gpsp/x86/x86_emit.h

2328 lines
126 KiB
C

/* gameplaySP
*
* Copyright (C) 2006 Exophase <exophase@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef X86_EMIT_H
#define X86_EMIT_H
u32 x86_update_gba(u32 pc);
// Although these are defined as a function, don't call them as
// such (jump to it instead)
void x86_indirect_branch_arm(u32 address);
void x86_indirect_branch_thumb(u32 address);
void x86_indirect_branch_dual(u32 address);
void function_cc execute_store_cpsr(u32 new_cpsr, u32 store_mask);
void step_debug_x86(u32 pc);
typedef enum
{
x86_reg_number_eax,
x86_reg_number_ecx,
x86_reg_number_edx,
x86_reg_number_ebx,
x86_reg_number_esp,
x86_reg_number_ebp,
x86_reg_number_esi,
x86_reg_number_edi
} x86_reg_number;
#define x86_emit_byte(value) \
*translation_ptr = value; \
translation_ptr++ \
#define x86_emit_dword(value) \
*((u32 *)translation_ptr) = value; \
translation_ptr += 4 \
typedef enum
{
x86_mod_mem = 0,
x86_mod_mem_disp8 = 1,
x86_mod_mem_disp32 = 2,
x86_mod_reg = 3
} x86_mod;
#define x86_emit_mod_rm(mod, rm, spare) \
x86_emit_byte((mod << 6) | (spare << 3) | rm) \
#define x86_emit_mem_op(dest, base, offset) \
if(offset == 0) \
{ \
x86_emit_mod_rm(x86_mod_mem, base, dest); \
} \
else \
\
if(((s32)offset < 127) && ((s32)offset > -128)) \
{ \
x86_emit_mod_rm(x86_mod_mem_disp8, base, dest); \
x86_emit_byte((s8)offset); \
} \
else \
{ \
x86_emit_mod_rm(x86_mod_mem_disp32, base, dest); \
x86_emit_dword(offset); \
} \
#define x86_emit_reg_op(dest, source) \
x86_emit_mod_rm(x86_mod_reg, source, dest) \
typedef enum
{
x86_opcode_mov_rm_reg = 0x89,
x86_opcode_mov_reg_rm = 0x8B,
x86_opcode_mov_reg_imm = 0xB8,
x86_opcode_mov_rm_imm = 0x00C7,
x86_opcode_ror_reg_imm = 0x01C1,
x86_opcode_shl_reg_imm = 0x04C1,
x86_opcode_shr_reg_imm = 0x05C1,
x86_opcode_sar_reg_imm = 0x07C1,
x86_opcode_push_reg = 0x50,
x86_opcode_push_rm = 0xFF,
x86_opcode_push_imm = 0x0668,
x86_opcode_call_offset = 0xE8,
x86_opcode_ret = 0xC3,
x86_opcode_test_rm_imm = 0x00F7,
x86_opcode_test_reg_rm = 0x85,
x86_opcode_mul_eax_rm = 0x04F7,
x86_opcode_imul_eax_rm = 0x05F7,
x86_opcode_idiv_eax_rm = 0x07F7,
x86_opcode_add_rm_imm = 0x0081,
x86_opcode_and_rm_imm = 0x0481,
x86_opcode_sub_rm_imm = 0x0581,
x86_opcode_xor_rm_imm = 0x0681,
x86_opcode_add_reg_rm = 0x03,
x86_opcode_adc_reg_rm = 0x13,
x86_opcode_or_reg_rm = 0x0B,
x86_opcode_sub_reg_rm = 0x2B,
x86_opcode_xor_reg_rm = 0x33,
x86_opcode_cmp_reg_rm = 0x39,
x86_opcode_cmp_rm_imm = 0x053B,
x86_opcode_lea_reg_rm = 0x8D,
x86_opcode_j = 0x80,
x86_opcode_jmp = 0xE9,
x86_opcode_jmp_reg = 0x04FF,
x86_opcode_ext = 0x0F
} x86_opcodes;
typedef enum
{
x86_condition_code_o = 0x00,
x86_condition_code_no = 0x01,
x86_condition_code_c = 0x02,
x86_condition_code_nc = 0x03,
x86_condition_code_z = 0x04,
x86_condition_code_nz = 0x05,
x86_condition_code_na = 0x06,
x86_condition_code_a = 0x07,
x86_condition_code_s = 0x08,
x86_condition_code_ns = 0x09,
x86_condition_code_p = 0x0A,
x86_condition_code_np = 0x0B,
x86_condition_code_l = 0x0C,
x86_condition_code_nl = 0x0D,
x86_condition_code_ng = 0x0E,
x86_condition_code_g = 0x0F
} x86_condition_codes;
#define x86_relative_offset(source, offset, next) \
((u32)offset - ((u32)source + next)) \
#define x86_unequal_operands(op_a, op_b) \
(x86_reg_number_##op_a != x86_reg_number_##op_b) \
#define x86_emit_opcode_1b_reg(opcode, dest, source) \
{ \
x86_emit_byte(x86_opcode_##opcode); \
x86_emit_reg_op(x86_reg_number_##dest, x86_reg_number_##source); \
} \
#define x86_emit_opcode_1b_mem(opcode, dest, base, offset) \
{ \
x86_emit_byte(x86_opcode_##opcode); \
x86_emit_mem_op(x86_reg_number_##dest, x86_reg_number_##base, offset); \
} \
#define x86_emit_opcode_1b(opcode, reg) \
x86_emit_byte(x86_opcode_##opcode | x86_reg_number_##reg) \
#define x86_emit_opcode_1b_ext_reg(opcode, dest) \
x86_emit_byte(x86_opcode_##opcode & 0xFF); \
x86_emit_reg_op(x86_opcode_##opcode >> 8, x86_reg_number_##dest) \
#define x86_emit_opcode_1b_ext_mem(opcode, base, offset) \
x86_emit_byte(x86_opcode_##opcode & 0xFF); \
x86_emit_mem_op(x86_opcode_##opcode >> 8, x86_reg_number_##base, offset) \
#define x86_emit_mov_reg_mem(dest, base, offset) \
x86_emit_opcode_1b_mem(mov_reg_rm, dest, base, offset) \
#define x86_emit_mov_mem_reg(source, base, offset) \
x86_emit_opcode_1b_mem(mov_rm_reg, source, base, offset) \
#define x86_emit_mov_reg_reg(dest, source) \
if(x86_unequal_operands(dest, source)) \
{ \
x86_emit_opcode_1b_reg(mov_reg_rm, dest, source) \
} \
#define x86_emit_mov_reg_imm(dest, imm) \
x86_emit_opcode_1b(mov_reg_imm, dest); \
x86_emit_dword(imm) \
#define x86_emit_mov_mem_imm(imm, base, offset) \
x86_emit_opcode_1b_ext_mem(mov_rm_imm, base, offset); \
x86_emit_dword(imm) \
#define x86_emit_shl_reg_imm(dest, imm) \
x86_emit_opcode_1b_ext_reg(shl_reg_imm, dest); \
x86_emit_byte(imm) \
#define x86_emit_shr_reg_imm(dest, imm) \
x86_emit_opcode_1b_ext_reg(shr_reg_imm, dest); \
x86_emit_byte(imm) \
#define x86_emit_sar_reg_imm(dest, imm) \
