg_a2, (pc + 2)); \
mips_emit_jal(mips_absolute_offset(execute_store_u32)); \
generate_load_reg(reg_a1, i) \
#define thumb_block_memory_final_no(access_type) \
thumb_block_memory_final_##access_type() \
#define thumb_block_memory_final_up(access_type) \
thumb_block_memory_final_##access_type() \
#define thumb_block_memory_final_down(access_type) \
thumb_block_memory_final_##access_type() \
#define thumb_block_memory_final_push_lr(access_type) \
thumb_block_memory_##access_type() \
#define thumb_block_memory_final_pop_pc(access_type) \
thumb_block_memory_##access_type() \
#define thumb_block_memory_extra_no() \
#define thumb_block_memory_extra_up() \
#define thumb_block_memory_extra_down() \
#define thumb_block_memory_extra_push_lr() \
mips_emit_addiu(reg_a0, reg_a2, (bit_count[reg_list] * 4)); \
mips_emit_jal(mips_absolute_offset(execute_aligned_store32)); \
generate_load_reg(reg_a1, REG_LR) \
#define thumb_block_memory_extra_pop_pc() \
mips_emit_jal(mips_absolute_offset(execute_aligned_load32)); \
mips_emit_addiu(reg_a0, reg_a2, (bit_count[reg_list] * 4)); \
generate_mov(reg_a0, reg_rv); \
generate_indirect_branch_cycle_update(thumb) \
#define thumb_block_memory_sp_load() \
mips_emit_lw(arm_to_mips_reg[i], reg_a1, offset) \
#define thumb_block_memory_sp_store() \
mips_emit_sw(arm_to_mips_reg[i], reg_a1, offset) \
#define thumb_block_memory_sp_extra_no() \
#define thumb_block_memory_sp_extra_up() \
#define thumb_block_memory_sp_extra_down() \
#define thumb_block_memory_sp_extra_pop_pc() \
mips_emit_lw(reg_a0, reg_a1, offset); \
generate_indirect_branch_cycle_update(thumb) \
#define thumb_block_memory_sp_extra_push_lr() \
mips_emit_sw(reg_r14, reg_a1, offset) \
#define thumb_block_memory(access_type, pre_op, post_op, base_reg) \
{ \
thumb_decode_rlist(); \
u32 i; \
u32 offset = 0; \
\
thumb_block_address_preadjust_##pre_op(base_reg); \
thumb_block_address_postadjust_##post_op(base_reg); \
\
if(base_reg == REG_SP) \
{ \
/* Assume IWRAM, the most common path by far */ \
mips_emit_andi(reg_a1, reg_a2, 0x7FFC); \
/* Check the 23rd bit to differenciate IW/EW RAMs */ \
mips_emit_srl(reg_temp, reg_a2, 24); \
mips_emit_sll(reg_temp, reg_temp, 31); \
mips_emit_bgezal(reg_temp, \
mips_relative_offset(translation_ptr, spaccess_trampoline)); \
/* Delay slot, will be overwritten anyway */ \
mips_emit_lui(reg_a0, ((u32)(iwram + 0x8000 + 0x8000) >> 16)); \
mips_emit_addu(reg_a1, reg_a1, reg_a0); \
offset = (u32)(iwram + 0x8000) & 0xFFFF; \
\
for(i = 0; i < 8; i++) \
{ \
if((reg_list >> i) & 0x01) \
{ \
cycle_count++; \
thumb_block_memory_sp_##access_type(); \
offset += 4; \
} \
} \
\
thumb_block_memory_sp_extra_##post_op(); \
} \
else \
{ \
emit_align_reg(reg_a2, 2); \
\
for(i = 0; i < 8; i++) \
{ \
if((reg_list >> i) & 0x01) \
{ \
cycle_count++; \
mips_emit_addiu(reg_a0, reg_a2, offset); \
if(reg_list & ~((2 << i) - 1)) \
{ \
thumb_block_memory_##access_type(); \
offset += 4; \
} \
else \
{ \
thumb_block_memory_final_##post_op(access_type); \
break; \
} \
} \
} \
\
thumb_block_memory_extra_##post_op(); \
} \
}
#define thumb_conditional_branch(condition) \
{ \
generate_condition_##condition(); \
generate_branch_no_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
generate_branch_patch_conditional(backpatch_address, translation_ptr); \
block_exit_position++; \
} \
#define arm_conditional_block_header() \
generate_condition(); \
#define arm_b() \
generate_branch() \
#define arm_bl() \
generate_load_pc(reg_r14, (pc + 4)); \
generate_branch() \
#define arm_bx() \
arm_decode_branchx(opcode); \
generate_load_reg(reg_a0, rn); \
/*generate_load_pc(reg_a2, pc);*/ \
generate_indirect_branch_dual() \
#define arm_swi() \
generate_load_pc(reg_a0, (pc + 4)); \
generate_function_call_swap_delay(execute_swi); \
generate_branch() \
#define thumb_b() \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
block_exit_position++ \
#define thumb_bl() \
generate_load_pc(reg_r14, ((pc + 2) | 0x01)); \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
block_exit_position++ \
#define thumb_blh() \
{ \
thumb_decode_branch(); \
mips_emit_addiu(reg_a0, reg_r14, (offset * 2)); \
generate_load_pc(reg_r14, ((pc + 2) | 0x01)); \
generate_indirect_branch_cycle_update(thumb); \
} \
#define thumb_bx() \
{ \
thumb_decode_hireg_op(); \
generate_load_reg_pc(reg_a0, rs, 4); \
/*generate_load_pc(reg_a2, pc);*/ \
generate_indirect_branch_cycle_update(dual); \
} \
#define thumb_process_cheats() \
generate_function_call(mips_cheat_hook);
#define arm_process_cheats() \
generate_function_call(mips_cheat_hook);
#ifdef TRACE_INSTRUCTIONS
void trace_instruction(u32 pc, u32 mode)
{
if (mode)
printf("Executed arm %x\n", pc);
else
printf("Executed thumb %x\n", pc);
#ifdef TRACE_REGISTERS
print_regs();
#endif
}
#define emit_trace_instruction(pc, mode) \
emit_save_regs(false); \
