gpsp/gba_memory.c

3135 lines
119 KiB
C

/* gameplaySP
*
* Copyright (C) 2006 Exophase <exophase@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "common.h"
#include "streams/file_stream.h"
/* Sound */
#define gbc_sound_tone_control_low(channel, regn) \
{ \
u32 initial_volume = (value >> 12) & 0x0F; \
u32 envelope_ticks = ((value >> 8) & 0x07) * 4; \
gbc_sound_channel[channel].length_ticks = 64 - (value & 0x3F); \
gbc_sound_channel[channel].sample_table_idx = ((value >> 6) & 0x03); \
gbc_sound_channel[channel].envelope_direction = (value >> 11) & 0x01; \
gbc_sound_channel[channel].envelope_initial_volume = initial_volume; \
gbc_sound_channel[channel].envelope_volume = initial_volume; \
gbc_sound_channel[channel].envelope_initial_ticks = envelope_ticks; \
gbc_sound_channel[channel].envelope_ticks = envelope_ticks; \
gbc_sound_channel[channel].envelope_status = (envelope_ticks != 0); \
gbc_sound_channel[channel].envelope_volume = initial_volume; \
gbc_sound_update = 1; \
write_ioreg(regn, value); \
} \
#define gbc_sound_tone_control_high(channel, regn) \
{ \
u32 rate = value & 0x7FF; \
gbc_sound_channel[channel].rate = rate; \
gbc_sound_channel[channel].frequency_step = \
float_to_fp16_16(((131072.0 / (2048 - rate)) * 8.0) / sound_frequency); \
gbc_sound_channel[channel].length_status = (value >> 14) & 0x01; \
if(value & 0x8000) \
{ \
gbc_sound_channel[channel].active_flag = 1; \
gbc_sound_channel[channel].sample_index -= float_to_fp16_16(1.0 / 12.0); \
gbc_sound_channel[channel].envelope_ticks = \
gbc_sound_channel[channel].envelope_initial_ticks; \
gbc_sound_channel[channel].envelope_volume = \
gbc_sound_channel[channel].envelope_initial_volume; \
} \
\
gbc_sound_update = 1; \
write_ioreg(regn, value & 0x47FF); \
} \
#define gbc_sound_tone_control_sweep() \
{ \
value &= 0x007F; \
u32 sweep_ticks = ((value >> 4) & 0x07) * 2; \
gbc_sound_channel[0].sweep_shift = value & 0x07; \
gbc_sound_channel[0].sweep_direction = (value >> 3) & 0x01; \
gbc_sound_channel[0].sweep_status = (value != 8); \
gbc_sound_channel[0].sweep_ticks = sweep_ticks; \
gbc_sound_channel[0].sweep_initial_ticks = sweep_ticks; \
gbc_sound_update = 1; \
write_ioreg(REG_SOUND1CNT_L, value); \
} \
#define gbc_sound_wave_control() \
{ \
gbc_sound_channel[2].wave_type = (value >> 5) & 0x01; \
gbc_sound_channel[2].wave_bank = (value >> 6) & 0x01; \
gbc_sound_channel[2].master_enable = 0; \
if(value & 0x80) \
gbc_sound_channel[2].master_enable = 1; \
\
gbc_sound_update = 1; \
write_ioreg(REG_SOUND3CNT_L, value & 0x00E0); \
} \
static const u32 gbc_sound_wave_volume[4] = { 0, 16384, 8192, 4096 };
#define gbc_sound_tone_control_low_wave() \
{ \
gbc_sound_channel[2].length_ticks = 256 - (value & 0xFF); \
if((value >> 15) & 0x01) \
gbc_sound_channel[2].wave_volume = 12288; \
else \
gbc_sound_channel[2].wave_volume = \
gbc_sound_wave_volume[(value >> 13) & 0x03]; \
gbc_sound_update = 1; \
write_ioreg(REG_SOUND3CNT_H, value); \
} \
#define gbc_sound_tone_control_high_wave() \
{ \
u32 rate = value & 0x7FF; \
gbc_sound_channel[2].rate = rate; \
gbc_sound_channel[2].frequency_step = \
float_to_fp16_16((2097152.0 / (2048 - rate)) / sound_frequency); \
gbc_sound_channel[2].length_status = (value >> 14) & 0x01; \
if(value & 0x8000) \
{ \
gbc_sound_channel[2].sample_index = 0; \
gbc_sound_channel[2].active_flag = 1; \
} \
gbc_sound_update = 1; \
write_ioreg(REG_SOUND3CNT_X, value); \
} \
#define gbc_sound_noise_control() \
{ \
u32 dividing_ratio = value & 0x07; \
u32 frequency_shift = (value >> 4) & 0x0F; \
if(dividing_ratio == 0) \
{ \
gbc_sound_channel[3].frequency_step = \
float_to_fp16_16(1048576.0 / (1 << (frequency_shift + 1)) / \
sound_frequency); \
} \
else \
{ \
gbc_sound_channel[3].frequency_step = \
float_to_fp16_16(524288.0 / (dividing_ratio * \
(1 << (frequency_shift + 1))) / sound_frequency); \
} \
gbc_sound_channel[3].noise_type = (value >> 3) & 0x01; \
gbc_sound_channel[3].length_status = (value >> 14) & 0x01; \
if(value & 0x8000) \
{ \
gbc_sound_channel[3].sample_index = 0; \
gbc_sound_channel[3].active_flag = 1; \
gbc_sound_channel[3].envelope_ticks = \
gbc_sound_channel[3].envelope_initial_ticks; \
gbc_sound_channel[3].envelope_volume = \
gbc_sound_channel[3].envelope_initial_volume; \
} \
gbc_sound_update = 1; \
write_ioreg(REG_SOUND4CNT_H, value & 0x40FF); \
} \
static void gbc_trigger_sound(u32 value)
{
u32 channel;
/* Trigger all 4 GBC sound channels */
for (channel = 0; channel < 4; channel++)
{
gbc_sound_master_volume_right = value & 0x07;
gbc_sound_master_volume_left = (value >> 4) & 0x07;
gbc_sound_channel[channel].status =
(((value >> (channel + 8)) & 0x1) | ((value >> (channel + 11)) & 0x3));
}
write_ioreg(REG_SOUNDCNT_L, value & 0xFF77);
}
#define trigger_sound() \
{ \
timer[0].direct_sound_channels = \
((((value >> 10) & 0x01) == 0) | ((((value >> 14) & 0x01) == 0) << 1)); \
timer[1].direct_sound_channels = \
((((value >> 10) & 0x01) == 1) | ((((value >> 14) & 0x01) == 1) << 1)); \
direct_sound_channel[0].volume_halve = ((~(value >> 2)) & 0x01); \
direct_sound_channel[0].status = ((value >> 8) & 0x03); \
direct_sound_channel[1].volume_halve = ((~(value >> 3)) & 0x01); \
direct_sound_channel[1].status = ((value >> 12) & 0x03); \
gbc_sound_master_volume = value & 0x03; \
\
if((value >> 11) & 0x01) \
sound_reset_fifo(0); \
if((value >> 15) & 0x01) \
sound_reset_fifo(1); \
write_ioreg(REG_SOUNDCNT_H, value & 0x770F); \
} \
static void sound_control_x(u32 value)
{
if (value & 0x80)
{
if (sound_on != 1)
sound_on = 1;
}
else
{
u32 i;
for (i = 0; i < 4; i++)
gbc_sound_channel[i].active_flag = 0;
sound_on = 0;
}
value = (value & 0xFFF0) | (read_ioreg(REG_SOUNDCNT_X) & 0x000F);
write_ioreg(REG_SOUNDCNT_X, value);
}
#define sound_update_frequency_step(timer_number) \
timer[timer_number].frequency_step = \
float_to_fp8_24((GBC_BASE_RATE / sound_frequency) / (timer_reload)) \
/* Main */
extern timer_type timer[4];
static const u32 prescale_table[] = { 0, 6, 8, 10 };
#define count_timer(timer_number) \
timer[timer_number].reload = 0x10000 - value; \
if(timer_number < 2) \
{ \
u32 timer_reload = \
timer[timer_number].reload << timer[timer_number].prescale; \
sound_update_frequency_step(timer_number); \
} \
#define adjust_sound_buffer(timer_number, channel) \
if(timer[timer_number].direct_sound_channels & (0x01 << channel)) \
{ \
direct_sound_channel[channel].buffer_index = \
(gbc_sound_buffer_index + buffer_adjust) % BUFFER_SIZE; \
} \
static void trigger_timer(u32 timer_number, u32 value)
{
if (value & 0x80)
{
if(timer[timer_number].status == TIMER_INACTIVE)
{
u32 prescale = prescale_table[value & 0x03];
u32 timer_reload = timer[timer_number].reload;
if((value >> 2) & 0x01)
timer[timer_number].status = TIMER_CASCADE;
else
timer[timer_number].status = TIMER_PRESCALE;
timer[timer_number].prescale = prescale;
timer[timer_number].irq = ((value >> 6) & 0x1);
write_ioreg(REG_TMXD(timer_number), (u32)(-timer_reload));
timer_reload <<= prescale;
timer[timer_number].count = timer_reload;
if(timer_reload < execute_cycles)
execute_cycles = timer_reload;
if(timer_number < 2)
{
u32 buffer_adjust =
(u32)(((float)(cpu_ticks - gbc_sound_last_cpu_ticks) *
sound_frequency) / GBC_BASE_RATE) * 2;
sound_update_frequency_step(timer_number);
adjust_sound_buffer(timer_number, 0);
adjust_sound_buffer(timer_number, 1);
}
}
}
else
{
if(timer[timer_number].status != TIMER_INACTIVE)
{
timer[timer_number].status = TIMER_INACTIVE;
}
}
write_ioreg(REG_TMXCNT(timer_number), value);
}
// This table is configured for sequential access on system defaults
const u32 waitstate_cycles_sequential[16][3] =
{
{ 1, 1, 1 }, // BIOS
{ 1, 1, 1 }, // Invalid
{ 3, 3, 6 }, // EWRAM (default settings)
{ 1, 1, 1 }, // IWRAM
{ 1, 1, 1 }, // IO Registers
{ 1, 1, 2 }, // Palette RAM
{ 1, 1, 2 }, // VRAM
{ 1, 1, 2 }, // OAM
{ 3, 3, 6 }, // Gamepak (wait 0)
{ 3, 3, 6 }, // Gamepak (wait 0)
{ 5, 5, 9 }, // Gamepak (wait 1)
{ 5, 5, 9 }, // Gamepak (wait 1)
{ 9, 9, 17 }, // Gamepak (wait 2)
{ 9, 9, 17 }, // Gamepak (wait 2)
};
// Different settings for gamepak ws0-2 sequential (2nd) access
const u32 gamepak_waitstate_sequential[2][3][3] =
{
{
{ 3, 3, 6 },
{ 5, 5, 9 },
{ 9, 9, 17 }
},
{
{ 2, 2, 3 },
{ 2, 2, 3 },
{ 2, 2, 3 }
}
};
u8 bios_rom[1024 * 16];
// Up to 128kb, store SRAM, flash ROM, or EEPROM here.
u8 gamepak_backup[1024 * 128];
dma_transfer_type dma[4];
// ROM memory is allocated in blocks of 1MB to better map the native block
// mapping system. We will try to allocate 32 of them to allow loading
// ROMs up to 32MB, but we might fail on memory constrained systems.
u8 *gamepak_buffers[32]; /* Pointers to malloc'ed blocks */
u32 gamepak_buffer_count; /* Value between 1 and 32 */
u32 gamepak_size; /* Size of the ROM in bytes */
// We allocate in 1MB chunks.
const unsigned gamepak_buffer_blocksize = 1024*1024;
// LRU queue with the loaded blocks and what they map to
struct {
u16 next_lru; /* Index in the struct to the next LRU entry */
s16 phy_rom; /* ROM page number (-1 means not mapped) */
} gamepak_blk_queue[1024];
u16 gamepak_lru_head;
u16 gamepak_lru_tail;
// Stick page bit: prevents page eviction for a frame. This is used to prevent
// unmapping code pages while being used (ie. in the interpreter).
u32 gamepak_sticky_bit[1024/32];
#define gamepak_sb_test(idx) \
(gamepak_sticky_bit[((unsigned)(idx)) >> 5] & (1 << (((unsigned)(idx)) & 31)))
// This is global so that it can be kept open for large ROMs to swap
// pages from, so there's no slowdown with opening and closing the file
// a lot.