x86_emit_opcode_1b_ext_reg(sar_reg_imm, dest); \
x86_emit_byte(imm) \
#define x86_emit_ror_reg_imm(dest, imm) \
x86_emit_opcode_1b_ext_reg(ror_reg_imm, dest); \
x86_emit_byte(imm) \
#define x86_emit_add_reg_reg(dest, source) \
x86_emit_opcode_1b_reg(add_reg_rm, dest, source) \
#define x86_emit_adc_reg_reg(dest, source) \
x86_emit_opcode_1b_reg(adc_reg_rm, dest, source) \
#define x86_emit_sub_reg_reg(dest, source) \
x86_emit_opcode_1b_reg(sub_reg_rm, dest, source) \
#define x86_emit_or_reg_reg(dest, source) \
x86_emit_opcode_1b_reg(or_reg_rm, dest, source) \
#define x86_emit_xor_reg_reg(dest, source) \
x86_emit_opcode_1b_reg(xor_reg_rm, dest, source) \
#define x86_emit_add_reg_imm(dest, imm) \
if(imm != 0) \
{ \
x86_emit_opcode_1b_ext_reg(add_rm_imm, dest); \
x86_emit_dword(imm); \
} \
#define x86_emit_sub_reg_imm(dest, imm) \
if(imm != 0) \
{ \
x86_emit_opcode_1b_ext_reg(sub_rm_imm, dest); \
x86_emit_dword(imm); \
} \
#define x86_emit_and_reg_imm(dest, imm) \
x86_emit_opcode_1b_ext_reg(and_rm_imm, dest); \
x86_emit_dword(imm) \
#define x86_emit_xor_reg_imm(dest, imm) \
x86_emit_opcode_1b_ext_reg(xor_rm_imm, dest); \
x86_emit_dword(imm) \
#define x86_emit_test_reg_imm(dest, imm) \
x86_emit_opcode_1b_ext_reg(test_rm_imm, dest); \
x86_emit_dword(imm) \
#define x86_emit_cmp_reg_reg(dest, source) \
x86_emit_opcode_1b_reg(cmp_reg_rm, dest, source) \
#define x86_emit_test_reg_reg(dest, source) \
x86_emit_opcode_1b_reg(test_reg_rm, dest, source) \
#define x86_emit_cmp_reg_imm(dest, imm) \
x86_emit_opcode_1b_ext_reg(cmp_rm_imm, dest); \
x86_emit_dword(imm) \
#define x86_emit_mul_eax_reg(source) \
x86_emit_opcode_1b_ext_reg(mul_eax_rm, source) \
#define x86_emit_imul_eax_reg(source) \
x86_emit_opcode_1b_ext_reg(imul_eax_rm, source) \
#define x86_emit_idiv_eax_reg(source) \
x86_emit_opcode_1b_ext_reg(idiv_eax_rm, source) \
#define x86_emit_push_mem(base, offset) \
x86_emit_opcode_1b_mem(push_rm, 0x06, base, offset) \
#define x86_emit_push_imm(imm) \
x86_emit_byte(x86_opcode_push_imm); \
x86_emit_dword(imm) \
#define x86_emit_call_offset(relative_offset) \
x86_emit_byte(x86_opcode_call_offset); \
x86_emit_dword(relative_offset) \
#define x86_emit_ret() \
x86_emit_byte(x86_opcode_ret) \
#define x86_emit_lea_reg_mem(dest, base, offset) \
x86_emit_opcode_1b_mem(lea_reg_rm, dest, base, offset) \
#define x86_emit_j_filler(condition_code, writeback_location) \
x86_emit_byte(x86_opcode_ext); \
x86_emit_byte(x86_opcode_j | condition_code); \
(writeback_location) = translation_ptr; \
translation_ptr += 4 \
#define x86_emit_j_offset(condition_code, offset) \
x86_emit_byte(x86_opcode_ext); \
x86_emit_byte(x86_opcode_j | condition_code); \
x86_emit_dword(offset) \
#define x86_emit_jmp_filler(writeback_location) \
x86_emit_byte(x86_opcode_jmp); \
(writeback_location) = translation_ptr; \
translation_ptr += 4 \
#define x86_emit_jmp_offset(offset) \
x86_emit_byte(x86_opcode_jmp); \
x86_emit_dword(offset) \
#define x86_emit_jmp_reg(source) \
x86_emit_opcode_1b_ext_reg(jmp_reg, source) \
#define reg_base ebx
#define reg_cycles edi
#define reg_a0 eax
#define reg_a1 edx
#define reg_a2 ecx
#define reg_rv eax
#define reg_s0 esi
#define generate_load_reg(ireg, reg_index) \
x86_emit_mov_reg_mem(reg_##ireg, reg_base, reg_index * 4); \
#define generate_load_pc(ireg, new_pc) \
x86_emit_mov_reg_imm(reg_##ireg, new_pc) \
#define generate_load_imm(ireg, imm) \
x86_emit_mov_reg_imm(reg_##ireg, imm) \
#define generate_store_reg(ireg, reg_index) \
x86_emit_mov_mem_reg(reg_##ireg, reg_base, reg_index * 4) \
#define generate_shift_left(ireg, imm) \
x86_emit_shl_reg_imm(reg_##ireg, imm) \
#define generate_shift_right(ireg, imm) \
x86_emit_shr_reg_imm(reg_##ireg, imm) \
#define generate_shift_right_arithmetic(ireg, imm) \
x86_emit_sar_reg_imm(reg_##ireg, imm) \
#define generate_rotate_right(ireg, imm) \
x86_emit_ror_reg_imm(reg_##ireg, imm) \
#define generate_add(ireg_dest, ireg_src) \
x86_emit_add_reg_reg(reg_##ireg_dest, reg_##ireg_src) \
#define generate_sub(ireg_dest, ireg_src) \
x86_emit_sub_reg_reg(reg_##ireg_dest, reg_##ireg_src) \
#define generate_or(ireg_dest, ireg_src) \
x86_emit_or_reg_reg(reg_##ireg_dest, reg_##ireg_src) \
#define generate_xor(ireg_dest, ireg_src) \
x86_emit_xor_reg_reg(reg_##ireg_dest, reg_##ireg_src) \
#define generate_add_imm(ireg, imm) \
x86_emit_add_reg_imm(reg_##ireg, imm) \
#define generate_sub_imm(ireg, imm) \
x86_emit_sub_reg_imm(reg_##ireg, imm) \
#define generate_xor_imm(ireg, imm) \
x86_emit_xor_reg_imm(reg_##ireg, imm) \
#define generate_add_reg_reg_imm(ireg_dest, ireg_src, imm) \
x86_emit_lea_reg_mem(reg_##ireg_dest, reg_##ireg_src, imm) \
#define generate_and_imm(ireg, imm) \
x86_emit_and_reg_imm(reg_##ireg, imm) \
#define generate_mov(ireg_dest, ireg_src) \
x86_emit_mov_reg_reg(reg_##ireg_dest, reg_##ireg_src) \
#define generate_multiply(ireg) \
x86_emit_imul_eax_reg(reg_##ireg) \
#define generate_multiply_s64(ireg) \
x86_emit_imul_eax_reg(reg_##ireg) \