generate_load_imm(reg_a0, pc); \
generate_load_imm(reg_a1, mode); \
genccall(&trace_instruction); \
mips_emit_nop(); \
emit_restore_regs(false)
#define emit_trace_thumb_instruction(pc) emit_trace_instruction(pc, 0)
#define emit_trace_arm_instruction(pc) emit_trace_instruction(pc, 1)
#else
#define emit_trace_thumb_instruction(pc)
#define emit_trace_arm_instruction(pc)
#endif
#define thumb_swi() \
generate_load_pc(reg_a0, (pc + 2)); \
generate_function_call_swap_delay(execute_swi); \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
block_exit_position++ \
#define arm_hle_div(cpu_mode) \
mips_emit_div(reg_r0, reg_r1); \
mips_emit_mflo(reg_r0); \
mips_emit_mfhi(reg_r1); \
mips_emit_sra(reg_a0, reg_r0, 31); \
mips_emit_xor(reg_r3, reg_r0, reg_a0); \
mips_emit_subu(reg_r3, reg_r3, reg_a0); \
#define arm_hle_div_arm(cpu_mode) \
mips_emit_div(reg_r1, reg_r0); \
mips_emit_mflo(reg_r0); \
mips_emit_mfhi(reg_r1); \
mips_emit_sra(reg_a0, reg_r0, 31); \
mips_emit_xor(reg_r3, reg_r0, reg_a0); \
mips_emit_subu(reg_r3, reg_r3, reg_a0); \
#define generate_translation_gate(type) \
generate_load_pc(reg_a0, pc); \
generate_indirect_branch_no_cycle_update(type) \
#define generate_update_pc_reg() \
generate_load_pc(reg_a0, pc); \
mips_emit_sw(reg_a0, reg_base, (REG_PC * 4)) \
// Some macros to wrap device-specific instructions
/* MIPS32R2 and PSP support ins, ext, seb, rotr */
#ifdef MIPS_HAS_R2_INSTS
// Inserts LSB bits into another register
#define insert_bits(rdest, rsrc, rtemp, pos, size) \
mips_emit_ins(rdest, rsrc, pos, size);
// Doubles a byte into a halfword
#define double_byte(reg, rtmp) \
mips_emit_ins(reg, reg, 8, 8);
// Clears numbits at LSB position (to align an address)
#define emit_align_reg(reg, numbits) \
mips_emit_ins(reg, reg_zero, 0, numbits)
// Extract a bitfield (pos, size) to a register
#define extract_bits(rt, rs, pos, size) \
mips_emit_ext(rt, rs, pos, size)
// Extends signed byte to u32
#define extend_byte_signed(rd, rs) \
mips_emit_seb(rd, rs)
// Rotates a word using a temp reg if necessary
#define rotate_right(rdest, rsrc, rtemp, amount) \
mips_emit_rotr(rdest, rsrc, amount);
// Same but variable amount rotation (register)
#define rotate_right_var(rdest, rsrc, rtemp, ramount) \
mips_emit_rotrv(rdest, rsrc, ramount);
#else
// Inserts LSB bits into another register
// *assumes dest bits are cleared*!
#define insert_bits(rdest, rsrc, rtemp, pos, size) \
mips_emit_sll(rtemp, rsrc, 32 - size); \
mips_emit_srl(rtemp, rtemp, 32 - size - pos); \
mips_emit_or(rdest, rdest, rtemp);
// Doubles a byte into a halfword
#define double_byte(reg, rtmp) \
mips_emit_sll(rtmp, reg, 8); \
mips_emit_andi(reg, reg, 0xff); \
mips_emit_or(reg, reg, rtmp);
// Clears numbits at LSB position (to align an address)
#define emit_align_reg(reg, numbits) \
mips_emit_srl(reg, reg, numbits); \
mips_emit_sll(reg, reg, numbits)
// Extract a bitfield (pos, size) to a register
#define extract_bits(rt, rs, pos, size) \
mips_emit_sll(rt, rs, 32 - ((pos) + (size))); \
mips_emit_srl(rt, rt, 32 - (size))
// Extends signed byte to u32
#define extend_byte_signed(rd, rs) \
mips_emit_sll(rd, rs, 24); \
mips_emit_sra(rd, rd, 24)
// Rotates a word (uses temp reg)
#define rotate_right(rdest, rsrc, rtemp, amount) \
mips_emit_sll(rtemp, rsrc, 32 - (amount)); \
mips_emit_srl(rdest, rsrc, (amount)); \
mips_emit_or(rdest, rdest, rtemp)
// Variable rotation using temp reg (dst != src)
#define rotate_right_var(rdest, rsrc, rtemp, ramount) \
mips_emit_andi(rtemp, ramount, 0x1F); \
mips_emit_srlv(rdest, rsrc, rtemp); \
mips_emit_subu(rtemp, reg_zero, rtemp); \
mips_emit_addiu(rtemp, rtemp, 32); \
mips_emit_sllv(rtemp, rsrc, rtemp); \
mips_emit_or(rdest, rdest, rtemp)
#endif
// Register save layout as follows:
#define ReOff_RegPC (REG_PC * 4) // REG_PC
#define ReOff_CPSR (REG_CPSR * 4) // REG_CPSR
#define ReOff_SaveR1 (REG_SAVE * 4) // 3 save scratch regs
#define ReOff_SaveR2 (REG_SAVE2 * 4)
#define ReOff_SaveR3 (REG_SAVE3 * 4)
#define ReOff_OamUpd (OAM_UPDATED*4) // OAM_UPDATED
#define ReOff_GP_Save (REG_SAVE4 * 4) // GP_SAVE
// Saves all regs to their right slot and loads gp
#define emit_save_regs(save_a2) { \
int i; \
for (i = 0; i < 15; i++) { \
mips_emit_sw(arm_to_mips_reg[i], reg_base, 4 * i); \
} \
if (save_a2) { \
mips_emit_sw(reg_a2, reg_base, ReOff_SaveR2); \
} \
/* Load the gp pointer, used by C code */ \
mips_emit_lw(mips_reg_gp, reg_base, ReOff_GP_Save); \
}
// Restores the registers from their slot
#define emit_restore_regs(restore_a2) { \
int i; \
if (restore_a2) { \
mips_emit_lw(reg_a2, reg_base, ReOff_SaveR2); \
} \
for (i = 0; i < 15; i++) { \
mips_emit_lw(arm_to_mips_reg[i], reg_base, 4 * i); \
} \
}
// Emits a function call for a read or a write (for special stuff like flash)
#define emit_mem_call_ds(fnptr, mask) \