RFILE *gamepak_file_large = NULL;
// Writes to these respective locations should trigger an update
// so the related subsystem may react to it.
// If GBC audio is written to:
u32 gbc_sound_update = 0;
// If the GBC audio waveform is modified:
u32 gbc_sound_wave_update = 0;
// Keep it 32KB until the upper 64KB is accessed, then make it 64KB.
u32 backup_type = BACKUP_NONE;
u32 sram_bankcount = SRAM_SIZE_32KB;
u32 flash_mode = FLASH_BASE_MODE;
u32 flash_command_position = 0;
u32 flash_bank_num; // 0 or 1
u32 flash_bank_cnt;
u32 flash_device_id = FLASH_DEVICE_MACRONIX_64KB;
u8 read_backup(u32 address)
{
u8 value = 0;
if(backup_type == BACKUP_NONE)
backup_type = BACKUP_SRAM;
if(backup_type == BACKUP_SRAM)
value = gamepak_backup[address];
else if(flash_mode == FLASH_ID_MODE)
{
if (flash_bank_cnt == FLASH_SIZE_128KB)
{
/* ID manufacturer type */
if(address == 0x0000)
value = FLASH_MANUFACTURER_MACRONIX;
/* ID device type */
else if(address == 0x0001)
value = FLASH_DEVICE_MACRONIX_128KB;
}
else
{
/* ID manufacturer type */
if(address == 0x0000)
value = FLASH_MANUFACTURER_PANASONIC;
/* ID device type */
else if(address == 0x0001)
value = FLASH_DEVICE_PANASONIC_64KB;
}
}
else
{
u32 fulladdr = address + 64*1024*flash_bank_num;
value = gamepak_backup[fulladdr];
}
return value;
}
#define read_backup8() \
value = read_backup(address & 0xFFFF) \
#define read_backup16() \
value = 0 \
#define read_backup32() \
value = 0 \
// EEPROM is 512 bytes by default; it is autodetecte as 8KB if
// 14bit address DMAs are made (this is done in the DMA handler).
u32 eeprom_size = EEPROM_512_BYTE;
u32 eeprom_mode = EEPROM_BASE_MODE;
u32 eeprom_address = 0;
u32 eeprom_counter = 0;
void function_cc write_eeprom(u32 unused_address, u32 value)
{
switch(eeprom_mode)
{
case EEPROM_BASE_MODE:
backup_type = BACKUP_EEPROM;
eeprom_address |= (value & 0x01) << (1 - eeprom_counter);
if(++eeprom_counter == 2)
{
switch(eeprom_address & 0x03)
{
case 0x02:
eeprom_mode = EEPROM_WRITE_ADDRESS_MODE;
break;
case 0x03:
eeprom_mode = EEPROM_ADDRESS_MODE;
break;
}
eeprom_counter = 0;
eeprom_address = 0;
}
break;
case EEPROM_ADDRESS_MODE:
case EEPROM_WRITE_ADDRESS_MODE:
eeprom_address |= (value & 0x01) << (15 - (eeprom_counter % 16));
if(++eeprom_counter == (eeprom_size == EEPROM_512_BYTE ? 6 : 14))
{
eeprom_counter = 0;
if (eeprom_size == EEPROM_512_BYTE)
eeprom_address >>= 10; // Addr is just 6 bits (drop 10LSB)
else
eeprom_address >>= 2; // Addr is 14 bits (drop 2LSB)
eeprom_address <<= 3; // EEPROM accessed in blocks of 8 bytes
if(eeprom_mode == EEPROM_ADDRESS_MODE)
eeprom_mode = EEPROM_ADDRESS_FOOTER_MODE;
else
{
eeprom_mode = EEPROM_WRITE_MODE;
memset(gamepak_backup + eeprom_address, 0, 8);
}
}
break;
case EEPROM_WRITE_MODE:
gamepak_backup[eeprom_address + (eeprom_counter / 8)] |=
(value & 0x01) << (7 - (eeprom_counter % 8));
eeprom_counter++;
if(eeprom_counter == 64)
{
eeprom_counter = 0;
eeprom_mode = EEPROM_WRITE_FOOTER_MODE;
}
break;
case EEPROM_ADDRESS_FOOTER_MODE:
case EEPROM_WRITE_FOOTER_MODE:
eeprom_counter = 0;
if(eeprom_mode == EEPROM_ADDRESS_FOOTER_MODE)
eeprom_mode = EEPROM_READ_HEADER_MODE;
else
eeprom_mode = EEPROM_BASE_MODE;
break;
default:
break;
}
}
#define read_memory_gamepak(type) \
u32 gamepak_index = address >> 15; \
u8 *map = memory_map_read[gamepak_index]; \
\
if(!map) \
map = load_gamepak_page(gamepak_index & 0x3FF); \
\
value = readaddress##type(map, address & 0x7FFF) \
#define read_open8() \
if(!(reg[REG_CPSR] & 0x20)) \
value = read_memory8(reg[REG_PC] + 8 + (address & 0x03)); \
else \
value = read_memory8(reg[REG_PC] + 4 + (address & 0x01)) \
#define read_open16() \
if(!(reg[REG_CPSR] & 0x20)) \
value = read_memory16(reg[REG_PC] + 8 + (address & 0x02)); \
else \
value = read_memory16(reg[REG_PC] + 4) \
#define read_open32() \
if(!(reg[REG_CPSR] & 0x20)) \
value = read_memory32(reg[REG_PC] + 8); \
else \
{ \
u32 current_instruction = read_memory16(reg[REG_PC] + 4); \
value = current_instruction | (current_instruction << 16); \
} \
u32 function_cc read_eeprom(void)
{
u32 value;
switch(eeprom_mode)
{
case EEPROM_BASE_MODE:
value = 1;
break;
case EEPROM_READ_MODE:
value = (gamepak_backup[eeprom_address + (eeprom_counter / 8)] >>
(7 - (eeprom_counter % 8))) & 0x01;
eeprom_counter++;
if(eeprom_counter == 64)
{
eeprom_counter = 0;
eeprom_mode = EEPROM_BASE_MODE;
}
break;
case EEPROM_READ_HEADER_MODE:
value = 0;
eeprom_counter++;
if(eeprom_counter == 4)
{
eeprom_mode = EEPROM_READ_MODE;
eeprom_counter = 0;
}
break;
default:
value = 0;
break;
}
return value;
}
#define read_memory(type) \
switch(address >> 24) \
{ \
case 0x00: \
/* BIOS */ \
if (address < 0x4000) { \
if(reg[REG_PC] >= 0x4000) \
value = (u##type)(reg[REG_BUS_VALUE] >> ((address & 0x03) << 3)); \
else \
value = readaddress##type(bios_rom, address & 0x3FFF); \
} else { \
read_open##type(); \
} \
break; \
\
case 0x02: \
/* external work RAM */ \
value = readaddress##type(ewram, (address & 0x3FFFF)); \
break; \
\
case 0x03: \
/* internal work RAM */ \
value = readaddress##type(iwram, (address & 0x7FFF) + 0x8000); \
break; \
\
case 0x04: \
/* I/O registers */ \
value = readaddress##type(io_registers, address & 0x3FF); \
break; \
\
case 0x05: \
/* palette RAM */ \
value = readaddress##type(palette_ram, address & 0x3FF); \
break; \
\
case 0x06: \
/* VRAM */ \
address &= 0x1FFFF; \
if(address >= 0x18000) \
address -= 0x8000; \
\
value = readaddress##type(vram, address); \
break; \
\
case 0x07: \
/* OAM RAM */ \
value = readaddress##type(oam_ram, address & 0x3FF); \
break; \
\
case 0x08: \
case 0x09: \
case 0x0A: \
case 0x0B: \
case 0x0C: \
/* gamepak ROM */ \
if((address & 0x1FFFFFF) >= gamepak_size) \
value = 0; \
else \
{ \
read_memory_gamepak(type); \
} \
break; \
\
case 0x0D: \
if((address & 0x1FFFFFF) < gamepak_size) \
{ \
read_memory_gamepak(type); \
} \
else \
value = read_eeprom(); \
\
break; \
\
case 0x0E: \
case 0x0F: \
read_backup##type(); \
break; \
\
default: \
read_open##type(); \
break; \
} \
static cpu_alert_type trigger_dma(u32 dma_number, u32 value)
{
if(value & 0x8000)
{
if(dma[dma_number].start_type == DMA_INACTIVE)
{
u32 start_type = ((value >> 12) & 0x03);
u32 src_address = 0xFFFFFFF & (read_dmareg(REG_DMA0SAD, dma_number) |
(read_dmareg(REG_DMA0SAD + 1, dma_number) << 16));
u32 dst_address = 0xFFFFFFF & (read_dmareg(REG_DMA0DAD, dma_number) |
(read_dmareg(REG_DMA0DAD + 1, dma_number) << 16));
dma[dma_number].source_address = src_address;
dma[dma_number].dest_address = dst_address;
dma[dma_number].source_direction = ((value >> 7) & 3);
dma[dma_number].repeat_type = ((value >> 9) & 0x01);
dma[dma_number].start_type = start_type;
dma[dma_number].irq = ((value >> 14) & 0x1);
/* If it is sound FIFO DMA make sure the settings are a certain way */
if((dma_number >= 1) && (dma_number <= 2) &&
(start_type == DMA_START_SPECIAL))
{
dma[dma_number].length_type = DMA_32BIT;
dma[dma_number].length = 4;
dma[dma_number].dest_direction = DMA_FIXED;
if(dst_address == 0x40000A4)
dma[dma_number].direct_sound_channel = DMA_DIRECT_SOUND_B;
else
dma[dma_number].direct_sound_channel = DMA_DIRECT_SOUND_A;
}
else
{
u32 length = read_dmareg(REG_DMA0CNT_L, dma_number);
if((dma_number == 3) && ((dst_address >> 24) == 0x0D) &&
((length & 0x1F) == 17))
eeprom_size = EEPROM_8_KBYTE;
if(dma_number < 3)
length &= 0x3FFF;
if(length == 0)
{
if(dma_number == 3)
length = 0x10000;
else
length = 0x04000;
}
dma[dma_number].length = length;
dma[dma_number].length_type = ((value >> 10) & 0x01);
dma[dma_number].dest_direction = ((value >> 5) & 3);
}
write_dmareg(REG_DMA0CNT_H, dma_number, value);
if(start_type == DMA_START_IMMEDIATELY)
return dma_transfer(dma_number, NULL);
}
}
else
{
dma[dma_number].start_type = DMA_INACTIVE;
dma[dma_number].direct_sound_channel = DMA_NO_DIRECT_SOUND;
write_dmareg(REG_DMA0CNT_H, dma_number, value);
}
return CPU_ALERT_NONE;
}
#define access_register8_high(address) \
value = (value << 8) | (address8(io_registers, address)) \
#define access_register8_low(address) \
value = ((address8(io_registers, address + 1)) << 8) | value \
#define access_register16_high(address) \
value = (value << 16) | (readaddress16(io_registers, address)) \
#define access_register16_low(address) \
value = ((readaddress16(io_registers, address + 2)) << 16) | value \
cpu_alert_type function_cc write_io_register8(u32 address, u32 value)
{
value &= 0xff;
switch(address)
{
case 0x00:
{
u32 dispcnt = read_ioreg(REG_DISPCNT);
if((value & 0x07) != (dispcnt & 0x07))
reg[OAM_UPDATED] = 1;
address8(io_registers, 0x00) = value;
break;
}
// DISPSTAT (lower byte)
case 0x04:
address8(io_registers, 0x04) =
(address8(io_registers, 0x04) & 0x07) | (value & ~0x07);
break;
// VCOUNT
case 0x06:
case 0x07:
break;
// BG2 reference X
case 0x28:
access_register8_low(0x28);
access_register16_low(0x28);
affine_reference_x[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x28) = eswap32(value);
break;
case 0x29:
access_register8_high(0x28);
access_register16_low(0x28);
affine_reference_x[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x28) = eswap32(value);
break;
case 0x2A:
access_register8_low(0x2A);
access_register16_high(0x28);
affine_reference_x[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x28) = eswap32(value);
break;
case 0x2B:
access_register8_high(0x2A);
access_register16_high(0x28);
affine_reference_x[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x28) = eswap32(value);
break;
// BG2 reference Y
case 0x2C:
access_register8_low(0x2C);
access_register16_low(0x2C);
affine_reference_y[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x2C) = eswap32(value);
break;
case 0x2D:
access_register8_high(0x2C);
access_register16_low(0x2C);
affine_reference_y[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x2C) = eswap32(value);
break;
case 0x2E:
access_register8_low(0x2E);
access_register16_high(0x2C);
affine_reference_y[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x2C) = eswap32(value);