#define generate_multiply_u64(ireg) \
x86_emit_mul_eax_reg(reg_##ireg) \
#define generate_multiply_s64_add(ireg_src, ireg_lo, ireg_hi) \
x86_emit_imul_eax_reg(reg_##ireg_src); \
x86_emit_add_reg_reg(reg_a0, reg_##ireg_lo); \
x86_emit_adc_reg_reg(reg_a1, reg_##ireg_hi) \
#define generate_multiply_u64_add(ireg_src, ireg_lo, ireg_hi) \
x86_emit_mul_eax_reg(reg_##ireg_src); \
x86_emit_add_reg_reg(reg_a0, reg_##ireg_lo); \
x86_emit_adc_reg_reg(reg_a1, reg_##ireg_hi) \
#define generate_function_call(function_location) \
x86_emit_call_offset(x86_relative_offset(translation_ptr, \
function_location, 4)); \
#define generate_exit_block() \
x86_emit_ret(); \
#define generate_branch_filler_true(ireg_dest, ireg_src, writeback_location) \
x86_emit_test_reg_imm(reg_##ireg_dest, 1); \
x86_emit_j_filler(x86_condition_code_z, writeback_location) \
#define generate_branch_filler_false(ireg_dest, ireg_src, writeback_location) \
x86_emit_test_reg_imm(reg_##ireg_dest, 1); \
x86_emit_j_filler(x86_condition_code_nz, writeback_location) \
#define generate_branch_filler_equal(ireg_dest, ireg_src, writeback_location) \
x86_emit_cmp_reg_reg(reg_##ireg_dest, reg_##ireg_src); \
x86_emit_j_filler(x86_condition_code_nz, writeback_location) \
#define generate_branch_filler_not_equal(ireg_dest, ireg_src, \
writeback_location) \
x86_emit_cmp_reg_reg(reg_##ireg_dest, reg_##ireg_src); \
x86_emit_j_filler(x86_condition_code_z, writeback_location) \
#define generate_update_pc(new_pc) \
x86_emit_mov_reg_imm(eax, new_pc) \
#define generate_update_pc_reg() \
generate_update_pc(pc); \
generate_store_reg(a0, REG_PC) \
#define generate_cycle_update() \
x86_emit_sub_reg_imm(reg_cycles, cycle_count); \
cycle_count = 0 \
#define generate_branch_patch_conditional(dest, offset) \
*((u32 *)(dest)) = x86_relative_offset(dest, offset, 4) \
#define generate_branch_patch_unconditional(dest, offset) \
*((u32 *)(dest)) = x86_relative_offset(dest, offset, 4) \
#define generate_branch_no_cycle_update(writeback_location, new_pc) \
if(pc == idle_loop_target_pc) \
{ \
x86_emit_mov_reg_imm(eax, new_pc); \
generate_function_call(x86_update_gba); \
x86_emit_jmp_filler(writeback_location); \
} \
else \
{ \
x86_emit_test_reg_reg(reg_cycles, reg_cycles); \
x86_emit_j_offset(x86_condition_code_ns, 10); \
x86_emit_mov_reg_imm(eax, new_pc); \
generate_function_call(x86_update_gba); \
x86_emit_jmp_filler(writeback_location); \
} \
#define generate_branch_cycle_update(writeback_location, new_pc) \
generate_cycle_update(); \
generate_branch_no_cycle_update(writeback_location, new_pc) \
#define generate_conditional_branch(ireg_a, ireg_b, type, writeback_location) \
generate_branch_filler_##type(ireg_a, ireg_b, writeback_location) \
// a0 holds the destination
#define generate_indirect_branch_cycle_update(type) \
generate_cycle_update(); \
x86_emit_jmp_offset(x86_relative_offset(translation_ptr, \
x86_indirect_branch_##type, 4)) \
#define generate_indirect_branch_no_cycle_update(type) \
x86_emit_jmp_offset(x86_relative_offset(translation_ptr, \
x86_indirect_branch_##type, 4)) \
#define generate_block_prologue() \
#define generate_block_extra_vars_arm() \
void generate_indirect_branch_arm() \
{ \
if(condition == 0x0E) \
{ \
generate_indirect_branch_cycle_update(arm); \
} \
else \
{ \
generate_indirect_branch_no_cycle_update(arm); \
} \
} \
\
void generate_indirect_branch_dual() \
{ \
if(condition == 0x0E) \
{ \
generate_indirect_branch_cycle_update(dual); \
} \
else \
{ \
generate_indirect_branch_no_cycle_update(dual); \
} \
} \
#define generate_block_extra_vars_thumb() \
#define translate_invalidate_dcache() \
#define block_prologue_size 0
#define calculate_z_flag(dest) \
reg[REG_Z_FLAG] = (dest == 0) \
#define calculate_n_flag(dest) \
reg[REG_N_FLAG] = ((signed)dest < 0) \
#define calculate_c_flag_sub(dest, src_a, src_b) \
reg[REG_C_FLAG] = ((unsigned)src_b <= (unsigned)src_a) \
#define calculate_v_flag_sub(dest, src_a, src_b) \
reg[REG_V_FLAG] = ((signed)src_b > (signed)src_a) != ((signed)dest < 0) \
#define calculate_c_flag_add(dest, src_a, src_b) \
reg[REG_C_FLAG] = ((unsigned)dest < (unsigned)src_a) \
#define calculate_v_flag_add(dest, src_a, src_b) \
reg[REG_V_FLAG] = ((signed)dest < (signed)src_a) != ((signed)src_b < 0) \
#define get_shift_imm() \
u32 shift = (opcode >> 7) & 0x1F \
#define generate_shift_reg(ireg, name, flags_op) \
generate_load_reg_pc(ireg, rm, 12); \
generate_load_reg(a1, ((opcode >> 8) & 0x0F)); \
generate_function_call(execute_##name##_##flags_op##_reg); \
generate_mov(ireg, rv) \
u32 function_cc execute_lsl_no_flags_reg(u32 value, u32 shift)
{
if(shift != 0)
{
if(shift > 31)
value = 0;
else
value <<= shift;
}
return value;
}
u32 function_cc execute_lsr_no_flags_reg(u32 value, u32 shift)
{
if(shift != 0)
{
if(shift > 31)
value = 0;
else
value >>= shift;
}
return value;
}
u32 function_cc execute_asr_no_flags_reg(u32 value, u32 shift)
{
if(shift != 0)
{
if(shift > 31)
value = (s32)value >> 31;
else