mips_emit_sw(mips_reg_ra, reg_base, ReOff_SaveR1); \
emit_save_regs(true); \
genccall(fnptr); \
mips_emit_andi(reg_a0, reg_a0, (mask)); \
mips_emit_lw(mips_reg_ra, reg_base, ReOff_SaveR1); \
emit_restore_regs(true);
#define emit_mem_call(fnptr, mask) \
emit_mem_call_ds(fnptr, mask) \
mips_emit_jr(mips_reg_ra); \
mips_emit_nop();
// Pointer table to stubs, indexed by type and region
extern u32 tmemld[11][16];
extern u32 tmemst[ 4][16];
extern u32 thnjal[15*16];
void smc_write();
cpu_alert_type write_io_register8 (u32 address, u32 value);
cpu_alert_type write_io_register16(u32 address, u32 value);
cpu_alert_type write_io_register32(u32 address, u32 value);
void write_io_epilogue();
// This is a pointer table to the open load stubs, used by the BIOS (optimization)
u32* openld_core_ptrs[11];
const u8 ldopmap[6][2] = { {0, 1}, {1, 2}, {2, 4}, {4, 6}, {6, 10}, {10, 11} };
const u8 ldhldrtbl[11] = {0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5};
#define ld_phndlr_branch(memop) \
(((u32*)&rom_translation_cache[ldhldrtbl[(memop)]*16*4]) - ((u32*)translation_ptr + 1))
#define st_phndlr_branch(memop) \
(((u32*)&rom_translation_cache[((memop) + 6)*16*4]) - ((u32*)translation_ptr + 1))
#define branch_handlerid(phndlrid) \
(((u32*)&rom_translation_cache[(phndlrid)*16*4]) - ((u32*)translation_ptr + 1))
#define branch_offset(ptr) \
(((u32*)ptr) - ((u32*)translation_ptr + 1))
static void emit_mem_access_loadop(
u8 *translation_ptr,
u32 base_addr, unsigned size, unsigned alignment, bool signext)
{
switch (size) {
case 2:
mips_emit_lw(reg_rv, reg_rv, (base_addr & 0xffff));
break;
case 1:
if (signext) {
if (alignment) {
// Unaligned signed 16b load, is just a load byte (due to sign extension)
mips_emit_lb(reg_rv, reg_rv, ((base_addr | 1) & 0xffff));
} else {
mips_emit_lh(reg_rv, reg_rv, (base_addr & 0xffff));
}
} else {
mips_emit_lhu(reg_rv, reg_rv, (base_addr & 0xffff));
}
break;
default:
if (signext) {
mips_emit_lb(reg_rv, reg_rv, (base_addr & 0xffff));
} else {
mips_emit_lbu(reg_rv, reg_rv, (base_addr & 0xffff));
}
break;
};
}
#ifdef PIC
#define genccall(fn) \
mips_emit_lui(mips_reg_t9, ((u32)fn) >> 16); \
mips_emit_ori(mips_reg_t9, mips_reg_t9, ((u32)fn)); \
mips_emit_jalr(mips_reg_t9);
#else
#define genccall(fn) mips_emit_jal(((u32)fn) >> 2);
#endif
#define SMC_WRITE_OFF (10*16*4) /* 10 handlers (16 insts) */
#define IOEPILOGUE_OFF (SMC_WRITE_OFF + 4*2) /* Trampolines are two insts */
#define EWRAM_SPM_OFF (IOEPILOGUE_OFF + 4*2)
// Describes a "plain" memory are, that is, an area that is just accessed
// as normal memory (with some caveats tho).
typedef struct {
void *emitter;
unsigned region; // Region ID (top 8 bits)
unsigned memsize; // 0 byte, 1 halfword, 2 word
bool check_smc; // Whether the memory can contain code
bool bus16; // Whether it can only be accessed at 16bit
u32 baseptr; // Memory base address.
u32 baseoff; // Offset from base_reg
} t_stub_meminfo;
// Generates the stub to access memory for a given region, access type,
// size and misalignment.
// Handles "special" cases like weirdly mapped memory
static void emit_pmemld_stub(
unsigned memop_number, const t_stub_meminfo *meminfo,
bool signext, unsigned size,
unsigned alignment, bool aligned, bool must_swap,
u8 **tr_ptr)
{
u8 *translation_ptr = *tr_ptr;
unsigned region = meminfo->region;
u32 base_addr = meminfo->baseptr;
if (region >= 9 && region <= 11) {
// Use the same handler for these regions (just replicas)
tmemld[memop_number][region] = tmemld[memop_number][8];
return;
}
// Clean up one or two bits (to align access). It might already be aligned!
u32 memmask = (meminfo->memsize - 1);
memmask = (memmask >> size) << size; // Clear 1 or 2 (or none) bits
// Add the stub to the table (add the JAL instruction encoded already)
tmemld[memop_number][region] = (u32)translation_ptr;
// Size: 0 (8 bits), 1 (16 bits), 2 (32 bits)
// First check we are in the right memory region
unsigned regionbits = 8;
unsigned regioncheck = region;
if (region == 8) {
// This is an optimization for ROM regions
// For region 8-11 we reuse the same code (and have a more generic check)
// Region 12 is harder to cover without changing the check (shift + xor)
regionbits = 6;
regioncheck >>= 2; // Ignore the two LSB, don't care
}
// Address checking: jumps to handler if bad region/alignment
mips_emit_srl(reg_temp, reg_a0, (32 - regionbits));
if (!aligned && size != 0) { // u8 or aligned u32 dont need to check alignment bits
insert_bits(reg_temp, reg_a0, reg_rv, regionbits, size); // Add 1 or 2 bits of alignment
}
if (regioncheck || alignment) { // If region and alignment are zero, can skip
mips_emit_xori(reg_temp, reg_temp, regioncheck | (alignment << regionbits));
}
// The patcher to use depends on ld/st, access size, and sign extension
// (so there's 10 of them). They live in the top stub addresses.