break;
case 0x2F:
access_register8_high(0x2E);
access_register16_high(0x2C);
affine_reference_y[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x2C) = eswap32(value);
break;
// BG3 reference X
case 0x38:
access_register8_low(0x38);
access_register16_low(0x38);
affine_reference_x[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x38) = eswap32(value);
break;
case 0x39:
access_register8_high(0x38);
access_register16_low(0x38);
affine_reference_x[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x38) = eswap32(value);
break;
case 0x3A:
access_register8_low(0x3A);
access_register16_high(0x38);
affine_reference_x[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x38) = eswap32(value);
break;
case 0x3B:
access_register8_high(0x3A);
access_register16_high(0x38);
affine_reference_x[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x38) = eswap32(value);
break;
// BG3 reference Y
case 0x3C:
access_register8_low(0x3C);
access_register16_low(0x3C);
affine_reference_y[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x3C) = eswap32(value);
break;
case 0x3D:
access_register8_high(0x3C);
access_register16_low(0x3C);
affine_reference_y[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x3C) = eswap32(value);
break;
case 0x3E:
access_register8_low(0x3E);
access_register16_high(0x3C);
affine_reference_y[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x3C) = eswap32(value);
break;
case 0x3F:
access_register8_high(0x3E);
access_register16_high(0x3C);
affine_reference_y[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x3C) = eswap32(value);
break;
// Sound 1 control sweep
case 0x60:
gbc_sound_tone_control_sweep();
break;
// Sound 1 control duty/length/envelope
case 0x62:
access_register8_low(0x62);
gbc_sound_tone_control_low(0, REG_SOUND1CNT_H);
break;
case 0x63:
access_register8_high(0x62);
gbc_sound_tone_control_low(0, REG_SOUND1CNT_H);
break;
// Sound 1 control frequency
case 0x64:
access_register8_low(0x64);
gbc_sound_tone_control_high(0, REG_SOUND1CNT_X);
break;
case 0x65:
access_register8_high(0x64);
gbc_sound_tone_control_high(0, REG_SOUND1CNT_X);
break;
// Sound 2 control duty/length/envelope
case 0x68:
access_register8_low(0x68);
gbc_sound_tone_control_low(1, REG_SOUND2CNT_L);
break;
case 0x69:
access_register8_high(0x68);
gbc_sound_tone_control_low(1, REG_SOUND2CNT_L);
break;
// Sound 2 control frequency
case 0x6C:
access_register8_low(0x6C);
gbc_sound_tone_control_high(1, REG_SOUND2CNT_H);
break;
case 0x6D:
access_register8_high(0x6C);
gbc_sound_tone_control_high(1, REG_SOUND2CNT_H);
break;
// Sound 3 control wave
case 0x70:
access_register8_low(0x70);
gbc_sound_wave_control();
break;
case 0x71:
access_register8_high(0x70);
gbc_sound_wave_control();
break;
// Sound 3 control length/volume
case 0x72:
access_register8_low(0x72);
gbc_sound_tone_control_low_wave();
break;
case 0x73:
access_register8_high(0x72);
gbc_sound_tone_control_low_wave();
break;
// Sound 3 control frequency
case 0x74:
access_register8_low(0x74);
gbc_sound_tone_control_high_wave();
break;
case 0x75:
access_register8_high(0x74);
gbc_sound_tone_control_high_wave();
break;
// Sound 4 control length/envelope
case 0x78:
access_register8_low(0x78);
gbc_sound_tone_control_low(3, REG_SOUND4CNT_L);
break;
case 0x79:
access_register8_high(0x78);
gbc_sound_tone_control_low(3, REG_SOUND4CNT_L);
break;
// Sound 4 control frequency
case 0x7C:
access_register8_low(0x7C);
gbc_sound_noise_control();
break;
case 0x7D:
access_register8_high(0x7C);
gbc_sound_noise_control();
break;
// Sound control L
case 0x80:
access_register8_low(0x80);
gbc_trigger_sound(value);
break;
case 0x81:
access_register8_high(0x80);
gbc_trigger_sound(value);
break;
// Sound control H
case 0x82:
access_register8_low(0x82);
trigger_sound();
break;
case 0x83:
access_register8_high(0x82);
trigger_sound();
break;
// Sound control X
case 0x84:
sound_control_x(value);
break;
// Sound wave RAM
case 0x90 ... 0x9F:
gbc_sound_wave_update = 1;
address8(io_registers, address) = value;
break;
// DMA control (trigger byte)
case 0xBB:
access_register8_low(0xBA);
return trigger_dma(0, value);
case 0xC7:
access_register8_low(0xC6);
return trigger_dma(1, value);
case 0xD3:
access_register8_low(0xD2);
return trigger_dma(2, value);
case 0xDF:
access_register8_low(0xDE);
return trigger_dma(3, value);
// Timer counts
case 0x100:
access_register8_low(0x100);
count_timer(0);
break;
case 0x101:
access_register8_high(0x100);
count_timer(0);
break;
case 0x104:
access_register8_low(0x104);
count_timer(1);
break;
case 0x105:
access_register8_high(0x104);
count_timer(1);
break;
case 0x108:
access_register8_low(0x108);
count_timer(2);
break;
case 0x109:
access_register8_high(0x108);
count_timer(2);
break;
case 0x10C:
access_register8_low(0x10C);
count_timer(3);
break;
case 0x10D:
access_register8_high(0x10C);
count_timer(3);
break;
// Timer control (trigger byte)
case 0x103:
access_register8_low(0x102);
trigger_timer(0, value);
break;
case 0x107:
access_register8_low(0x106);
trigger_timer(1, value);
break;
case 0x10B:
access_register8_low(0x10A);
trigger_timer(2, value);
break;
case 0x10F:
access_register8_low(0x10E);
trigger_timer(3, value);
break;
// IF
case 0x202:
address8(io_registers, 0x202) &= ~value;
break;
case 0x203:
address8(io_registers, 0x203) &= ~value;
break;
// Halt
case 0x301:
if((value & 0x01) == 0)
reg[CPU_HALT_STATE] = CPU_HALT;
else
reg[CPU_HALT_STATE] = CPU_STOP;
return CPU_ALERT_HALT;
default:
address8(io_registers, address) = value;
break;
}
return CPU_ALERT_NONE;
}
cpu_alert_type function_cc write_io_register16(u32 address, u32 value)
{
value &= 0xffff;
switch(address)
{
case 0x00:
{
u32 dispcnt = read_ioreg(REG_DISPCNT);
if((value & 0x07) != (dispcnt & 0x07))
reg[OAM_UPDATED] = 1;
write_ioreg(REG_DISPCNT, value);
break;
}
// DISPSTAT
case 0x04:
write_ioreg(REG_DISPSTAT, (read_ioreg(REG_DISPSTAT) & 0x07) | (value & ~0x07));
break;
// VCOUNT
case 0x06:
break;
// BG2 reference X
case 0x28:
access_register16_low(0x28);
affine_reference_x[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x28) = eswap32(value);
break;
case 0x2A:
access_register16_high(0x28);
affine_reference_x[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x28) = eswap32(value);
break;
// BG2 reference Y
case 0x2C:
access_register16_low(0x2C);
affine_reference_y[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x2C) = eswap32(value);
break;
case 0x2E:
access_register16_high(0x2C);
affine_reference_y[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x2C) = eswap32(value);
break;
// BG3 reference X
case 0x38:
access_register16_low(0x38);
affine_reference_x[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x38) = eswap32(value);
break;
case 0x3A:
access_register16_high(0x38);
affine_reference_x[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x38) = eswap32(value);
break;
// BG3 reference Y
case 0x3C:
access_register16_low(0x3C);
affine_reference_y[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x3C) = eswap32(value);
break;
case 0x3E:
access_register16_high(0x3C);
affine_reference_y[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x3C) = eswap32(value);
break;
// Sound 1 control sweep
case 0x60:
gbc_sound_tone_control_sweep();
break;
// Sound 1 control duty/length/envelope
case 0x62:
gbc_sound_tone_control_low(0, REG_SOUND1CNT_H);
break;
// Sound 1 control frequency
case 0x64:
gbc_sound_tone_control_high(0, REG_SOUND1CNT_X);
break;
// Sound 2 control duty/length/envelope
case 0x68:
gbc_sound_tone_control_low(1, REG_SOUND2CNT_L);
break;
// Sound 2 control frequency
case 0x6C:
gbc_sound_tone_control_high(1, REG_SOUND2CNT_H);
break;
// Sound 3 control wave
case 0x70:
gbc_sound_wave_control();
break;
// Sound 3 control length/volume
case 0x72:
gbc_sound_tone_control_low_wave();
break;
// Sound 3 control frequency
case 0x74:
gbc_sound_tone_control_high_wave();
break;
// Sound 4 control length/envelope
case 0x78:
gbc_sound_tone_control_low(3, REG_SOUND4CNT_L);
break;
// Sound 4 control frequency
case 0x7C:
gbc_sound_noise_control();
break;
// Sound control L
case 0x80:
gbc_trigger_sound(value);
break;
// Sound control H
case 0x82:
trigger_sound();
break;
// Sound control X
case 0x84:
sound_control_x(value);
break;
// Sound wave RAM
case 0x90 ... 0x9E:
gbc_sound_wave_update = 1;
address16(io_registers, address) = eswap16(value);
break;
// DMA control
case 0xBA:
return trigger_dma(0, value);
case 0xC6:
return trigger_dma(1, value);
case 0xD2:
return trigger_dma(2, value);
case 0xDE:
return trigger_dma(3, value);
// Timer counts
case 0x100:
count_timer(0);
break;
case 0x104:
count_timer(1);
break;
case 0x108:
count_timer(2);
break;
case 0x10C:
count_timer(3);
break;
/* Timer control 0 */
case 0x102:
trigger_timer(0, value);
break;
/* Timer control 1 */
case 0x106:
trigger_timer(1, value);
break;
/* Timer control 2 */
case 0x10A:
trigger_timer(2, value);
break;
/* Timer control 3 */
case 0x10E:
trigger_timer(3, value);
break;
// P1
case 0x130:
break;
// REG_IE
case 0x200:
write_ioreg(REG_IE, value);
return check_interrupt();
// Interrupt flag
case 0x202:
write_ioreg(REG_IF, read_ioreg(REG_IF) & (~value));
break;
// WAITCNT
case 0x204:
write_ioreg(REG_WAITCNT, value);
break;
// REG_IME
case 0x208:
write_ioreg(REG_IME, value);
return check_interrupt();
// Halt
case 0x300:
if(((value >> 8) & 0x01) == 0)
reg[CPU_HALT_STATE] = CPU_HALT;
else
reg[CPU_HALT_STATE] = CPU_STOP;
return CPU_ALERT_HALT;
default:
address16(io_registers, address) = eswap16(value);
break;
}
return CPU_ALERT_NONE;
}
cpu_alert_type function_cc write_io_register32(u32 address, u32 value)
{
// Handle sound FIFO data write
if (address == 0xA0) {
sound_timer_queue32(0, value);
return CPU_ALERT_NONE;
}
else if (address == 0xA4) {
sound_timer_queue32(1, value);
return CPU_ALERT_NONE;
}
// Perform two 16 bit writes. Low part goes first apparently.