value = (s32)value >> shift;
}
return value;
}
u32 function_cc execute_ror_no_flags_reg(u32 value, u32 shift)
{
if(shift != 0)
{
ror(value, value, shift);
}
return value;
}
u32 function_cc execute_lsl_flags_reg(u32 value, u32 shift)
{
if(shift != 0)
{
if(shift > 31)
{
reg[REG_C_FLAG] = value & 0x01;
if(shift != 32)
reg[REG_C_FLAG] = 0;
value = 0;
}
else
{
reg[REG_C_FLAG] = (value >> (32 - shift)) & 0x01;
value <<= shift;
}
}
return value;
}
u32 function_cc execute_lsr_flags_reg(u32 value, u32 shift)
{
if(shift != 0)
{
if(shift > 31)
{
reg[REG_C_FLAG] = value >> 31;
if(shift != 32)
reg[REG_C_FLAG] = 0;
value = 0;
}
else
{
reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01;
value >>= shift;
}
}
return value;
}
u32 function_cc execute_asr_flags_reg(u32 value, u32 shift)
{
if(shift != 0)
{
if(shift > 31)
{
value = (s32)value >> 31;
reg[REG_C_FLAG] = value & 0x01;
}
else
{
reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01;
value = (s32)value >> shift;
}
}
return value;
}
u32 function_cc execute_ror_flags_reg(u32 value, u32 shift)
{
if(shift != 0)
{
reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01;
ror(value, value, shift);
}
return value;
}
u32 function_cc execute_rrx_flags(u32 value)
{
u32 c_flag = reg[REG_C_FLAG];
reg[REG_C_FLAG] = value & 0x01;
return (value >> 1) | (c_flag << 31);
}
u32 function_cc execute_rrx(u32 value)
{
return (value >> 1) | (reg[REG_C_FLAG] << 31);
}
#define generate_shift_imm_lsl_no_flags(ireg) \
generate_load_reg_pc(ireg, rm, 8); \
if(shift != 0) \
{ \
generate_shift_left(ireg, shift); \
} \
#define generate_shift_imm_lsr_no_flags(ireg) \
if(shift != 0) \
{ \
generate_load_reg_pc(ireg, rm, 8); \
generate_shift_right(ireg, shift); \
} \
else \
{ \
generate_load_imm(ireg, 0); \
} \
#define generate_shift_imm_asr_no_flags(ireg) \
generate_load_reg_pc(ireg, rm, 8); \
if(shift != 0) \
{ \
generate_shift_right_arithmetic(ireg, shift); \
} \
else \
{ \
generate_shift_right_arithmetic(ireg, 31); \
} \
#define generate_shift_imm_ror_no_flags(ireg) \
if(shift != 0) \
{ \
generate_load_reg_pc(ireg, rm, 8); \
generate_rotate_right(ireg, shift); \
} \
else \
{ \
generate_load_reg_pc(a0, rm, 8); \
generate_function_call(execute_rrx); \
generate_mov(ireg, rv); \
} \
#define generate_shift_imm_lsl_flags(ireg) \
generate_load_reg_pc(ireg, rm, 8); \
if(shift != 0) \
{ \
generate_mov(a1, ireg); \
generate_shift_right(a1, (32 - shift)); \
generate_and_imm(a1, 1); \
generate_store_reg(a1, REG_C_FLAG); \
generate_shift_left(ireg, shift); \
} \
#define generate_shift_imm_lsr_flags(ireg) \
if(shift != 0) \
{ \
generate_load_reg_pc(ireg, rm, 8); \
generate_mov(a1, ireg); \
generate_shift_right(a1, shift - 1); \
generate_and_imm(a1, 1); \
generate_store_reg(a1, REG_C_FLAG); \
generate_shift_right(ireg, shift); \
} \
else \
{ \
generate_load_reg_pc(a1, rm, 8); \
generate_shift_right(a1, 31); \
generate_store_reg(a1, REG_C_FLAG); \
generate_load_imm(ireg, 0); \
} \
#define generate_shift_imm_asr_flags(ireg) \
if(shift != 0) \
{ \
generate_load_reg_pc(ireg, rm, 8); \
generate_mov(a1, ireg); \
generate_shift_right_arithmetic(a1, shift - 1); \
generate_and_imm(a1, 1); \
generate_store_reg(a1, REG_C_FLAG); \
generate_shift_right_arithmetic(ireg, shift); \
} \
else \
{ \
generate_load_reg_pc(a0, rm, 8); \
generate_shift_right_arithmetic(ireg, 31); \
generate_mov(a1, ireg); \
generate_and_imm(a1, 1); \
generate_store_reg(a1, REG_C_FLAG); \
} \
#define generate_shift_imm_ror_flags(ireg) \
generate_load_reg_pc(ireg, rm, 8); \
if(shift != 0) \
{ \
generate_mov(a1, ireg); \
generate_shift_right(a1, shift - 1); \
generate_and_imm(a1, 1); \
generate_store_reg(a1, REG_C_FLAG); \
generate_rotate_right(ireg, shift); \
} \
else \
{ \
generate_function_call(execute_rrx_flags); \
generate_mov(ireg, rv); \
} \
#define generate_shift_imm(ireg, name, flags_op) \
get_shift_imm(); \
generate_shift_imm_##name##_##flags_op(ireg) \
#define generate_load_rm_sh(flags_op) \
switch((opcode >> 4) & 0x07) \
{ \
/* LSL imm */ \
case 0x0: \
{ \
generate_shift_imm(a0, lsl, flags_op); \
break; \
} \
\
/* LSL reg */ \
case 0x1: \
{ \
generate_shift_reg(a0, lsl, flags_op); \
break; \
} \
\
/* LSR imm */ \
case 0x2: \
{ \
generate_shift_imm(a0, lsr, flags_op); \
break; \
} \
\
/* LSR reg */ \
case 0x3: \
{ \
generate_shift_reg(a0, lsr, flags_op); \
break; \
} \
\
/* ASR imm */ \
case 0x4: \
{ \
generate_shift_imm(a0, asr, flags_op); \
break; \
} \
\
/* ASR reg */ \
case 0x5: \
{ \
generate_shift_reg(a0, asr, flags_op); \
break; \
} \
\
/* ROR imm */ \
case 0x6: \
{ \
generate_shift_imm(a0, ror, flags_op); \
break; \
} \
\
/* ROR reg */ \
case 0x7: \
{ \
generate_shift_reg(a0, ror, flags_op); \
break; \
} \
} \
#define generate_load_offset_sh() \
switch((opcode >> 5) & 0x03) \
{ \
/* LSL imm */ \
case 0x0: \
{ \
generate_shift_imm(a1, lsl, no_flags); \
break; \
} \
\
/* LSR imm */ \
case 0x1: \
{ \
generate_shift_imm(a1, lsr, no_flags); \
break; \
} \
\
/* ASR imm */ \
case 0x2: \