mips_emit_b(bne, reg_zero, reg_temp, ld_phndlr_branch(memop_number));
// BIOS region requires extra checks for protected reads
if (region == 0) {
// BIOS is *not* mirrored, check that
mips_emit_srl(reg_rv, reg_a0, 14);
mips_emit_b(bne, reg_zero, reg_rv, branch_offset(openld_core_ptrs[memop_number]));
// Check whether the read is allowed. Only within BIOS! (Ignore aligned, bad a1)
if (!aligned) {
mips_emit_srl(reg_temp, reg_a1, 14);
mips_emit_b(bne, reg_zero, reg_temp, branch_offset(openld_core_ptrs[memop_number]));
}
}
if (region >= 8 && region <= 12) {
// ROM area: might need to load the ROM on-demand
mips_emit_srl(reg_rv, reg_a0, 15); // 32KB page number
mips_emit_sll(reg_rv, reg_rv, 2); // (word indexed)
mips_emit_addu(reg_rv, reg_rv, reg_base); // base + offset
mips_emit_lw(reg_rv, reg_rv, 0x8000); // base[offset-0x8000] is readmap ptr
mips_emit_andi(reg_temp, reg_a0, memmask); // Get the lowest 15 bits [can go in delay slot]
if (must_swap) { // Do not emit if the ROM is fully loaded, save some cycles
u8 *jmppatch;
mips_emit_b_filler(bne, reg_rv, reg_zero, jmppatch); // if not null, can skip load page
generate_swap_delay();
// This code call the C routine to map the relevant ROM page
emit_save_regs(aligned);
mips_emit_sw(mips_reg_ra, reg_base, ReOff_SaveR3);
extract_bits(reg_a0, reg_a0, 15, 10); // a0 = (addr >> 15) & 0x3ff
genccall(&load_gamepak_page); // Returns valid pointer in rv
mips_emit_sw(reg_temp, reg_base, ReOff_SaveR1);
mips_emit_lw(reg_temp, reg_base, ReOff_SaveR1);
emit_restore_regs(aligned);
mips_emit_lw(mips_reg_ra, reg_base, ReOff_SaveR3);
generate_branch_patch_conditional(jmppatch - 4, translation_ptr);
}
// Now we can proceed to load, place addr in the right register
mips_emit_addu(reg_rv, reg_rv, reg_temp);
} else if (region == 14) {
// Read from flash, is a bit special, fn call
emit_mem_call_ds(&read_backup, 0xFFFF);
if (!size && signext) {
extend_byte_signed(reg_rv, reg_rv);
} else if (size == 1 && alignment) {
extend_byte_signed(reg_rv, reg_rv);
} else if (size == 2) {
rotate_right(reg_rv, reg_rv, reg_temp, 8 * alignment);
}
generate_function_return_swap_delay();
*tr_ptr = translation_ptr;
return;
} else {
// Generate upper bits of the addr and do addr mirroring
// (The address hi16 is rounded up since load uses signed offset)
if (!meminfo->baseoff) {
mips_emit_lui(reg_rv, ((base_addr + 0x8000) >> 16));
} else {
base_addr = meminfo->baseoff;
}
if (region == 2) {
// Can't do EWRAM with an `andi` instruction (18 bits mask)
extract_bits(reg_a0, reg_a0, 0, 18); // &= 0x3ffff
if (!aligned && alignment != 0) {
emit_align_reg(reg_a0, size); // addr & ~1/2 (align to size)
}
// Need to insert a zero in the addr (due to how it's mapped)
mips_emit_addu(reg_rv, reg_rv, reg_a0); // Adds to the base addr
} else if (region == 6) {
// VRAM is mirrored every 128KB but the last 32KB is mapped to the previous
extract_bits(reg_temp, reg_a0, 15, 2); // Extract bits 15 and 16
mips_emit_addiu(reg_temp, reg_temp, -3); // Check for 3 (last block)
if (!aligned && alignment != 0) {
emit_align_reg(reg_a0, size); // addr & ~1/2 (align to size)
}
extract_bits(reg_a0, reg_a0, 0, 17); // addr & 0x1FFFF [delay]
mips_emit_b(bne, reg_zero, reg_temp, 1); // Skip unless last block
generate_swap_delay();
mips_emit_addiu(reg_a0, reg_a0, 0x8000); // addr - 0x8000 (mirror last block)
mips_emit_addu(reg_rv, reg_rv, reg_a0); // addr = base + adjusted offset
} else {
// Generate regular (<=32KB) mirroring
mips_reg_number breg = (meminfo->baseoff ? reg_base : reg_rv);
mips_emit_andi(reg_temp, reg_a0, memmask); // Clear upper bits (mirroring)
mips_emit_addu(reg_rv, breg, reg_temp); // Adds to base addr
}
}
// Emit load operation
emit_mem_access_loadop(translation_ptr, base_addr, size, alignment, signext);
translation_ptr += 4;
if (!(alignment == 0 || (size == 1 && signext))) {
// Unaligned accesses require rotation, except for size=1 & signext
rotate_right(reg_rv, reg_rv, reg_temp, alignment * 8);
}
generate_function_return_swap_delay(); // Return. Move prev inst to delay slot
*tr_ptr = translation_ptr;
}
// Generates the stub to store memory for a given region and size
// Handles "special" cases like weirdly mapped memory
static void emit_pmemst_stub(
unsigned memop_number, const t_stub_meminfo *meminfo,
unsigned size, bool aligned, u8 **tr_ptr)
{
u8 *translation_ptr = *tr_ptr;
unsigned region = meminfo->region;
u32 base_addr = meminfo->baseptr;
// Palette, VRAM and OAM cannot be really byte accessed (use a 16 bit store)
bool doubleaccess = (size == 0 && meminfo->bus16);
unsigned realsize = size;
if (doubleaccess)
realsize = 1;
// Clean up one or two bits (to align access). It might already be aligned!