// Some Count+Control DMA writes use 32 bit, so control must be last.
cpu_alert_type allow = write_io_register16(address, value & 0xFFFF);
cpu_alert_type alhigh = write_io_register16(address + 2, value >> 16);
return allow | alhigh;
}
#define write_palette8(address, value) \
{ \
u32 aladdr = address & ~1U; \
u16 val16 = (value << 8) | value; \
address16(palette_ram, aladdr) = eswap16(val16); \
address16(palette_ram_converted, aladdr) = convert_palette(val16); \
}
#define write_palette16(address, value) \
{ \
u32 palette_address = address; \
address16(palette_ram, palette_address) = eswap16(value); \
value = convert_palette(value); \
address16(palette_ram_converted, palette_address) = value; \
} \
#define write_palette32(address, value) \
{ \
u32 palette_address = address; \
u32 value_high = value >> 16; \
u32 value_low = value & 0xFFFF; \
address32(palette_ram, palette_address) = eswap32(value); \
value_high = convert_palette(value_high); \
address16(palette_ram_converted, palette_address + 2) = value_high; \
value_low = convert_palette(value_low); \
address16(palette_ram_converted, palette_address) = value_low; \
} \
void function_cc write_backup(u32 address, u32 value)
{
value &= 0xFF;
if(backup_type == BACKUP_NONE)
backup_type = BACKUP_SRAM;
// gamepak SRAM or Flash ROM
if((address == 0x5555) && (flash_mode != FLASH_WRITE_MODE))
{
if((flash_command_position == 0) && (value == 0xAA))
{
backup_type = BACKUP_FLASH;
flash_command_position = 1;
}
if(flash_command_position == 2)
{
switch(value)
{
case 0x90:
// Enter ID mode, this also tells the emulator that we're using
// flash, not SRAM
if(flash_mode == FLASH_BASE_MODE)
flash_mode = FLASH_ID_MODE;
break;
case 0x80:
// Enter erase mode
if(flash_mode == FLASH_BASE_MODE)
flash_mode = FLASH_ERASE_MODE;
break;
case 0xF0:
// Terminate ID mode
if(flash_mode == FLASH_ID_MODE)
flash_mode = FLASH_BASE_MODE;
break;
case 0xA0:
// Write mode
if(flash_mode == FLASH_BASE_MODE)
flash_mode = FLASH_WRITE_MODE;
break;
case 0xB0:
// Bank switch
// Here the chip is now officially 128KB.
flash_bank_cnt = FLASH_SIZE_128KB;
if(flash_mode == FLASH_BASE_MODE)
flash_mode = FLASH_BANKSWITCH_MODE;
break;
case 0x10:
// Erase chip
if(flash_mode == FLASH_ERASE_MODE)
{
memset(gamepak_backup, 0xFF, 1024 * 64 * flash_bank_cnt);
flash_mode = FLASH_BASE_MODE;
}
break;
default:
break;
}
flash_command_position = 0;
}
if(backup_type == BACKUP_SRAM)
gamepak_backup[0x5555] = value;
}
else
if((address == 0x2AAA) && (value == 0x55) &&
(flash_command_position == 1))
flash_command_position = 2;
else
{
if((flash_command_position == 2) &&
(flash_mode == FLASH_ERASE_MODE) && (value == 0x30))
{
// Erase sector
u32 fulladdr = (address & 0xF000) + 64*1024*flash_bank_num;
memset(&gamepak_backup[fulladdr], 0xFF, 1024 * 4);
flash_mode = FLASH_BASE_MODE;
flash_command_position = 0;
}
else
if((flash_command_position == 0) &&
(flash_mode == FLASH_BANKSWITCH_MODE) && (address == 0x0000) &&
(flash_bank_cnt == FLASH_SIZE_128KB))
{
flash_bank_num = value & 1;
flash_mode = FLASH_BASE_MODE;
}
else
if((flash_command_position == 0) && (flash_mode == FLASH_WRITE_MODE))
{
// Write value to flash ROM
u32 fulladdr = address + 64*1024*flash_bank_num;
gamepak_backup[fulladdr] = value;
flash_mode = FLASH_BASE_MODE;
}
else
if(backup_type == BACKUP_SRAM)
{
// Write value to SRAM
// Hit 64KB territory?
if(address >= 0x8000)
sram_bankcount = SRAM_SIZE_64KB;
gamepak_backup[address] = value;
}
}
}
#define write_backup8() \
write_backup(address & 0xFFFF, value) \
#define write_backup16() \
#define write_backup32() \
#define write_vram8() \
address &= ~0x01; \
address16(vram, address) = eswap16((value << 8) | value) \
#define write_vram16() \
address16(vram, address) = eswap16(value) \
#define write_vram32() \
address32(vram, address) = eswap32(value) \
// RTC code derived from VBA's (due to lack of any real publically available
// documentation...)
#define RTC_DISABLED 0
#define RTC_IDLE 1
#define RTC_COMMAND 2
#define RTC_OUTPUT_DATA 3
#define RTC_INPUT_DATA 4
typedef enum
{
RTC_COMMAND_RESET = 0x60,
RTC_COMMAND_WRITE_STATUS = 0x62,
RTC_COMMAND_READ_STATUS = 0x63,
RTC_COMMAND_OUTPUT_TIME_FULL = 0x65,
RTC_COMMAND_OUTPUT_TIME = 0x67
} rtc_command_type;
#define RTC_WRITE_TIME 0
#define RTC_WRITE_TIME_FULL 1
#define RTC_WRITE_STATUS 2
u32 rtc_state = RTC_DISABLED;
u32 rtc_write_mode;
u8 rtc_registers[3];
u32 rtc_command;
u32 rtc_data[12];
u32 rtc_status = 0x40;
u32 rtc_data_bytes;
s32 rtc_bit_count;
static u32 encode_bcd(u8 value)
{
int l = 0;
int h = 0;
value = value % 100;
l = value % 10;
h = value / 10;
return h * 16 + l;
}
// RTC writes need to reflect in the bytes [0xC4..0xC9] of the gamepak
#define write_rtc_register(index, _value) \
update_address = 0x80000C4 + (index * 2); \
rtc_registers[index] = _value; \
rtc_page_index = update_address >> 15; \
map = memory_map_read[rtc_page_index]; \
\
if(map) { \
address16(map, update_address & 0x7FFF) = eswap16(_value); \
} \
void function_cc write_rtc(u32 address, u32 value)
{
u32 rtc_page_index;
u32 update_address;
u8 *map;
value &= 0xFFFF;
switch(address)
{
// RTC command
// Bit 0: SCHK, perform action
// Bit 1: IO, input/output command data
// Bit 2: CS, select input/output? If high make I/O write only
case 0xC4:
if(rtc_state == RTC_DISABLED)
rtc_state = RTC_IDLE;
if(!(rtc_registers[0] & 0x04))
value = (rtc_registers[0] & 0x02) | (value & ~0x02);
if(rtc_registers[2] & 0x01)
{
// To begin writing a command 1, 5 must be written to the command
// registers.
if((rtc_state == RTC_IDLE) && (rtc_registers[0] == 0x01) &&
(value == 0x05))
{
// We're now ready to begin receiving a command.
write_rtc_register(0, value);
rtc_state = RTC_COMMAND;
rtc_command = 0;
rtc_bit_count = 7;
}
else
{
write_rtc_register(0, value);
switch(rtc_state)
{
// Accumulate RTC command by receiving the next bit, and if we
// have accumulated enough bits to form a complete command
// execute it.
case RTC_COMMAND:
if(rtc_registers[0] & 0x01)
{
rtc_command |= ((value & 0x02) >> 1) << rtc_bit_count;
rtc_bit_count--;
}
// Have we received a full RTC command? If so execute it.
if(rtc_bit_count < 0)
{
switch(rtc_command)
{
// Resets RTC
case RTC_COMMAND_RESET:
rtc_state = RTC_IDLE;
memset(rtc_registers, 0, sizeof(rtc_registers));
break;
// Sets status of RTC
case RTC_COMMAND_WRITE_STATUS:
rtc_state = RTC_INPUT_DATA;
rtc_data_bytes = 1;
rtc_write_mode = RTC_WRITE_STATUS;
break;
// Outputs current status of RTC
case RTC_COMMAND_READ_STATUS:
rtc_state = RTC_OUTPUT_DATA;
rtc_data_bytes = 1;
rtc_data[0] = rtc_status;
break;
// Actually outputs the time, all of it
case RTC_COMMAND_OUTPUT_TIME_FULL:
{
struct tm *current_time;
time_t current_time_flat;
time(&current_time_flat);
current_time = localtime(&current_time_flat);
rtc_state = RTC_OUTPUT_DATA;
rtc_data_bytes = 7;
rtc_data[0] = encode_bcd(current_time->tm_year);
rtc_data[1] = encode_bcd(current_time->tm_mon + 1);
rtc_data[2] = encode_bcd(current_time->tm_mday);
rtc_data[3] = encode_bcd(current_time->tm_wday);
rtc_data[4] = encode_bcd(current_time->tm_hour);
rtc_data[5] = encode_bcd(current_time->tm_min);
rtc_data[6] = encode_bcd(current_time->tm_sec);
break;
}
// Only outputs the current time of day.
case RTC_COMMAND_OUTPUT_TIME:
{
struct tm *current_time;
time_t current_time_flat;
time(&current_time_flat);
current_time = localtime(&current_time_flat);
rtc_state = RTC_OUTPUT_DATA;
rtc_data_bytes = 3;
rtc_data[0] = encode_bcd(current_time->tm_hour);
rtc_data[1] = encode_bcd(current_time->tm_min);
rtc_data[2] = encode_bcd(current_time->tm_sec);
break;
}
}
rtc_bit_count = 0;
}
break;
// Receive parameters from the game as input to the RTC
// for a given command. Read one bit at a time.