{ \
generate_shift_imm(a1, asr, no_flags); \
break; \
} \
\
/* ROR imm */ \
case 0x3: \
{ \
generate_shift_imm(a1, ror, no_flags); \
break; \
} \
} \
#define calculate_flags_add(dest, src_a, src_b) \
calculate_z_flag(dest); \
calculate_n_flag(dest); \
calculate_c_flag_add(dest, src_a, src_b); \
calculate_v_flag_add(dest, src_a, src_b) \
#define calculate_flags_sub(dest, src_a, src_b) \
calculate_z_flag(dest); \
calculate_n_flag(dest); \
calculate_c_flag_sub(dest, src_a, src_b); \
calculate_v_flag_sub(dest, src_a, src_b) \
#define calculate_flags_logic(dest) \
calculate_z_flag(dest); \
calculate_n_flag(dest) \
#define extract_flags() \
reg[REG_N_FLAG] = reg[REG_CPSR] >> 31; \
reg[REG_Z_FLAG] = (reg[REG_CPSR] >> 30) & 0x01; \
reg[REG_C_FLAG] = (reg[REG_CPSR] >> 29) & 0x01; \
reg[REG_V_FLAG] = (reg[REG_CPSR] >> 28) & 0x01; \
#define collapse_flags() \
reg[REG_CPSR] = (reg[REG_N_FLAG] << 31) | (reg[REG_Z_FLAG] << 30) | \
(reg[REG_C_FLAG] << 29) | (reg[REG_V_FLAG] << 28) | \
reg[REG_CPSR] & 0xFF \
// It should be okay to still generate result flags, spsr will overwrite them.
// This is pretty infrequent (returning from interrupt handlers, et al) so
// probably not worth optimizing for.
#define check_for_interrupts() \
if((io_registers[REG_IE] & io_registers[REG_IF]) && \
io_registers[REG_IME] && ((reg[REG_CPSR] & 0x80) == 0)) \
{ \
reg_mode[MODE_IRQ][6] = reg[REG_PC] + 4; \
spsr[MODE_IRQ] = reg[REG_CPSR]; \
reg[REG_CPSR] = 0xD2; \
address = 0x00000018; \
set_cpu_mode(MODE_IRQ); \
} \
#define generate_load_reg_pc(ireg, reg_index, pc_offset) \
if(reg_index == 15) \
{ \
generate_load_pc(ireg, pc + pc_offset); \
} \
else \
{ \
generate_load_reg(ireg, reg_index); \
} \
#define generate_store_reg_pc_no_flags(ireg, reg_index) \
generate_store_reg(ireg, reg_index); \
if(reg_index == 15) \
{ \
generate_mov(a0, ireg); \
generate_indirect_branch_arm(); \
} \
u32 function_cc execute_spsr_restore(u32 address)
{
if(reg[CPU_MODE] != MODE_USER)
{
reg[REG_CPSR] = spsr[reg[CPU_MODE]];
extract_flags();
set_cpu_mode(cpu_modes[reg[REG_CPSR] & 0x1F]);
check_for_interrupts();
if(reg[REG_CPSR] & 0x20)
address |= 0x01;
}
return address;
}
#define generate_store_reg_pc_flags(ireg, reg_index) \
generate_store_reg(ireg, reg_index); \
if(reg_index == 15) \
{ \
generate_mov(a0, ireg); \
generate_function_call(execute_spsr_restore); \
generate_mov(a0, rv); \
generate_indirect_branch_dual(); \
} \
typedef enum
{
CONDITION_TRUE,
CONDITION_FALSE,
CONDITION_EQUAL,
CONDITION_NOT_EQUAL
} condition_check_type;
#define generate_condition_eq(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_Z_FLAG); \
condition_check = CONDITION_TRUE \
#define generate_condition_ne(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_Z_FLAG); \
condition_check = CONDITION_FALSE \
#define generate_condition_cs(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_C_FLAG); \
condition_check = CONDITION_TRUE \
#define generate_condition_cc(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_C_FLAG); \
condition_check = CONDITION_FALSE \
#define generate_condition_mi(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_N_FLAG); \
condition_check = CONDITION_TRUE \
#define generate_condition_pl(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_N_FLAG); \
condition_check = CONDITION_FALSE \
#define generate_condition_vs(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_V_FLAG); \
condition_check = CONDITION_TRUE \
#define generate_condition_vc(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_V_FLAG); \
condition_check = CONDITION_FALSE \
#define generate_condition_hi(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_C_FLAG); \
generate_xor_imm(ireg_a, 1); \
generate_load_reg(ireg_b, REG_Z_FLAG); \
generate_or(ireg_a, ireg_b); \
condition_check = CONDITION_FALSE \
#define generate_condition_ls(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_C_FLAG); \
generate_xor_imm(ireg_a, 1); \
generate_load_reg(ireg_b, REG_Z_FLAG); \
generate_or(ireg_a, ireg_b); \
condition_check = CONDITION_TRUE \
#define generate_condition_ge(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_N_FLAG); \
generate_load_reg(ireg_b, REG_V_FLAG); \
condition_check = CONDITION_EQUAL \
#define generate_condition_lt(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_N_FLAG); \
generate_load_reg(ireg_b, REG_V_FLAG); \
condition_check = CONDITION_NOT_EQUAL \
#define generate_condition_gt(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_N_FLAG); \
generate_load_reg(ireg_b, REG_V_FLAG); \
generate_xor(ireg_b, ireg_a); \
generate_load_reg(a0, REG_Z_FLAG); \
generate_or(ireg_a, ireg_b); \
condition_check = CONDITION_FALSE \
#define generate_condition_le(ireg_a, ireg_b) \
generate_load_reg(ireg_a, REG_N_FLAG); \
generate_load_reg(ireg_b, REG_V_FLAG); \
generate_xor(ireg_b, ireg_a); \
generate_load_reg(a0, REG_Z_FLAG); \
generate_or(ireg_a, ireg_b); \
condition_check = CONDITION_TRUE \
#define generate_condition(ireg_a, ireg_b) \