u32 memmask = (meminfo->memsize - 1);
memmask = (memmask >> realsize) << realsize;
// Add the stub to the table (add the JAL instruction encoded already)
tmemst[memop_number][region] = (u32)translation_ptr;
// First check we are in the right memory region (same as loads)
mips_emit_srl(reg_temp, reg_a0, 24);
mips_emit_xori(reg_temp, reg_temp, region);
mips_emit_b(bne, reg_zero, reg_temp, st_phndlr_branch(memop_number));
mips_emit_lui(reg_rv, ((base_addr + 0x8000) >> 16));
if (doubleaccess) {
double_byte(reg_a1, reg_temp); // value = value | (value << 8)
}
if (region == 2) {
// Can't do EWRAM with an `andi` instruction (18 bits mask)
extract_bits(reg_a0, reg_a0, 0, 18); // &= 0x3ffff
if (!aligned && realsize != 0) {
emit_align_reg(reg_a0, size); // addr & ~1/2 (align to size)
}
// Need to insert a zero in the addr (due to how it's mapped)
mips_emit_addu(reg_rv, reg_rv, reg_a0); // Adds to the base addr
} else if (region == 6) {
// VRAM is mirrored every 128KB but the last 32KB is mapped to the previous
extract_bits(reg_temp, reg_a0, 15, 2); // Extract bits 15 and 16
mips_emit_addiu(reg_temp, reg_temp, -3); // Check for 3 (last block)
if (!aligned && realsize != 0) {
emit_align_reg(reg_a0, realsize); // addr & ~1/2 (align to size)
}
extract_bits(reg_a0, reg_a0, 0, 17); // addr & 0x1FFFF [delay]
mips_emit_b(bne, reg_zero, reg_temp, 1); // Skip next inst unless last block
generate_swap_delay();
mips_emit_addiu(reg_a0, reg_a0, 0x8000); // addr - 0x8000 (mirror last block)
mips_emit_addu(reg_rv, reg_rv, reg_a0); // addr = base + adjusted offset
} else {
// Generate regular (<=32KB) mirroring
mips_emit_andi(reg_a0, reg_a0, memmask); // Clear upper bits (mirroring)
mips_emit_addu(reg_rv, reg_rv, reg_a0); // Adds to base addr
}
// Generate SMC write and tracking
// TODO: Should we have SMC checks here also for aligned?
if (meminfo->check_smc && !aligned) {
if (region == 2) {
mips_emit_lui(reg_temp, 0x40000 >> 16);
mips_emit_addu(reg_temp, reg_rv, reg_temp); // SMC lives after the ewram
} else {
mips_emit_addiu(reg_temp, reg_rv, 0x8000); // -32KB is the addr of the SMC buffer
}
if (realsize == 2) {
mips_emit_lw(reg_temp, reg_temp, base_addr);
} else if (realsize == 1) {
mips_emit_lh(reg_temp, reg_temp, base_addr);
} else {
mips_emit_lb(reg_temp, reg_temp, base_addr);
}
// If the data is non zero, we just wrote over code
// Local-jump to the smc_write (which lives at offset:0)
mips_emit_b(bne, reg_zero, reg_temp, branch_offset(&rom_translation_cache[SMC_WRITE_OFF]));
}
// Store the data (delay slot from the SMC branch)
if (realsize == 2) {
mips_emit_sw(reg_a1, reg_rv, base_addr);
} else if (realsize == 1) {
mips_emit_sh(reg_a1, reg_rv, base_addr);
} else {
mips_emit_sb(reg_a1, reg_rv, base_addr);
}
// Post processing store:
// Signal that OAM was updated
if (region == 7) {
// Write any nonzero data
mips_emit_sw(reg_base, reg_base, ReOff_OamUpd);
generate_function_return_swap_delay();
}
else {
mips_emit_jr(mips_reg_ra);
mips_emit_nop();
}
*tr_ptr = translation_ptr;
}
// Palette conversion functions. a1 contains the palette value (16 LSB)
// Places the result in reg_temp, can use a0 as temporary register
#ifdef USE_BGR_FORMAT
/* 0BGR to BGR565, only for PSP (uses ins) */
#define palette_convert() \
mips_emit_sll(reg_temp, reg_a1, 1); \
mips_emit_andi(reg_temp, reg_temp, 0xFFC0); \
mips_emit_ins(reg_temp, reg_a1, 0, 5);
#elif defined(USE_XBGR1555_FORMAT)
/* PS2's native format */
#define palette_convert() \
mips_emit_andi(reg_temp, reg_a1, 0x7FFF);
#else
/* 0BGR to RGB565 (clobbers a0) */
#ifdef MIPS_HAS_R2_INSTS
#define palette_convert() \
mips_emit_ext(reg_temp, reg_a1, 10, 5); \
mips_emit_ins(reg_temp, reg_a1, 11, 5); \
mips_emit_ext(reg_a0, reg_a1, 5, 5); \
mips_emit_ins(reg_temp, reg_a0, 6, 5);
#else
#define palette_convert() \
mips_emit_srl(reg_a0, reg_a1, 10); \
mips_emit_andi(reg_temp, reg_a0, 0x1F); \
mips_emit_sll(reg_a0, reg_a1, 1); \
mips_emit_andi(reg_a0, reg_a0, 0x7C0); \
mips_emit_or(reg_temp, reg_temp, reg_a0); \
mips_emit_andi(reg_a0, reg_a1, 0x1F); \
mips_emit_sll(reg_a0, reg_a0, 11); \
mips_emit_or(reg_temp, reg_temp, reg_a0);
#endif
#endif
// Palette is accessed differently and stored in a decoded manner
static void emit_palette_hdl(
unsigned memop_number, const t_stub_meminfo *meminfo,
unsigned size, bool aligned, u8 **tr_ptr)
{
u8 *translation_ptr = *tr_ptr;
// Palette cannot be accessed at byte level
unsigned realsize = size ? size : 1;
u32 memmask = (meminfo->memsize - 1);
memmask = (memmask >> realsize) << realsize;
// Add the stub to the table (add the JAL instruction encoded already)
tmemst[memop_number][5] = (u32)translation_ptr;
// First check we are in the right memory region (same as loads)
mips_emit_srl(reg_temp, reg_a0, 24);
mips_emit_xori(reg_temp, reg_temp, 5);
mips_emit_b(bne, reg_zero, reg_temp, st_phndlr_branch(memop_number));
mips_emit_andi(reg_rv, reg_a0, memmask); // Clear upper bits (mirroring)
if (size == 0) {
double_byte(reg_a1, reg_temp); // value = value | (value << 8)
}
mips_emit_addu(reg_rv, reg_rv, reg_base);
// Store the data in real palette memory
if (realsize == 2) {
mips_emit_sw(reg_a1, reg_rv, 0x100);
} else if (realsize == 1) {
mips_emit_sh(reg_a1, reg_rv, 0x100);
}
// Convert and store in mirror memory
palette_convert();
mips_emit_sh(reg_temp, reg_rv, 0x500);
if (size == 2) {
// Convert the second half-word also
mips_emit_srl(reg_a1, reg_a1, 16);
palette_convert();
mips_emit_sh(reg_temp, reg_rv, 0x502);
}
generate_function_return_swap_delay();
*tr_ptr = translation_ptr;
}
// This emits stubs for regions where writes have no side-effects
static void emit_ignorestore_stub(unsigned size, u8 **tr_ptr) {
u8 *translation_ptr = *tr_ptr;
// Region 0-1 (BIOS and ignore)
tmemst[size][0] = tmemst[size][1] = (u32)translation_ptr;
mips_emit_srl(reg_temp, reg_a0, 25); // Check 7 MSB to be zero
mips_emit_b(bne, reg_temp, reg_zero, st_phndlr_branch(size));
mips_emit_nop();
mips_emit_jr(mips_reg_ra);
mips_emit_nop();
// Region 9-C
tmemst[size][ 9] = tmemst[size][10] =
tmemst[size][11] = tmemst[size][12] = (u32)translation_ptr;
mips_emit_srl(reg_temp, reg_a0, 24);
mips_emit_addiu(reg_temp, reg_temp, -9);
mips_emit_srl(reg_temp, reg_temp, 2);
mips_emit_b(bne, reg_temp, reg_zero, st_phndlr_branch(size));
mips_emit_nop();
mips_emit_jr(mips_reg_ra);
mips_emit_nop();
// Region F or higher
tmemst[size][15] = (u32)translation_ptr;
mips_emit_srl(reg_temp, reg_a0, 24);
mips_emit_sltiu(reg_rv, reg_temp, 0x0F); // Is < 15?