case RTC_INPUT_DATA:
// Bit 1 of parameter A must be high for input
if(rtc_registers[1] & 0x02)
{
// Read next bit for input
if(!(value & 0x01))
{
rtc_data[rtc_bit_count >> 3] |=
((value & 0x01) << (7 - (rtc_bit_count & 0x07)));
}
else
{
rtc_bit_count++;
if(rtc_bit_count == (signed)(rtc_data_bytes * 8))
{
rtc_state = RTC_IDLE;
switch(rtc_write_mode)
{
case RTC_WRITE_STATUS:
rtc_status = rtc_data[0];
break;
default:
break;
}
}
}
}
break;
case RTC_OUTPUT_DATA:
// Bit 1 of parameter A must be low for output
if(!(rtc_registers[1] & 0x02))
{
// Write next bit to output, on bit 1 of parameter B
if(!(value & 0x01))
{
u8 current_output_byte = rtc_registers[2];
current_output_byte =
(current_output_byte & ~0x02) |
(((rtc_data[rtc_bit_count >> 3] >>
(rtc_bit_count & 0x07)) & 0x01) << 1);
write_rtc_register(0, current_output_byte);
}
else
{
rtc_bit_count++;
if(rtc_bit_count == (signed)(rtc_data_bytes * 8))
{
rtc_state = RTC_IDLE;
memset(rtc_registers, 0, sizeof(rtc_registers));
}
}
}
break;
default:
break;
}
}
}
else
{
write_rtc_register(2, value);
}
break;
// Write parameter A
case 0xC6:
write_rtc_register(1, value);
break;
// Write parameter B
case 0xC8:
write_rtc_register(2, value);
break;
}
}
#define write_rtc8() \
#define write_rtc16() \
write_rtc(address & 0xFF, value) \
#define write_rtc32() \
#define write_memory(type) \
switch(address >> 24) \
{ \
case 0x02: \
/* external work RAM */ \
address##type(ewram, (address & 0x3FFFF)) = eswap##type(value); \
break; \
\
case 0x03: \
/* internal work RAM */ \
address##type(iwram, (address & 0x7FFF) + 0x8000) = eswap##type(value); \
break; \
\
case 0x04: \
/* I/O registers */ \
return write_io_register##type(address & 0x3FF, value); \
\
case 0x05: \
/* palette RAM */ \
write_palette##type(address & 0x3FF, value); \
break; \
\
case 0x06: \
/* VRAM */ \
address &= 0x1FFFF; \
if(address >= 0x18000) \
address -= 0x8000; \
\
write_vram##type(); \
break; \
\
case 0x07: \
/* OAM RAM */ \
if (type != 8) { \
reg[OAM_UPDATED] = 1; \
address##type(oam_ram, address & 0x3FF) = eswap##type(value); \
} \
break; \
\
case 0x08: \
/* gamepak ROM or RTC */ \
write_rtc##type(); \
break; \
\
case 0x09: \
case 0x0A: \
case 0x0B: \
case 0x0C: \
/* gamepak ROM space */ \
break; \
\
case 0x0D: \
write_eeprom(address, value); \
break; \
\
case 0x0E: \
write_backup##type(); \
break; \
} \
u32 function_cc read_memory8(u32 address)
{
u8 value;
read_memory(8);
return value;
}
u32 function_cc read_memory8s(u32 address) {
return (u32)((s8)read_memory8(address));
}
u16 function_cc read_memory16_signed(u32 address)
{
u16 value;
if(address & 0x01)
return (s8)read_memory8(address);
read_memory(16);
return value;
}
u32 function_cc read_memory16s(u32 address) {
return (u32)((s16)read_memory16_signed(address));
}
// unaligned reads are actually 32bit
u32 function_cc read_memory16(u32 address)
{
u32 value;
bool unaligned = (address & 0x01);
address &= ~0x01;
read_memory(16);
if (unaligned) {
ror(value, value, 8);
}
return value;
}
u32 function_cc read_memory32(u32 address)
{
u32 value;
u32 rotate = (address & 0x03) * 8;
address &= ~0x03;
read_memory(32);
ror(value, value, rotate);
return value;
}
cpu_alert_type function_cc write_memory8(u32 address, u8 value)
{
write_memory(8);
return CPU_ALERT_NONE;
}
cpu_alert_type function_cc write_memory16(u32 address, u16 value)
{
write_memory(16);
return CPU_ALERT_NONE;
}
cpu_alert_type function_cc write_memory32(u32 address, u32 value)
{
write_memory(32);
return CPU_ALERT_NONE;
}
char backup_filename[512];
u32 load_backup(char *name)
{
RFILE *fd = filestream_open(name, RETRO_VFS_FILE_ACCESS_READ,
RETRO_VFS_FILE_ACCESS_HINT_NONE);
if(fd)
{
int64_t backup_size = filestream_get_size(fd);
filestream_read(fd, gamepak_backup, backup_size);
filestream_close(fd);
// The size might give away what kind of backup it is.
switch(backup_size)
{
case 0x200:
backup_type = BACKUP_EEPROM;
eeprom_size = EEPROM_512_BYTE;
break;
case 0x2000:
backup_type = BACKUP_EEPROM;
eeprom_size = EEPROM_8_KBYTE;
break;
case 0x8000:
backup_type = BACKUP_SRAM;
sram_bankcount = SRAM_SIZE_32KB;
break;
// Could be either flash or SRAM, go with flash
case 0x10000:
backup_type = BACKUP_FLASH;
sram_bankcount = SRAM_SIZE_64KB;
break;
case 0x20000:
backup_type = BACKUP_FLASH;
flash_bank_cnt = FLASH_SIZE_128KB;
break;
}
return 1;
}
else
{
backup_type = BACKUP_NONE;
memset(gamepak_backup, 0xFF, 1024 * 128);
}
return 0;
}
u32 save_backup(char *name)
{
if(backup_type != BACKUP_NONE)
{
RFILE *fd = filestream_open(name, RETRO_VFS_FILE_ACCESS_WRITE,
RETRO_VFS_FILE_ACCESS_HINT_NONE);
if(fd)
{
u32 backup_size = 0;
switch(backup_type)
{
case BACKUP_SRAM:
backup_size = 0x8000 * sram_bankcount;
break;
case BACKUP_FLASH:
backup_size = 0x10000 * flash_bank_cnt;
break;
case BACKUP_EEPROM:
backup_size = 0x200 * eeprom_size;
break;
default:
break;
}
filestream_write(fd, gamepak_backup, backup_size);
filestream_close(fd);
return 1;
}
}
return 0;
}
void update_backup(void)
{
if (!use_libretro_save_method)
save_backup(backup_filename);
}
#define CONFIG_FILENAME "game_config.txt"
static char *skip_spaces(char *line_ptr)
{
while(*line_ptr == ' ')
line_ptr++;
return line_ptr;
}
static s32 parse_config_line(char *current_line, char *current_variable, char *current_value)
{
char *line_ptr = current_line;
char *line_ptr_new;
if((current_line[0] == 0) || (current_line[0] == '#'))
return -1;
line_ptr_new = strchr(line_ptr, ' ');
if(!line_ptr_new)
return -1;
*line_ptr_new = 0;
strcpy(current_variable, line_ptr);
line_ptr_new = skip_spaces(line_ptr_new + 1);
if(*line_ptr_new != '=')
return -1;
line_ptr_new = skip_spaces(line_ptr_new + 1);
strcpy(current_value, line_ptr_new);
line_ptr_new = current_value + strlen(current_value) - 1;
if(*line_ptr_new == '\n')
{
line_ptr_new--;
*line_ptr_new = 0;
}
if(*line_ptr_new == '\r')
*line_ptr_new = 0;
return 0;
}
typedef struct
{
char gamepak_title[13];
char gamepak_code[5];
char gamepak_maker[3];
int flash_size;
u32 flash_device_id;
int save_type;
int rtc_enabled;
u32 idle_loop_target_pc;
u32 translation_gate_target_1;
u32 translation_gate_target_2;
u32 translation_gate_target_3;
} ini_t;
typedef struct
{
char gamepak_title[13];
char gamepak_code[5];
char gamepak_maker[3];
} gamepak_info_t;
#include "gba_over.h"
static s32 load_game_config_over(gamepak_info_t *gpinfo)
{
unsigned i = 0;
for (i = 0; i < sizeof(gbaover)/sizeof(gbaover[0]); i++)
{
if (strcmp(gbaover[i].gamepak_code, gpinfo->gamepak_code))
continue;
if (strcmp(gbaover[i].gamepak_title, gpinfo->gamepak_title))
continue;
printf("gamepak title: %s\n", gbaover[i].gamepak_title);
printf("gamepak code : %s\n", gbaover[i].gamepak_code);
printf("gamepak maker: %s\n", gbaover[i].gamepak_maker);
printf("INPUT gamepak title: %s\n", gpinfo->gamepak_title);
printf("INPUT gamepak code : %s\n", gpinfo->gamepak_code);
printf("INPUT gamepak maker: %s\n", gpinfo->gamepak_maker);
if (gbaover[i].idle_loop_target_pc != 0)
idle_loop_target_pc = gbaover[i].idle_loop_target_pc;
flash_device_id = gbaover[i].flash_device_id;
if (flash_device_id == FLASH_DEVICE_MACRONIX_128KB)
flash_bank_cnt = FLASH_SIZE_128KB;
if (gbaover[i].translation_gate_target_1 != 0)
{
translation_gate_target_pc[translation_gate_targets] = gbaover[i].translation_gate_target_1;
translation_gate_targets++;
}
if (gbaover[i].translation_gate_target_2 != 0)
{
translation_gate_target_pc[translation_gate_targets] = gbaover[i].translation_gate_target_2;
translation_gate_targets++;
}
if (gbaover[i].translation_gate_target_3 != 0)
{
translation_gate_target_pc[translation_gate_targets] = gbaover[i].translation_gate_target_3;
translation_gate_targets++;
}
printf("found entry in over ini file.\n");
return 0;
}
return -1;
}
static s32 load_game_config(gamepak_info_t *gpinfo)
{
char current_line[256];
char current_variable[256];
char current_value[256];
char config_path[512];
RFILE *config_file;
sprintf(config_path, "%s" PATH_SEPARATOR "%s", main_path, CONFIG_FILENAME);
printf("config_path is : %s\n", config_path);
config_file = filestream_open(config_path, RETRO_VFS_FILE_ACCESS_READ,
RETRO_VFS_FILE_ACCESS_HINT_NONE);
if(config_file)
{
while(filestream_gets(config_file, current_line, 256))
{
if(parse_config_line(current_line, current_variable, current_value)
!= -1)
{
if(strcmp(current_variable, "game_name") ||
strcmp(current_value, gpinfo->gamepak_title))
continue;
if(!filestream_gets(config_file, current_line, 256) ||
(parse_config_line(current_line, current_variable,
current_value) == -1) ||
strcmp(current_variable, "game_code") ||
strcmp(current_value, gpinfo->gamepak_code))
continue;
if(!filestream_gets(config_file, current_line, 256) ||
(parse_config_line(current_line, current_variable,
current_value) == -1) ||
strcmp(current_variable, "vender_code") ||
strcmp(current_value, gpinfo->gamepak_maker))
continue;
while(filestream_gets(config_file, current_line, 256))
{
if(parse_config_line(current_line, current_variable, current_value)
!= -1)
{
if(!strcmp(current_variable, "game_name"))
{
filestream_close(config_file);
return 0;
}
if(!strcmp(current_variable, "idle_loop_eliminate_target"))
idle_loop_target_pc = strtol(current_value, NULL, 16);
if(!strcmp(current_variable, "translation_gate_target"))
{
if(translation_gate_targets < MAX_TRANSLATION_GATES)
{
translation_gate_target_pc[translation_gate_targets] =
strtol(current_value, NULL, 16);
translation_gate_targets++;
}
}
if(!strcmp(current_variable, "flash_rom_type") &&
!strcmp(current_value, "128KB"))
flash_device_id = FLASH_DEVICE_MACRONIX_128KB;
}
}
filestream_close(config_file);
return 0;
}
}
filestream_close(config_file);
}
printf("game config missing\n");
return -1;
}
// DMA memory regions can be one of the following:
// IWRAM - 32kb offset from the contiguous iwram region.
// EWRAM - also contiguous but with self modifying code check mirror.
// VRAM - 96kb offset from the contiguous vram region, should take care
// Palette RAM - Converts palette entries when written to.
// OAM RAM - Sets OAM modified flag to true.
// I/O registers - Uses the I/O register function.
// of mirroring properly.
// Segmented RAM/ROM - a region >= 32kb, the translated address has to
// be reloaded if it wraps around the limit (cartride ROM)
// Ext - should be handled by the memory read/write function.