switch(condition) \
{ \
case 0x0: \
generate_condition_eq(ireg_a, ireg_b); \
break; \
\
case 0x1: \
generate_condition_ne(ireg_a, ireg_b); \
break; \
\
case 0x2: \
generate_condition_cs(ireg_a, ireg_b); \
break; \
\
case 0x3: \
generate_condition_cc(ireg_a, ireg_b); \
break; \
\
case 0x4: \
generate_condition_mi(ireg_a, ireg_b); \
break; \
\
case 0x5: \
generate_condition_pl(ireg_a, ireg_b); \
break; \
\
case 0x6: \
generate_condition_vs(ireg_a, ireg_b); \
break; \
\
case 0x7: \
generate_condition_vc(ireg_a, ireg_b); \
break; \
\
case 0x8: \
generate_condition_hi(ireg_a, ireg_b); \
break; \
\
case 0x9: \
generate_condition_ls(ireg_a, ireg_b); \
break; \
\
case 0xA: \
generate_condition_ge(ireg_a, ireg_b); \
break; \
\
case 0xB: \
generate_condition_lt(ireg_a, ireg_b); \
break; \
\
case 0xC: \
generate_condition_gt(ireg_a, ireg_b); \
break; \
\
case 0xD: \
generate_condition_le(ireg_a, ireg_b); \
break; \
\
case 0xE: \
/* AL */ \
break; \
\
case 0xF: \
/* Reserved */ \
break; \
} \
generate_cycle_update() \
#define generate_conditional_branch_type(ireg_a, ireg_b) \
switch(condition_check) \
{ \
case CONDITION_TRUE: \
generate_conditional_branch(ireg_a, ireg_b, true, backpatch_address); \
break; \
\
case CONDITION_FALSE: \
generate_conditional_branch(ireg_a, ireg_b, false, backpatch_address); \
break; \
\
case CONDITION_EQUAL: \
generate_conditional_branch(ireg_a, ireg_b, equal, backpatch_address); \
break; \
\
case CONDITION_NOT_EQUAL: \
generate_conditional_branch(ireg_a, ireg_b, not_equal, \
backpatch_address); \
break; \
} \
#define generate_branch() \
{ \
if(condition == 0x0E) \
{ \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
} \
else \
{ \
generate_branch_no_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
} \
block_exit_position++; \
} \
#define rm_op_reg rm
#define rm_op_imm imm
#define arm_data_proc_reg_flags() \
arm_decode_data_proc_reg(); \
if(flag_status & 0x02) \
{ \
generate_load_rm_sh(flags) \
} \
else \
{ \
generate_load_rm_sh(no_flags); \
} \
#define arm_data_proc_reg() \
arm_decode_data_proc_reg(); \
generate_load_rm_sh(no_flags) \
#define arm_data_proc_imm() \
arm_decode_data_proc_imm(); \
ror(imm, imm, imm_ror); \
generate_load_imm(a0, imm) \
#define arm_data_proc_imm_flags() \
arm_decode_data_proc_imm(); \
if((flag_status & 0x02) && (imm_ror != 0)) \
{ \
/* Generate carry flag from integer rotation */ \
generate_load_imm(a0, ((imm >> (imm_ror - 1)) & 0x01)); \
generate_store_reg(a0, REG_C_FLAG); \
} \
ror(imm, imm, imm_ror); \
generate_load_imm(a0, imm) \
#define arm_data_proc(name, type, flags_op) \
{ \
arm_data_proc_##type(); \
generate_load_reg_pc(a1, rn, 8); \
generate_function_call(execute_##name); \
generate_store_reg_pc_##flags_op(rv, rd); \
} \
#define arm_data_proc_test(name, type) \
{ \
arm_data_proc_##type(); \
generate_load_reg_pc(a1, rn, 8); \
generate_function_call(execute_##name); \
} \
#define arm_data_proc_unary(name, type, flags_op) \
{ \
arm_data_proc_##type(); \
generate_function_call(execute_##name); \
generate_store_reg_pc_##flags_op(rv, rd); \
} \
#define arm_data_proc_mov(type) \
{ \
arm_data_proc_##type(); \
generate_store_reg_pc_no_flags(a0, rd); \
} \
u32 function_cc execute_mul_flags(u32 dest)
{
calculate_z_flag(dest);
calculate_n_flag(dest);
}
#define arm_multiply_flags_yes() \
generate_function_call(execute_mul_flags) \
#define arm_multiply_flags_no(_dest) \
#define arm_multiply_add_no() \
#define arm_multiply_add_yes() \
generate_load_reg(a1, rn); \
generate_add(a0, a1) \
#define arm_multiply(add_op, flags) \
{ \
arm_decode_multiply(); \
generate_load_reg(a0, rm); \
generate_load_reg(a1, rs); \
generate_multiply(a1); \
arm_multiply_add_##add_op(); \
generate_store_reg(a0, rd); \
arm_multiply_flags_##flags(); \
} \
u32 function_cc execute_mul_long_flags(u32 dest_lo, u32 dest_hi)
{
reg[REG_Z_FLAG] = (dest_lo == 0) & (dest_hi == 0);
calculate_n_flag(dest_hi);
}
#define arm_multiply_long_flags_yes() \
generate_function_call(execute_mul_long_flags) \
#define arm_multiply_long_flags_no(_dest) \
#define arm_multiply_long_add_yes(name) \
generate_load_reg(a2, rdlo); \
generate_load_reg(s0, rdhi); \
generate_multiply_##name(a1, a2, s0) \
#define arm_multiply_long_add_no(name) \
generate_multiply_##name(a1) \
#define arm_multiply_long(name, add_op, flags) \
{ \
arm_decode_multiply_long(); \
generate_load_reg(a0, rm); \
generate_load_reg(a1, rs); \
arm_multiply_long_add_##add_op(name); \
generate_store_reg(a0, rdlo); \
generate_store_reg(a1, rdhi); \
arm_multiply_long_flags_##flags(); \
} \
u32 function_cc execute_read_cpsr()
{
collapse_flags();
return reg[REG_CPSR];
}
u32 function_cc execute_read_spsr()
{
collapse_flags();
return spsr[reg[CPU_MODE]];
}
#define arm_psr_read(op_type, psr_reg) \
generate_function_call(execute_read_##psr_reg); \
generate_store_reg(rv, rd) \
// store_mask and address are stored in the SAVE slots, since there's no real
// register space to nicely pass them.