mips_emit_b(bne, reg_rv, reg_zero, st_phndlr_branch(size));
mips_emit_nop();
mips_emit_jr(mips_reg_ra);
mips_emit_nop();
*tr_ptr = translation_ptr;
}
// Stubs for regions with EEPROM or flash/SRAM (also RTC)
static void emit_saveaccess_stub(u8 **tr_ptr) {
unsigned opt, i, strop;
u8 *translation_ptr = *tr_ptr;
// Writes to region 8 are directed to RTC (only 16 bit ones though)
tmemld[1][8] = (u32)translation_ptr;
emit_mem_call(&write_rtc, 0xFE);
// These are for region 0xD where EEPROM is mapped. Addr is ignored
// Value is limited to one bit (both reading and writing!)
u32 *read_hndlr = (u32*)translation_ptr;
emit_mem_call(&read_eeprom, 0x3FF);
u32 *write_hndlr = (u32*)translation_ptr;
emit_mem_call(&write_eeprom, 0x3FF);
// Map loads to the read handler.
for (opt = 0; opt < 6; opt++) {
// Unalignment is not relevant here, so map them all to the same handler.
for (i = ldopmap[opt][0]; i < ldopmap[opt][1]; i++)
tmemld[i][13] = (u32)translation_ptr;
// Emit just a check + patch jump
mips_emit_srl(reg_temp, reg_a0, 24);
mips_emit_xori(reg_rv, reg_temp, 0x0D);
mips_emit_b(bne, reg_rv, reg_zero, branch_handlerid(opt));
mips_emit_nop();
mips_emit_b(beq, reg_zero, reg_zero, branch_offset(read_hndlr));
}
// This is for stores
for (strop = 0; strop <= 3; strop++) {
tmemst[strop][13] = (u32)translation_ptr;
mips_emit_srl(reg_temp, reg_a0, 24);
mips_emit_xori(reg_rv, reg_temp, 0x0D);
mips_emit_b(bne, reg_rv, reg_zero, st_phndlr_branch(strop));
mips_emit_nop();
mips_emit_b(beq, reg_zero, reg_zero, branch_offset(write_hndlr));
}
// Flash/SRAM/Backup writes are only 8 byte supported
for (strop = 0; strop <= 3; strop++) {
tmemst[strop][14] = (u32)translation_ptr;
mips_emit_srl(reg_temp, reg_a0, 24);
mips_emit_xori(reg_rv, reg_temp, 0x0E);
mips_emit_b(bne, reg_rv, reg_zero, st_phndlr_branch(strop));
if (strop == 0) {
emit_mem_call(&write_backup, 0xFFFF);
} else {
mips_emit_nop();
mips_emit_jr(mips_reg_ra); // Does nothing in this case
mips_emit_nop();
}
}
// RTC writes, only for 16 bit accesses
for (strop = 0; strop <= 3; strop++) {
tmemst[strop][8] = (u32)translation_ptr;
mips_emit_srl(reg_temp, reg_a0, 24);
mips_emit_xori(reg_rv, reg_temp, 0x08);
mips_emit_b(bne, reg_rv, reg_zero, st_phndlr_branch(strop));
if (strop == 1) {
emit_mem_call(&write_rtc, 0xFF); // Addr
} else {
mips_emit_nop();
mips_emit_jr(mips_reg_ra); // Do nothing
mips_emit_nop();
}
}
// Region 4 writes
// I/O writes are also a bit special, they can trigger things like DMA, IRQs...
// Also: aligned (strop==3) accesses do not trigger IRQs
const u32 iowrtbl[] = {
(u32)&write_io_register8, (u32)&write_io_register16,
(u32)&write_io_register32, (u32)&write_io_register32 };
const u32 amsk[] = {0x3FF, 0x3FE, 0x3FC, 0x3FC};
for (strop = 0; strop <= 3; strop++) {
tmemst[strop][4] = (u32)translation_ptr;
mips_emit_srl(reg_temp, reg_a0, 24);
mips_emit_xori(reg_temp, reg_temp, 0x04);
mips_emit_b(bne, reg_zero, reg_temp, st_phndlr_branch(strop));
mips_emit_sw(mips_reg_ra, reg_base, ReOff_SaveR3); // Store the return addr
emit_save_regs(strop == 3);
mips_emit_andi(reg_a0, reg_a0, amsk[strop]);
genccall(iowrtbl[strop]);
if (strop < 3) {
mips_emit_sw(reg_a2, reg_base, ReOff_RegPC); // Save PC (delay)
// If I/O writes returns non-zero, means we need to process side-effects.
mips_emit_b(bne, reg_zero, reg_rv, branch_offset(&rom_translation_cache[IOEPILOGUE_OFF]));
mips_emit_lw(mips_reg_ra, reg_base, ReOff_SaveR3); // (in delay slot but not used)
emit_restore_regs(false);
} else {
mips_emit_nop();
mips_emit_lw(mips_reg_ra, reg_base, ReOff_SaveR3);
emit_restore_regs(true);
}
generate_function_return_swap_delay();
}
*tr_ptr = translation_ptr;
}
// Emits openload stub
// These are used for reading unmapped regions, we just make them go
// through the slow handler since should rarely happen.