// The following map determines the region of each (assumes DMA access
// is not done out of bounds)
typedef enum
{
DMA_REGION_IWRAM = 0,
DMA_REGION_EWRAM = 1,
DMA_REGION_VRAM = 2,
DMA_REGION_PALETTE_RAM = 3,
DMA_REGION_OAM_RAM = 4,
DMA_REGION_IO = 5,
DMA_REGION_EXT = 6,
DMA_REGION_GAMEPAK = 7,
DMA_REGION_BIOS = 8,
DMA_REGION_NULL = 9
} dma_region_type;
const dma_region_type dma_region_map[17] =
{
DMA_REGION_BIOS, // 0x00 - BIOS
DMA_REGION_NULL, // 0x01 - Nothing
DMA_REGION_EWRAM, // 0x02 - EWRAM
DMA_REGION_IWRAM, // 0x03 - IWRAM
DMA_REGION_IO, // 0x04 - I/O registers
DMA_REGION_PALETTE_RAM, // 0x05 - palette RAM
DMA_REGION_VRAM, // 0x06 - VRAM
DMA_REGION_OAM_RAM, // 0x07 - OAM RAM
DMA_REGION_GAMEPAK, // 0x08 - gamepak ROM
DMA_REGION_GAMEPAK, // 0x09 - gamepak ROM
DMA_REGION_GAMEPAK, // 0x0A - gamepak ROM
DMA_REGION_GAMEPAK, // 0x0B - gamepak ROM
DMA_REGION_GAMEPAK, // 0x0C - gamepak ROM
DMA_REGION_EXT, // 0x0D - EEPROM
DMA_REGION_EXT, // 0x0E - gamepak SRAM/flash ROM
DMA_REGION_EXT, // 0x0F - gamepak SRAM/flash ROM
DMA_REGION_NULL // 0x10 - Not possible (undefined?)
};
#define dma_print(src_op, dest_op, tfsize) \
printf("dma from %x (%s) to %x (%s) for %x (%s) (%d) (pc %x)\n", \
src_ptr, #src_op, dest_ptr, #dest_op, length, #tfsize, \
dma->irq, reg[15]); \
#define dma_oam_ram_dest() \
reg[OAM_UPDATED] = 1 \
#define dma_vars_oam_ram(type) \
dma_oam_ram_##type() \
#define dma_vars_iwram(type)
#define dma_vars_ewram(type)
#define dma_vars_io(type)
#define dma_vars_vram(type)
#define dma_vars_palette_ram(type)
#define dma_vars_bios(type)
#define dma_vars_ext(type)
#define dma_oam_ram_src()
#define dma_segmented_load_src() \
memory_map_read[src_current_region] \
#define dma_vars_gamepak(type) \
u32 type##_new_region; \
u32 type##_current_region = type##_ptr >> 15; \
u8 *type##_address_block = dma_segmented_load_##type(); \
if(type##_address_block == NULL) \
{ \
if((type##_ptr & 0x1FFFFFF) >= gamepak_size) \
break; \
type##_address_block = load_gamepak_page(type##_current_region & 0x3FF); \
} \
#define dma_gamepak_check_region(type) \
type##_new_region = (type##_ptr >> 15); \
if(type##_new_region != type##_current_region) \
{ \
type##_current_region = type##_new_region; \
type##_address_block = dma_segmented_load_##type(); \
if(type##_address_block == NULL) \
{ \
type##_address_block = \
load_gamepak_page(type##_current_region & 0x3FF); \
} \
} \
#define dma_read_iwram(type, tfsize) \
read_value = readaddress##tfsize(iwram + 0x8000, type##_ptr & 0x7FFF) \
#define dma_read_vram(type, tfsize) { \
u32 rdaddr = type##_ptr & 0x1FFFF; \
if (rdaddr >= 0x18000) rdaddr -= 0x8000; \
read_value = readaddress##tfsize(vram, rdaddr); \
}
#define dma_read_io(type, tfsize) \
read_value = readaddress##tfsize(io_registers, type##_ptr & 0x3FF) \
#define dma_read_oam_ram(type, tfsize) \
read_value = readaddress##tfsize(oam_ram, type##_ptr & 0x3FF) \
#define dma_read_palette_ram(type, tfsize) \
read_value = readaddress##tfsize(palette_ram, type##_ptr & 0x3FF) \
#define dma_read_ewram(type, tfsize) \
read_value = readaddress##tfsize(ewram, type##_ptr & 0x3FFFF) \
#define dma_read_gamepak(type, tfsize) \
dma_gamepak_check_region(type); \
read_value = readaddress##tfsize(type##_address_block, \
type##_ptr & 0x7FFF) \
// DMAing from the BIOS is funny, just returns 0..
#define dma_read_bios(type, tfsize) \
read_value = 0 \
#define dma_read_ext(type, tfsize) \
read_value = read_memory##tfsize(type##_ptr) \
#define dma_write_iwram(type, tfsize) \
address##tfsize(iwram + 0x8000, type##_ptr & 0x7FFF) = \
eswap##tfsize(read_value); \
if (address##tfsize(iwram, type##_ptr & 0x7FFF)) \
alerts |= CPU_ALERT_SMC; \
#define dma_write_vram(type, tfsize) { \
u32 wraddr = type##_ptr & 0x1FFFF; \
if (wraddr >= 0x18000) wraddr -= 0x8000; \
address##tfsize(vram, wraddr) = eswap##tfsize(read_value); \
}
#define dma_write_io(type, tfsize) \
alerts |= write_io_register##tfsize(type##_ptr & 0x3FF, read_value) \
#define dma_write_oam_ram(type, tfsize) \
address##tfsize(oam_ram, type##_ptr & 0x3FF) = eswap##tfsize(read_value) \
#define dma_write_palette_ram(type, tfsize) \
write_palette##tfsize(type##_ptr & 0x3FF, read_value) \
#define dma_write_ext(type, tfsize) \
write_memory##tfsize(type##_ptr, read_value) \
#define dma_write_ewram(type, tfsize) \
address##tfsize(ewram, type##_ptr & 0x3FFFF) = eswap##tfsize(read_value); \
if (address##tfsize(ewram, (type##_ptr & 0x3FFFF) + 0x40000)) \
alerts |= CPU_ALERT_SMC; \
#define print_line() \
dma_print(src_op, dest_op, tfsize); \
#define dma_tfloop(src_region_type, dest_region_type, src_op, dest_op, tfsize)\
{ \
dma_vars_##src_region_type(src); \
dma_vars_##dest_region_type(dest); \
\
for(i = 0; i < length; i++) \
{ \
dma_read_##src_region_type(src, tfsize); \
dma_write_##dest_region_type(dest, tfsize); \
src_ptr += src_op; \
dest_ptr += dest_op; \
} \
break; \
} \
#define dma_tf_loop_builder(tfsize) \
\
cpu_alert_type dma_tf_loop##tfsize( \
u32 src_ptr, u32 dest_ptr, int src_strd, int dest_strd, \
bool wb, u32 length, dma_transfer_type *dma) \
{ \
u32 i; \
u32 read_value; \
cpu_alert_type alerts = CPU_ALERT_NONE; \
u32 src_region = MIN(src_ptr >> 24, 16); \
u32 dest_region = MIN(dest_ptr >> 24, 16); \
dma_region_type src_region_type = dma_region_map[src_region]; \
dma_region_type dest_region_type = dma_region_map[dest_region]; \
\
switch(src_region_type | (dest_region_type << 4)) \
{ \
default: \
/* Do nothing (read-only destination or unmapped area...) */ \
return CPU_ALERT_NONE; \
\
case (DMA_REGION_BIOS | (DMA_REGION_IWRAM << 4)): \
dma_tfloop(bios, iwram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IWRAM | (DMA_REGION_IWRAM << 4)): \
dma_tfloop(iwram, iwram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EWRAM | (DMA_REGION_IWRAM << 4)): \
dma_tfloop(ewram, iwram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_VRAM | (DMA_REGION_IWRAM << 4)): \
dma_tfloop(vram, iwram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_PALETTE_RAM | (DMA_REGION_IWRAM << 4)): \
dma_tfloop(palette_ram, iwram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_OAM_RAM | (DMA_REGION_IWRAM << 4)): \
dma_tfloop(oam_ram, iwram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IO | (DMA_REGION_IWRAM << 4)): \
dma_tfloop(io, iwram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_GAMEPAK | (DMA_REGION_IWRAM << 4)): \
dma_tfloop(gamepak, iwram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EXT | (DMA_REGION_IWRAM << 4)): \
dma_tfloop(ext, iwram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_BIOS | (DMA_REGION_EWRAM << 4)): \
dma_tfloop(bios, ewram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IWRAM | (DMA_REGION_EWRAM << 4)): \
dma_tfloop(iwram, ewram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EWRAM | (DMA_REGION_EWRAM << 4)): \
dma_tfloop(ewram, ewram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_VRAM | (DMA_REGION_EWRAM << 4)): \
dma_tfloop(vram, ewram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_PALETTE_RAM | (DMA_REGION_EWRAM << 4)): \
dma_tfloop(palette_ram, ewram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_OAM_RAM | (DMA_REGION_EWRAM << 4)): \
dma_tfloop(oam_ram, ewram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IO | (DMA_REGION_EWRAM << 4)): \
dma_tfloop(io, ewram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_GAMEPAK | (DMA_REGION_EWRAM << 4)): \
dma_tfloop(gamepak, ewram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EXT | (DMA_REGION_EWRAM << 4)): \
dma_tfloop(ext, ewram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_BIOS | (DMA_REGION_VRAM << 4)): \
dma_tfloop(bios, vram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IWRAM | (DMA_REGION_VRAM << 4)): \
dma_tfloop(iwram, vram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EWRAM | (DMA_REGION_VRAM << 4)): \
dma_tfloop(ewram, vram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_VRAM | (DMA_REGION_VRAM << 4)): \
dma_tfloop(vram, vram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_PALETTE_RAM | (DMA_REGION_VRAM << 4)): \
dma_tfloop(palette_ram, vram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_OAM_RAM | (DMA_REGION_VRAM << 4)): \
dma_tfloop(oam_ram, vram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IO | (DMA_REGION_VRAM << 4)): \
dma_tfloop(io, vram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_GAMEPAK | (DMA_REGION_VRAM << 4)): \
dma_tfloop(gamepak, vram, src_strd, dest_strd,tfsize); \
\
case (DMA_REGION_EXT | (DMA_REGION_VRAM << 4)): \
dma_tfloop(ext, vram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_BIOS | (DMA_REGION_PALETTE_RAM << 4)): \
dma_tfloop(bios, palette_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IWRAM | (DMA_REGION_PALETTE_RAM << 4)): \
dma_tfloop(iwram, palette_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EWRAM | (DMA_REGION_PALETTE_RAM << 4)): \
dma_tfloop(ewram, palette_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_VRAM | (DMA_REGION_PALETTE_RAM << 4)): \
dma_tfloop(vram, palette_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_PALETTE_RAM | (DMA_REGION_PALETTE_RAM << 4)): \
dma_tfloop(palette_ram, palette_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_OAM_RAM | (DMA_REGION_PALETTE_RAM << 4)): \
dma_tfloop(oam_ram, palette_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IO | (DMA_REGION_PALETTE_RAM << 4)): \
dma_tfloop(io, palette_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_GAMEPAK | (DMA_REGION_PALETTE_RAM << 4)): \
dma_tfloop(gamepak, palette_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EXT | (DMA_REGION_PALETTE_RAM << 4)): \
dma_tfloop(ext, palette_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_BIOS | (DMA_REGION_OAM_RAM << 4)): \
dma_tfloop(bios, oam_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IWRAM | (DMA_REGION_OAM_RAM << 4)): \
dma_tfloop(iwram, oam_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EWRAM | (DMA_REGION_OAM_RAM << 4)): \