u32 function_cc execute_store_cpsr_body(u32 _cpsr)
{
reg[REG_CPSR] = _cpsr;
if(reg[REG_SAVE] & 0xFF)
{
set_cpu_mode(cpu_modes[_cpsr & 0x1F]);
if((io_registers[REG_IE] & io_registers[REG_IF]) &&
io_registers[REG_IME] && ((_cpsr & 0x80) == 0))
{
reg_mode[MODE_IRQ][6] = reg[REG_SAVE2] + 4;
spsr[MODE_IRQ] = _cpsr;
reg[REG_CPSR] = (_cpsr & 0xFFFFFF00) | 0xD2;
set_cpu_mode(MODE_IRQ);
return 0x00000018;
}
}
return 0;
}
void function_cc execute_store_spsr(u32 new_spsr, u32 store_mask)
{
u32 _spsr = spsr[reg[CPU_MODE]];
spsr[reg[CPU_MODE]] = (new_spsr & store_mask) | (_spsr & (~store_mask));
}
#define arm_psr_load_new_reg() \
generate_load_reg(a0, rm) \
#define arm_psr_load_new_imm() \
ror(imm, imm, imm_ror); \
generate_load_imm(a0, imm) \
#define arm_psr_store(op_type, psr_reg) \
arm_psr_load_new_##op_type(); \
generate_load_imm(a1, psr_masks[psr_field]); \
generate_load_pc(a2, (pc + 4)); \
generate_function_call(execute_store_##psr_reg) \
#define arm_psr(op_type, transfer_type, psr_reg) \
{ \
arm_decode_psr_##op_type(); \
arm_psr_##transfer_type(op_type, psr_reg); \
} \
#define aligned_address_mask8 0xF0000000
#define aligned_address_mask16 0xF0000001
#define aligned_address_mask32 0xF0000003
#define read_memory(size, type, address, dest) \
{ \
u8 *map; \
\
if(((address >> 24) == 0) && (reg[REG_PC] >= 0x4000)) \
{ \
dest = *((type *)((u8 *)&bios_read_protect + (address & 0x03))); \
} \
else \
\
if(((address & aligned_address_mask##size) == 0) && \
(map = memory_map_read[address >> 15])) \
{ \
dest = *((type *)((u8 *)map + (address & 0x7FFF))); \
} \
else \
{ \
dest = (type)read_memory##size(address); \
} \
} \
#define read_memory_s16(address, dest) \
{ \
u8 *map; \
\
if(((address >> 24) == 0) && (reg[REG_PC] >= 0x4000)) \
{ \
dest = *((s16 *)((u8 *)&bios_read_protect + (address & 0x03))); \
} \
else \
\
if(((address & aligned_address_mask16) == 0) && \
(map = memory_map_read[address >> 15])) \
{ \
dest = *((s16 *)((u8 *)map + (address & 0x7FFF))); \
} \
else \
{ \
dest = (s16)read_memory16_signed(address); \
} \
} \
#define access_memory_generate_read_function(mem_size, mem_type) \
u32 function_cc execute_load_##mem_type(u32 address) \
{ \
u32 dest; \
read_memory(mem_size, mem_type, address, dest); \
return dest; \
} \
access_memory_generate_read_function(8, u8);
access_memory_generate_read_function(8, s8);
access_memory_generate_read_function(16, u16);
access_memory_generate_read_function(32, u32);
u32 function_cc execute_load_s16(u32 address)
{
u32 dest;
read_memory_s16(address, dest);
return dest;
}
#define access_memory_generate_write_function(mem_size, mem_type) \
void function_cc execute_store_##mem_type(u32 address, u32 source) \
{ \
u8 *map; \
\
if(((address & aligned_address_mask##mem_size) == 0) && \
(map = memory_map_write[address >> 15])) \
{ \
*((mem_type *)((u8 *)map + (address & 0x7FFF))) = source; \
} \
else \
{ \
write_memory##mem_size(address, source); \
} \
} \
#define arm_access_memory_load(mem_type) \
cycle_count += 2; \
generate_function_call(execute_load_##mem_type); \
generate_store_reg_pc_no_flags(rv, rd) \
#define arm_access_memory_store(mem_type) \
cycle_count++; \
generate_load_reg_pc(a1, rd, 12); \
generate_load_pc(a2, (pc + 4)); \
generate_function_call(execute_store_##mem_type) \
#define no_op \
#define arm_access_memory_writeback_yes(off_op) \
reg[rn] = address off_op \
#define arm_access_memory_writeback_no(off_op) \
#define load_reg_op reg[rd] \
#define store_reg_op reg_op \
#define arm_access_memory_adjust_op_up add
#define arm_access_memory_adjust_op_down sub
#define arm_access_memory_reverse_op_up sub
#define arm_access_memory_reverse_op_down add
#define arm_access_memory_reg_pre(adjust_dir_op, reverse_dir_op) \
generate_load_reg_pc(a0, rn, 8); \
generate_##adjust_dir_op(a0, a1) \
#define arm_access_memory_reg_pre_wb(adjust_dir_op, reverse_dir_op) \
arm_access_memory_reg_pre(adjust_dir_op, reverse_dir_op); \
generate_store_reg(a0, rn) \
#define arm_access_memory_reg_post(adjust_dir_op, reverse_dir_op) \
generate_load_reg(a0, rn); \
generate_##adjust_dir_op(a0, a1); \
generate_store_reg(a0, rn); \
generate_##reverse_dir_op(a0, a1) \
#define arm_access_memory_imm_pre(adjust_dir_op, reverse_dir_op) \
generate_load_reg_pc(a0, rn, 8); \
generate_##adjust_dir_op##_imm(a0, offset) \
#define arm_access_memory_imm_pre_wb(adjust_dir_op, reverse_dir_op) \
arm_access_memory_imm_pre(adjust_dir_op, reverse_dir_op); \