static void emit_openload_stub(unsigned opt, bool signext, unsigned size, u8 **tr_ptr) {
int i;
const u32 hndreadtbl[] = {
(u32)&read_memory8, (u32)&read_memory16, (u32)&read_memory32,
(u32)&read_memory8s, (u32)&read_memory16s, (u32)&read_memory32 };
u8 *translation_ptr = *tr_ptr;
// This affects regions 1 and 15
for (i = ldopmap[opt][0]; i < ldopmap[opt][1]; i++)
tmemld[i][ 1] = tmemld[i][15] = (u32)translation_ptr;
// Alignment is ignored since the handlers do the magic for us
// Only check region match: if we are accessing a non-ignore region
mips_emit_srl(reg_temp, reg_a0, 24);
mips_emit_sltiu(reg_rv, reg_temp, 0x0F);
mips_emit_addiu(reg_temp, reg_temp, -1);
mips_emit_sltu(reg_temp, reg_zero, reg_temp);
mips_emit_and(reg_temp, reg_temp, reg_rv);
// Jump to patch handler
mips_emit_b(bne, reg_zero, reg_temp, branch_handlerid(opt));
// BIOS can jump here to do open loads
for (i = ldopmap[opt][0]; i < ldopmap[opt][1]; i++)
openld_core_ptrs[i] = (u32*)translation_ptr;
emit_save_regs(true);
mips_emit_sw(mips_reg_ra, reg_base, ReOff_SaveR1); // Delay slot
genccall(hndreadtbl[size + (signext ? 3 : 0)]);
if (opt < 5) {
mips_emit_sw(reg_a1, reg_base, ReOff_RegPC); // Save current PC
} else {
// Aligned loads do not hold PC in a1 (imprecision)
mips_emit_nop();
}
mips_emit_lw(mips_reg_ra, reg_base, ReOff_SaveR1);
emit_restore_regs(true);
generate_function_return_swap_delay();
*tr_ptr = translation_ptr;
}
typedef void (*sthldr_t)(
unsigned memop_number, const t_stub_meminfo *meminfo,
unsigned size, bool aligned, u8 **tr_ptr);
typedef void (*ldhldr_t)(
unsigned memop_number, const t_stub_meminfo *meminfo,
bool signext, unsigned size,
unsigned alignment, bool aligned, bool must_swap,
u8 **tr_ptr);
// Generates a patch handler for a given access size
// It will detect the access alignment and memory region and load
// the corresponding handler from the table (at the right offset)
// and patch the jal instruction from where it was called.
static void emit_phand(
u8 **tr_ptr, unsigned size, unsigned toff,
bool check_alignment)
{
u8 *translation_ptr = *tr_ptr;
mips_emit_srl(reg_temp, reg_a0, 24);
#ifdef PSP
mips_emit_addiu(reg_rv, reg_zero, 15*4); // Table limit (max)
mips_emit_sll(reg_temp, reg_temp, 2); // Table is word indexed
mips_emit_min(reg_temp, reg_temp, reg_rv);// Do not overflow table
#else
mips_emit_sltiu(reg_rv, reg_temp, 0x0F); // Check for addr 0x1XXX.. 0xFXXX
mips_emit_sll(reg_temp, reg_temp, 2); // Table is word indexed
mips_emit_b(bne, reg_zero, reg_rv, 1); // Skip next inst if region is good
generate_swap_delay();
mips_emit_addiu(reg_temp, reg_zero, 15*4);// Simulate ld/st to 0x0FXXX (open/ignore)
#endif
// Stores or byte-accesses do not care about alignment
if (check_alignment) {
// Move alignment bits for the table lookup (1 or 2, to bits 6 and 7)
insert_bits(reg_temp, reg_a0, reg_rv, 6, size);
}
unsigned tbloff = 256 + 3*1024 + 220 + 4 * toff; // Skip regs and RAMs
unsigned tbloff2 = tbloff + 960; // JAL opcode table
mips_emit_addu(reg_temp, reg_temp, reg_base); // Add to the base_reg the table offset
mips_emit_lw(reg_rv, reg_temp, tbloff); // Get func addr from 1st table
mips_emit_lw(reg_temp, reg_temp, tbloff2); // Get opcode from 2nd table
mips_emit_sw(reg_temp, mips_reg_ra, -8); // Patch instruction!