dma_tfloop(ewram, oam_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_VRAM | (DMA_REGION_OAM_RAM << 4)): \
dma_tfloop(vram, oam_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_PALETTE_RAM | (DMA_REGION_OAM_RAM << 4)): \
dma_tfloop(palette_ram, oam_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_OAM_RAM | (DMA_REGION_OAM_RAM << 4)): \
dma_tfloop(oam_ram, oam_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IO | (DMA_REGION_OAM_RAM << 4)): \
dma_tfloop(io, oam_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_GAMEPAK | (DMA_REGION_OAM_RAM << 4)): \
dma_tfloop(gamepak, oam_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EXT | (DMA_REGION_OAM_RAM << 4)): \
dma_tfloop(ext, oam_ram, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_BIOS | (DMA_REGION_IO << 4)): \
dma_tfloop(bios, io, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IWRAM | (DMA_REGION_IO << 4)): \
dma_tfloop(iwram, io, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EWRAM | (DMA_REGION_IO << 4)): \
dma_tfloop(ewram, io, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_VRAM | (DMA_REGION_IO << 4)): \
dma_tfloop(vram, io, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_PALETTE_RAM | (DMA_REGION_IO << 4)): \
dma_tfloop(palette_ram, io, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_OAM_RAM | (DMA_REGION_IO << 4)): \
dma_tfloop(oam_ram, io, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IO | (DMA_REGION_IO << 4)): \
dma_tfloop(io, io, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_GAMEPAK | (DMA_REGION_IO << 4)): \
dma_tfloop(gamepak, io, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EXT | (DMA_REGION_IO << 4)): \
dma_tfloop(ext, io, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_BIOS | (DMA_REGION_EXT << 4)): \
dma_tfloop(bios, ext, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IWRAM | (DMA_REGION_EXT << 4)): \
dma_tfloop(iwram, ext, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EWRAM | (DMA_REGION_EXT << 4)): \
dma_tfloop(ewram, ext, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_VRAM | (DMA_REGION_EXT << 4)): \
dma_tfloop(vram, ext, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_PALETTE_RAM | (DMA_REGION_EXT << 4)): \
dma_tfloop(palette_ram, ext, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_OAM_RAM | (DMA_REGION_EXT << 4)): \
dma_tfloop(oam_ram, ext, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_IO | (DMA_REGION_EXT << 4)): \
dma_tfloop(io, ext, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_GAMEPAK | (DMA_REGION_EXT << 4)): \
dma_tfloop(gamepak, ext, src_strd, dest_strd, tfsize); \
\
case (DMA_REGION_EXT | (DMA_REGION_EXT << 4)): \
dma_tfloop(ext, ext, src_strd, dest_strd, tfsize); \
} \
\
dma->source_address = src_ptr; \
if (wb) /* Update destination pointer if requested */ \
dma->dest_address = dest_ptr; \
\
return alerts; \
} \
dma_tf_loop_builder(16);
dma_tf_loop_builder(32);
static const int dma_stride[4] = {1, -1, 0, 1};
static cpu_alert_type dma_transfer_copy(
dma_transfer_type *dmach, u32 src_ptr, u32 dest_ptr, u32 length)
{
if (dmach->source_direction < 3)
{
int dst_stride = dma_stride[dmach->dest_direction];
int src_stride = dma_stride[dmach->source_direction];
bool dst_wb = dmach->dest_direction < 3;
if(dmach->length_type == DMA_16BIT)
return dma_tf_loop16(src_ptr, dest_ptr, 2 * src_stride, 2 * dst_stride, dst_wb, length, dmach);
else
return dma_tf_loop32(src_ptr, dest_ptr, 4 * src_stride, 4 * dst_stride, dst_wb, length, dmach);
}
return CPU_ALERT_NONE;
}
cpu_alert_type dma_transfer(unsigned dma_chan, int *usedcycles)
{
dma_transfer_type *dmach = &dma[dma_chan];
u32 src_ptr = dmach->source_address & (
dmach->length_type == DMA_16BIT ? ~1U : ~3U);
u32 dst_ptr = dmach->dest_address & (
dmach->length_type == DMA_16BIT ? ~1U : ~3U);
cpu_alert_type ret = CPU_ALERT_NONE;
u32 tfsizes = dmach->length_type == DMA_16BIT ? 1 : 2;
u32 byte_length = dmach->length << tfsizes;
// Divide the DMA transaction into up to three transactions depending on
// the source and destination memory regions.
u32 src_end = MIN(0x10000000, src_ptr + byte_length * dma_stride[dmach->source_direction]);
u32 dst_end = MIN(0x10000000, dst_ptr + byte_length * dma_stride[dmach->dest_direction]);
dma_region_type src_reg0 = dma_region_map[src_ptr >> 24];
dma_region_type src_reg1 = dma_region_map[src_end >> 24];
dma_region_type dst_reg0 = dma_region_map[dst_ptr >> 24];
dma_region_type dst_reg1 = dma_region_map[dst_end >> 24];
if (src_reg0 == src_reg1 && dst_reg0 == dst_reg1)
ret = dma_transfer_copy(dmach, src_ptr, dst_ptr, byte_length >> tfsizes);
else if (src_reg0 == src_reg1) {
// Source stays within the region, dest crosses over
u32 blen0 = dma_stride[dmach->dest_direction] < 0 ?
dst_ptr & 0xFFFFFF : 0x1000000 - (dst_ptr & 0xFFFFFF);
u32 src1 = src_ptr + blen0 * dma_stride[dmach->source_direction];
u32 dst1 = dst_ptr + blen0 * dma_stride[dmach->dest_direction];
ret = dma_transfer_copy(dmach, src_ptr, dst_ptr, blen0 >> tfsizes);
ret |= dma_transfer_copy(dmach, src1, dst1, (byte_length - blen0) >> tfsizes);
}
else if (dst_reg0 == dst_reg1) {
// Dest stays within the region, source crosses over
u32 blen0 = dma_stride[dmach->source_direction] < 0 ?
src_ptr & 0xFFFFFF : 0x1000000 - (src_ptr & 0xFFFFFF);
u32 src1 = src_ptr + blen0 * dma_stride[dmach->source_direction];
u32 dst1 = dst_ptr + blen0 * dma_stride[dmach->dest_direction];
ret = dma_transfer_copy(dmach, src_ptr, dst_ptr, blen0 >> tfsizes);
ret |= dma_transfer_copy(dmach, src1, dst1, (byte_length - blen0) >> tfsizes);
}
// TODO: We do not cover the three-region case, seems no game uses that?
// Lucky Luke does cross dest region due to some off-by-one error.
if((dmach->repeat_type == DMA_NO_REPEAT) ||
(dmach->start_type == DMA_START_IMMEDIATELY))
{
u32 cntrl = read_dmareg(REG_DMA0CNT_H, dma_chan);
write_dmareg(REG_DMA0CNT_H, dma_chan, cntrl & (~0x8000));
dmach->start_type = DMA_INACTIVE;
}
// Trigger an IRQ if configured to do so.
if (dmach->irq)
ret |= flag_interrupt(IRQ_DMA0 << dma_chan);
// This is an approximation for the most common case (no region cross)
if (usedcycles)
*usedcycles += dmach->length * (
waitstate_cycles_sequential[src_ptr >> 24][tfsizes] +
waitstate_cycles_sequential[dst_ptr >> 24][tfsizes]);
return ret;
}
// Be sure to do this after loading ROMs.
#define map_rom_entry(type, idx, ptr, mirror_blocks) { \
unsigned mcount; \
for(mcount = 0; mcount < 1024; mcount += (mirror_blocks)) { \
memory_map_##type[(0x8000000 / (32 * 1024)) + (idx) + mcount] = (ptr); \
memory_map_##type[(0xA000000 / (32 * 1024)) + (idx) + mcount] = (ptr); \
} \
for(mcount = 0; mcount < 512; mcount += (mirror_blocks)) { \
memory_map_##type[(0xC000000 / (32 * 1024)) + (idx) + mcount] = (ptr); \
} \
}
#define map_region(type, start, end, mirror_blocks, region) \
for(map_offset = (start) / 0x8000; map_offset < \
((end) / 0x8000); map_offset++) \
{ \
memory_map_##type[map_offset] = \
((u8 *)region) + ((map_offset % mirror_blocks) * 0x8000); \
} \
#define map_null(type, start, end) { \
u32 map_offset; \
for(map_offset = start / 0x8000; map_offset < (end / 0x8000); \
map_offset++) \
memory_map_##type[map_offset] = NULL; \
}
#define map_vram(type) \
for(map_offset = 0x6000000 / 0x8000; map_offset < (0x7000000 / 0x8000); \
map_offset += 4) \
{ \
memory_map_##type[map_offset] = vram; \
memory_map_##type[map_offset + 1] = vram + 0x8000; \
memory_map_##type[map_offset + 2] = vram + (0x8000 * 2); \
memory_map_##type[map_offset + 3] = vram + (0x8000 * 2); \
} \
static u32 evict_gamepak_page(void)
{
u32 ret;
s16 phyrom;
do {
// Return the index to the last used entry
u32 newhead = gamepak_blk_queue[gamepak_lru_head].next_lru;
phyrom = gamepak_blk_queue[gamepak_lru_head].phy_rom;
ret = gamepak_lru_head;
// Second elem becomes head now
gamepak_lru_head = newhead;
// The evicted element goes at the end of the queue
gamepak_blk_queue[gamepak_lru_tail].next_lru = ret;
gamepak_lru_tail = ret;
// If this page is marked as sticky, we keep going through the list
} while (phyrom >= 0 && gamepak_sb_test(phyrom));
// We unmap the ROM page if it was mapped, ensure we do not access it
// without triggering a "page fault"
if (phyrom >= 0) {
map_rom_entry(read, phyrom, NULL, gamepak_size >> 15);
}
return ret;
}
u8 *load_gamepak_page(u32 physical_index)
{
if(physical_index >= (gamepak_size >> 15))
return &gamepak_buffers[0][0];
u32 entry = evict_gamepak_page();
u32 block_idx = entry / 32;
u32 block_off = entry % 32;
u8 *swap_location = &gamepak_buffers[block_idx][32 * 1024 * block_off];
// Fill in the entry
gamepak_blk_queue[entry].phy_rom = physical_index;
filestream_seek(gamepak_file_large, physical_index * (32 * 1024), SEEK_SET);
filestream_read(gamepak_file_large, swap_location, (32 * 1024));
// Map it to the read handlers now
map_rom_entry(read, physical_index, swap_location, gamepak_size >> 15);
// If RTC is active page the RTC register bytes so they can be read
if ((rtc_state != RTC_DISABLED) && (physical_index == 0)) {
address16(swap_location, 0xC4) = eswap16(rtc_registers[0]);
address16(swap_location, 0xC6) = eswap16(rtc_registers[1]);
address16(swap_location, 0xC8) = eswap16(rtc_registers[2]);
}
return swap_location;
}
void init_gamepak_buffer(void)
{
unsigned i;
// Try to allocate up to 32 blocks of 1MB each
gamepak_buffer_count = 0;
while (gamepak_buffer_count < ROM_BUFFER_SIZE)
{
void *ptr = malloc(gamepak_buffer_blocksize);
if (!ptr)
break;
gamepak_buffers[gamepak_buffer_count++] = (u8*)ptr;
}
// Initialize the memory map structure
for (i = 0; i < 1024; i++)
{
gamepak_blk_queue[i].next_lru = (u16)(i + 1);
gamepak_blk_queue[i].phy_rom = -1;
}
gamepak_lru_head = 0;
gamepak_lru_tail = 32 * gamepak_buffer_count - 1;
}
bool gamepak_must_swap(void)
{
// Returns whether the current gamepak buffer is not big enough to hold
// the full gamepak ROM. In these cases the device must swap.
return gamepak_buffer_count * gamepak_buffer_blocksize < gamepak_size;
}
void init_memory(void)
{
u32 map_offset = 0;
// Fill memory map regions, areas marked as NULL must be checked directly
map_region(read, 0x0000000, 0x1000000, 1, bios_rom);
map_null(read, 0x1000000, 0x2000000);
map_region(read, 0x2000000, 0x3000000, 8, ewram);
map_region(read, 0x3000000, 0x4000000, 1, &iwram[0x8000]);
map_region(read, 0x4000000, 0x5000000, 1, io_registers);
map_null(read, 0x5000000, 0x6000000);
map_null(read, 0x6000000, 0x7000000);
map_vram(read);
map_null(read, 0x7000000, 0x8000000);
map_null(read, 0xE000000, 0x10000000);
memset(io_registers, 0, sizeof(io_registers));
memset(oam_ram, 0, sizeof(oam_ram));
memset(palette_ram, 0, sizeof(palette_ram));
memset(iwram, 0, sizeof(iwram));
memset(ewram, 0, sizeof(ewram));
memset(vram, 0, sizeof(vram));
write_ioreg(REG_DISPCNT, 0x80);
write_ioreg(REG_P1, 0x3FF);
write_ioreg(REG_BG2PA, 0x100);
write_ioreg(REG_BG2PD, 0x100);
write_ioreg(REG_BG3PA, 0x100);
write_ioreg(REG_BG3PD, 0x100);
write_ioreg(REG_RCNT, 0x8000);
backup_type = BACKUP_NONE;
sram_bankcount = SRAM_SIZE_32KB;
//flash_size = FLASH_SIZE_64KB;
flash_bank_num = 0;
flash_command_position = 0;
eeprom_size = EEPROM_512_BYTE;
eeprom_mode = EEPROM_BASE_MODE;
eeprom_address = 0;
eeprom_counter = 0;
flash_mode = FLASH_BASE_MODE;
rtc_state = RTC_DISABLED;
memset(rtc_registers, 0, sizeof(rtc_registers));
reg[REG_BUS_VALUE] = 0xe129f000;
}
void memory_term(void)
{
if (gamepak_file_large)
{
filestream_close(gamepak_file_large);
gamepak_file_large = NULL;
}
while (gamepak_buffer_count)
{
free(gamepak_buffers[--gamepak_buffer_count]);
}
}
bool memory_read_savestate(const u8 *src)
{
int i;
const u8 *memdoc = bson_find_key(src, "memory");
const u8 *bakdoc = bson_find_key(src, "backup");
const u8 *dmadoc = bson_find_key(src, "dma");
if (!memdoc || !bakdoc || !dmadoc)
return false;
if (!(
bson_read_bytes(memdoc, "iwram", &iwram[0x8000], 0x8000) &&
bson_read_bytes(memdoc, "ewram", ewram, 0x40000) &&
bson_read_bytes(memdoc, "vram", vram, sizeof(vram)) &&
bson_read_bytes(memdoc, "oamram", oam_ram, sizeof(oam_ram)) &&
bson_read_bytes(memdoc, "palram", palette_ram, sizeof(palette_ram)) &&
bson_read_bytes(memdoc, "ioregs", io_registers, sizeof(io_registers)) &&
bson_read_int32(bakdoc, "backup-type", &backup_type) &&
bson_read_int32(bakdoc, "sram-size", &sram_bankcount) &&
bson_read_int32(bakdoc, "flash-mode", &flash_mode) &&
bson_read_int32(bakdoc, "flash-cmd-pos", &flash_command_position) &&
bson_read_int32(bakdoc, "flash-bank-num", &flash_bank_num) &&
bson_read_int32(bakdoc, "flash-dev-id", &flash_device_id) &&
bson_read_int32(bakdoc, "flash-size", &flash_bank_cnt) &&
bson_read_int32(bakdoc, "eeprom-size", &eeprom_size) &&
bson_read_int32(bakdoc, "eeprom-mode", &eeprom_mode) &&
bson_read_int32(bakdoc, "eeprom-addr", &eeprom_address) &&
bson_read_int32(bakdoc, "eeprom-counter", &eeprom_counter) &&
bson_read_int32(bakdoc, "rtc-state", &rtc_state) &&
bson_read_int32(bakdoc, "rtc-write-mode", &rtc_write_mode) &&
bson_read_int32(bakdoc, "rtc-cmd", &rtc_command) &&
bson_read_int32(bakdoc, "rtc-status", &rtc_status) &&
bson_read_int32(bakdoc, "rtc-data-byte-cnt", &rtc_data_bytes) &&
bson_read_int32(bakdoc, "rtc-bit-cnt", (u32*)&rtc_bit_count) &&
bson_read_bytes(bakdoc, "rtc-regs", rtc_registers, sizeof(rtc_registers)) &&
bson_read_int32_array(bakdoc, "rtc-data-words", rtc_data,
sizeof(rtc_data)/sizeof(rtc_data[0]))))
return false;
for (i = 0; i < DMA_CHAN_CNT; i++)
{
char tname[2] = {'0' + i, 0};
const u8 *dmastr = bson_find_key(dmadoc, tname);
if (!(
bson_read_int32(dmastr, "src-addr", &dma[i].source_address) &&
bson_read_int32(dmastr, "dst-addr", &dma[i].dest_address) &&
bson_read_int32(dmastr, "src-dir", &dma[i].source_direction) &&
bson_read_int32(dmastr, "dst-dir", &dma[i].dest_direction) &&
bson_read_int32(dmastr, "len", &dma[i].length) &&
bson_read_int32(dmastr, "size", &dma[i].length_type) &&
bson_read_int32(dmastr, "repeat", &dma[i].repeat_type) &&
bson_read_int32(dmastr, "start", &dma[i].start_type) &&
bson_read_int32(dmastr, "dsc", &dma[i].direct_sound_channel) &&
bson_read_int32(dmastr, "irq", &dma[i].irq)))
return false;
}
return true;
}
unsigned memory_write_savestate(u8 *dst)
{
int i;
u8 *wbptr, *wbptr2, *startp = dst;
bson_start_document(dst, "memory", wbptr);
bson_write_bytes(dst, "iwram", &iwram[0x8000], 0x8000);
bson_write_bytes(dst, "ewram", ewram, 0x40000);
bson_write_bytes(dst, "vram", vram, sizeof(vram));
bson_write_bytes(dst, "oamram", oam_ram, sizeof(oam_ram));
bson_write_bytes(dst, "palram", palette_ram, sizeof(palette_ram));
bson_write_bytes(dst, "ioregs", io_registers, sizeof(io_registers));
bson_finish_document(dst, wbptr);
bson_start_document(dst, "backup", wbptr);
bson_write_int32(dst, "backup-type", (u32)backup_type);
bson_write_int32(dst, "sram-size", sram_bankcount);
bson_write_int32(dst, "flash-mode", flash_mode);
bson_write_int32(dst, "flash-cmd-pos", flash_command_position);
bson_write_int32(dst, "flash-bank-num", flash_bank_num);
bson_write_int32(dst, "flash-dev-id", flash_device_id);
bson_write_int32(dst, "flash-size", flash_bank_cnt);
bson_write_int32(dst, "eeprom-size", eeprom_size);
bson_write_int32(dst, "eeprom-mode", eeprom_mode);
bson_write_int32(dst, "eeprom-addr", eeprom_address);
bson_write_int32(dst, "eeprom-counter", eeprom_counter);
bson_write_int32(dst, "rtc-state", rtc_state);
bson_write_int32(dst, "rtc-write-mode", rtc_write_mode);
bson_write_int32(dst, "rtc-cmd", rtc_command);
bson_write_int32(dst, "rtc-status", rtc_status);
bson_write_int32(dst, "rtc-data-byte-cnt", rtc_data_bytes);
bson_write_int32(dst, "rtc-bit-cnt", rtc_bit_count);
bson_write_bytes(dst, "rtc-regs", rtc_registers, sizeof(rtc_registers));
bson_write_int32array(dst, "rtc-data-words", rtc_data,
sizeof(rtc_data)/sizeof(rtc_data[0]));
bson_finish_document(dst, wbptr);
bson_start_document(dst, "dma", wbptr);
for (i = 0; i < DMA_CHAN_CNT; i++)
{
char tname[2] = {'0' + i, 0};
bson_start_document(dst, tname, wbptr2);
bson_write_int32(dst, "src-addr", dma[i].source_address);
bson_write_int32(dst, "dst-addr", dma[i].dest_address);
bson_write_int32(dst, "src-dir", dma[i].source_direction);
bson_write_int32(dst, "dst-dir", dma[i].dest_direction);
bson_write_int32(dst, "len", dma[i].length);
bson_write_int32(dst, "size", dma[i].length_type);
bson_write_int32(dst, "repeat", dma[i].repeat_type);
bson_write_int32(dst, "start", dma[i].start_type);
bson_write_int32(dst, "dsc", dma[i].direct_sound_channel);
bson_write_int32(dst, "irq", dma[i].irq);
bson_finish_document(dst, wbptr2);
}
bson_finish_document(dst, wbptr);
return (unsigned int)(dst - startp);
}
static s32 load_gamepak_raw(const char *name)
{
unsigned i, j;
gamepak_file_large = filestream_open(name, RETRO_VFS_FILE_ACCESS_READ,
RETRO_VFS_FILE_ACCESS_HINT_NONE);
if(gamepak_file_large)
{
// Round size to 32KB pages
gamepak_size = (u32)filestream_get_size(gamepak_file_large);
gamepak_size = (gamepak_size + 0x7FFF) & ~0x7FFF;
// Load stuff in 1MB chunks
u32 buf_blocks = (gamepak_size + gamepak_buffer_blocksize-1) / (gamepak_buffer_blocksize);
u32 rom_blocks = gamepak_size >> 15;
u32 ldblks = buf_blocks < gamepak_buffer_count ?
buf_blocks : gamepak_buffer_count;
// Unmap the ROM space since we will re-map it now
map_null(read, 0x8000000, 0xD000000);
// Proceed to read the whole ROM or as much as possible.
for (i = 0; i < ldblks; i++)
{
// Load 1MB chunk and map it
filestream_read(gamepak_file_large, gamepak_buffers[i], gamepak_buffer_blocksize);
for (j = 0; j < 32 && i*32 + j < rom_blocks; j++)
{
u32 phyn = i*32 + j;
u8* blkptr = &gamepak_buffers[i][32 * 1024 * j];
u32 entry = evict_gamepak_page();
gamepak_blk_queue[entry].phy_rom = phyn;
// Map it to the read handlers now
map_rom_entry(read, phyn, blkptr, rom_blocks);
}
}
return 0;
}
return -1;
}
u32 load_gamepak(const struct retro_game_info* info, const char *name)
{
char *p;
char gamepak_filename[512];
gamepak_info_t gpinfo;
if (load_gamepak_raw(name))
return -1;
strncpy(gamepak_filename, name, sizeof(gamepak_filename));
gamepak_filename[sizeof(gamepak_filename) - 1] = 0;
p = strrchr(gamepak_filename, PATH_SEPARATOR_CHAR);
if (p)
p++;
else
p = gamepak_filename;
snprintf(backup_filename, sizeof(backup_filename), "%s%c%s", save_path, PATH_SEPARATOR_CHAR, p);
p = strrchr(backup_filename, '.');
if (p)
strcpy(p, ".sav");
if (!use_libretro_save_method)
load_backup(backup_filename);
// Buffer 0 always has the first 1MB chunk of the ROM
memset(&gpinfo, 0, sizeof(gpinfo));
memcpy(gpinfo.gamepak_title, &gamepak_buffers[0][0xA0], 12);
memcpy(gpinfo.gamepak_code, &gamepak_buffers[0][0xAC], 4);
memcpy(gpinfo.gamepak_maker, &gamepak_buffers[0][0xB0], 2);
idle_loop_target_pc = 0xFFFFFFFF;
translation_gate_targets = 0;
flash_device_id = FLASH_DEVICE_MACRONIX_64KB;
flash_bank_cnt = FLASH_SIZE_64KB;
if ((load_game_config_over(&gpinfo)) < 0)
load_game_config(&gpinfo);
return 0;
}
s32 load_bios(char *name)
{
RFILE *fd = filestream_open(name, RETRO_VFS_FILE_ACCESS_READ,
RETRO_VFS_FILE_ACCESS_HINT_NONE);
if(!fd)
return -1;
filestream_read(fd, bios_rom, 0x4000);
filestream_close(fd);
return 0;
}