#if defined(PSP)
mips_emit_cache(0x1A, mips_reg_ra, -8);
mips_emit_jr(reg_rv); // Jump directly to target for speed
mips_emit_cache(0x08, mips_reg_ra, -8);
#else
mips_emit_jr(reg_rv);
#ifdef MIPS_HAS_R2_INSTS
mips_emit_synci(mips_reg_ra, -8);
#endif
#endif
// Round up handlers to 16 instructions for easy addressing
// PSP/MIPS32r2 uses up to 12 insts
while (translation_ptr - *tr_ptr < 64) {
mips_emit_nop();
}
*tr_ptr = translation_ptr;
}
// This function emits the following stubs:
// - smc_write: Jumps to C code to trigger a cache flush
// - memop patcher: Patches a memop whenever it accesses the wrong mem region
// - mem stubs: There's stubs for load & store, and every memory region
// and possible operand size and misaligment (+sign extensions)
void init_emitter(bool must_swap) {
int i;
// Initialize memory to a debuggable state
rom_cache_watermark = INITIAL_ROM_WATERMARK;
// Generates the trampoline and helper stubs that we need
u8 *translation_ptr = (u8*)&rom_translation_cache[0];
// Generate first the patch handlers
// We have 6+4 patchers, one per mem type (6 or 4)
// Calculate the offset into tmemld[10][XX];
emit_phand(&translation_ptr, 0, 0 * 16, false); // ld u8
emit_phand(&translation_ptr, 0, 1 * 16, false); // ld s8
emit_phand(&translation_ptr, 1, 2 * 16, true); // ld u16 + u16u1
emit_phand(&translation_ptr, 1, 4 * 16, true); // ld s16 + s16u1
emit_phand(&translation_ptr, 2, 6 * 16, true); // ld u32 (0/1/2/3u)
emit_phand(&translation_ptr, 2, 10 * 16, false); // ld aligned 32
// Store table is immediately after
emit_phand(&translation_ptr, 0, 11 * 16, false); // st u8
emit_phand(&translation_ptr, 1, 12 * 16, false); // st u16
emit_phand(&translation_ptr, 2, 13 * 16, false); // st u32
emit_phand(&translation_ptr, 2, 14 * 16, false); // st aligned 32
// Trampoline area
mips_emit_j(((u32)&smc_write) >> 2);
mips_emit_nop();
mips_emit_j(((u32)&write_io_epilogue) >> 2);
mips_emit_nop();
// Special trampoline for SP-relative ldm/stm (to EWRAM)
generate_load_imm(reg_a1, 0x3FFFC);
mips_emit_and(reg_a1, reg_a1, reg_a2);
mips_emit_lui(reg_a0, ((u32)(ewram + 0x8000) >> 16));
generate_function_return_swap_delay();
// Generate the openload handlers (for accesses to unmapped mem)
emit_openload_stub(0, false, 0, &translation_ptr); // ld u8
emit_openload_stub(1, true, 0, &translation_ptr); // ld s8
emit_openload_stub(2, false, 1, &translation_ptr); // ld u16
emit_openload_stub(3, true, 1, &translation_ptr); // ld s16
emit_openload_stub(4, false, 2, &translation_ptr); // ld u32
emit_openload_stub(5, false, 2, &translation_ptr); // ld a32
// Here we emit the ignore store area, just checks and does nothing
for (i = 0; i < 4; i++)
emit_ignorestore_stub(i, &translation_ptr);
// Here go the save game handlers
emit_saveaccess_stub(&translation_ptr);
// Generate memory handlers
const t_stub_meminfo ldinfo [] = {
{ emit_pmemld_stub, 0, 0x4000, false, false, (u32)bios_rom, 0},
// 1 Open load / Ignore store
{ emit_pmemld_stub, 2, 0x8000, true, false, (u32)ewram, 0 }, // memsize wrong on purpose
{ emit_pmemld_stub, 3, 0x8000, true, false, (u32)&iwram[0x8000], 0 },
{ emit_pmemld_stub, 4, 0x400, false, false, (u32)io_registers, 0 },
{ emit_pmemld_stub, 5, 0x400, false, true, (u32)palette_ram, 0x100 },
{ emit_pmemld_stub, 6, 0x0, false, true, (u32)vram, 0 }, // same, vram is a special case
{ emit_pmemld_stub, 7, 0x400, false, true, (u32)oam_ram, 0x900 },
{ emit_pmemld_stub, 8, 0x8000, false, false, 0, 0 },
{ emit_pmemld_stub, 9, 0x8000, false, false, 0, 0 },
{ emit_pmemld_stub, 10, 0x8000, false, false, 0, 0 },
{ emit_pmemld_stub, 11, 0x8000, false, false, 0, 0 },
{ emit_pmemld_stub, 12, 0x8000, false, false, 0, 0 },
// 13 is EEPROM mapped already (a bit special)
{ emit_pmemld_stub, 14, 0, false, false, 0, 0 }, // Mapped via function call
// 15 Open load / Ignore store
};
for (i = 0; i < sizeof(ldinfo)/sizeof(ldinfo[0]); i++) {
ldhldr_t handler = (ldhldr_t)ldinfo[i].emitter;
/* region info signext sz al isaligned */
handler(0, &ldinfo[i], false, 0, 0, false, must_swap, &translation_ptr); // ld u8
handler(1, &ldinfo[i], true, 0, 0, false, must_swap, &translation_ptr); // ld s8
handler(2, &ldinfo[i], false, 1, 0, false, must_swap, &translation_ptr); // ld u16
handler(3, &ldinfo[i], false, 1, 1, false, must_swap, &translation_ptr); // ld u16u1
handler(4, &ldinfo[i], true, 1, 0, false, must_swap, &translation_ptr); // ld s16
handler(5, &ldinfo[i], true, 1, 1, false, must_swap, &translation_ptr); // ld s16u1
handler(6, &ldinfo[i], false, 2, 0, false, must_swap, &translation_ptr); // ld u32
handler(7, &ldinfo[i], false, 2, 1, false, must_swap, &translation_ptr); // ld u32u1
handler(8, &ldinfo[i], false, 2, 2, false, must_swap, &translation_ptr); // ld u32u2
handler(9, &ldinfo[i], false, 2, 3, false, must_swap, &translation_ptr); // ld u32u3
handler(10,&ldinfo[i], false, 2, 0, true, must_swap, &translation_ptr); // aligned ld u32
}
const t_stub_meminfo stinfo [] = {
{ emit_pmemst_stub, 2, 0x8000, true, false, (u32)ewram, 0 },
{ emit_pmemst_stub, 3, 0x8000, true, false, (u32)&iwram[0x8000], 0 },
// I/O is special and mapped with a function call
{ emit_palette_hdl, 5, 0x400, false, true, (u32)palette_ram, 0x100 },
{ emit_pmemst_stub, 6, 0x0, false, true, (u32)vram, 0 }, // same, vram is a special case
{ emit_pmemst_stub, 7, 0x400, false, true, (u32)oam_ram, 0x900 },
};
// Store only for "regular"-ish mem regions
//
for (i = 0; i < sizeof(stinfo)/sizeof(stinfo[0]); i++) {
sthldr_t handler = (sthldr_t)stinfo[i].emitter;
handler(0, &stinfo[i], 0, false, &translation_ptr); // st u8
handler(1, &stinfo[i], 1, false, &translation_ptr); // st u16
handler(2, &stinfo[i], 2, false, &translation_ptr); // st u32
handler(3, &stinfo[i], 2, true, &translation_ptr); // st aligned 32
}
// Generate JAL tables
u32 *tmemptr = &tmemld[0][0];
for (i = 0; i < 15*16; i++)
thnjal[i] = ((tmemptr[i] >> 2) & 0x3FFFFFF) | (mips_opcode_jal << 26);
// Ensure rom flushes do not wipe this area
rom_cache_watermark = (u32)(translation_ptr - rom_translation_cache);
init_bios_hooks();
}
u32 execute_arm_translate_internal(u32 cycles, void *regptr);
u32 execute_arm_translate(u32 cycles) {
return execute_arm_translate_internal(cycles, &reg[0]);
}
#endif