generate_store_reg(a0, rn) \
#define arm_access_memory_imm_post(adjust_dir_op, reverse_dir_op) \
generate_load_reg(a0, rn); \
generate_##adjust_dir_op##_imm(a0, offset); \
generate_store_reg(a0, rn); \
generate_##reverse_dir_op##_imm(a0, offset) \
#define arm_data_trans_reg(adjust_op, adjust_dir_op, reverse_dir_op) \
arm_decode_data_trans_reg(); \
generate_load_offset_sh(); \
arm_access_memory_reg_##adjust_op(adjust_dir_op, reverse_dir_op) \
#define arm_data_trans_imm(adjust_op, adjust_dir_op, reverse_dir_op) \
arm_decode_data_trans_imm(); \
arm_access_memory_imm_##adjust_op(adjust_dir_op, reverse_dir_op) \
#define arm_data_trans_half_reg(adjust_op, adjust_dir_op, reverse_dir_op) \
arm_decode_half_trans_r(); \
generate_load_reg(a1, rm); \
arm_access_memory_reg_##adjust_op(adjust_dir_op, reverse_dir_op) \
#define arm_data_trans_half_imm(adjust_op, adjust_dir_op, reverse_dir_op) \
arm_decode_half_trans_of(); \
arm_access_memory_imm_##adjust_op(adjust_dir_op, reverse_dir_op) \
#define arm_access_memory(access_type, direction, adjust_op, mem_type, \
offset_type) \
{ \
arm_data_trans_##offset_type(adjust_op, \
arm_access_memory_adjust_op_##direction, \
arm_access_memory_reverse_op_##direction); \
\
arm_access_memory_##access_type(mem_type); \
} \
#define word_bit_count(word) \
(bit_count[word >> 8] + bit_count[word & 0xFF]) \
#define sprint_no(access_type, pre_op, post_op, wb) \
#define sprint_yes(access_type, pre_op, post_op, wb) \
printf("sbit on %s %s %s %s\n", #access_type, #pre_op, #post_op, #wb) \
u32 function_cc execute_aligned_load32(u32 address)
{
u8 *map;
if(!(address & 0xF0000000) && (map = memory_map_read[address >> 15]))
return address32(map, address & 0x7FFF);
else
return read_memory32(address);
}
void function_cc execute_aligned_store32(u32 address, u32 source)
{
u8 *map;
if(!(address & 0xF0000000) && (map = memory_map_write[address >> 15]))
address32(map, address & 0x7FFF) = source;
else
write_memory32(address, source);
}
#define arm_block_memory_load() \
generate_function_call(execute_aligned_load32); \
generate_store_reg(rv, i) \
#define arm_block_memory_store() \
generate_load_reg_pc(a1, i, 8); \
generate_function_call(execute_aligned_store32) \
#define arm_block_memory_final_load() \
arm_block_memory_load() \
#define arm_block_memory_final_store() \
generate_load_reg_pc(a1, i, 12); \
generate_load_pc(a2, (pc + 4)); \
generate_function_call(execute_store_u32) \
#define arm_block_memory_adjust_pc_store() \
#define arm_block_memory_adjust_pc_load() \
if(reg_list & 0x8000) \
{ \
generate_mov(a0, rv); \
generate_indirect_branch_arm(); \
} \
#define arm_block_memory_offset_down_a() \
generate_add_imm(s0, -((word_bit_count(reg_list) * 4) - 4)) \
#define arm_block_memory_offset_down_b() \
generate_add_imm(s0, -(word_bit_count(reg_list) * 4)) \
#define arm_block_memory_offset_no() \
#define arm_block_memory_offset_up() \
generate_add_imm(s0, 4) \
#define arm_block_memory_writeback_down() \
generate_load_reg(a0, rn) \
generate_add_imm(a0, -(word_bit_count(reg_list) * 4)); \
generate_store_reg(a0, rn) \
#define arm_block_memory_writeback_up() \
generate_load_reg(a0, rn); \
generate_add_imm(a0, (word_bit_count(reg_list) * 4)); \
generate_store_reg(a0, rn) \
#define arm_block_memory_writeback_no()
// Only emit writeback if the register is not in the list
#define arm_block_memory_writeback_load(writeback_type) \
if(!((reg_list >> rn) & 0x01)) \
{ \
arm_block_memory_writeback_##writeback_type(); \
} \
#define arm_block_memory_writeback_store(writeback_type) \
arm_block_memory_writeback_##writeback_type() \
#define arm_block_memory(access_type, offset_type, writeback_type, s_bit) \
{ \
arm_decode_block_trans(); \
u32 offset = 0; \
u32 i; \
\
generate_load_reg(s0, rn); \
arm_block_memory_offset_##offset_type(); \
arm_block_memory_writeback_##access_type(writeback_type); \
generate_and_imm(s0, ~0x03); \
\
for(i = 0; i < 16; i++) \
{ \
if((reg_list >> i) & 0x01) \
{ \
cycle_count++; \
generate_add_reg_reg_imm(a0, s0, offset) \
if(reg_list & ~((2 << i) - 1)) \
{ \
arm_block_memory_##access_type(); \
offset += 4; \
} \
else \
{ \
arm_block_memory_final_##access_type(); \
} \
} \
} \
\
arm_block_memory_adjust_pc_##access_type(); \
} \
#define arm_swap(type) \
{ \
arm_decode_swap(); \
cycle_count += 3; \
generate_load_reg(a0, rn); \
generate_function_call(execute_load_##type); \
generate_mov(s0, rv); \
generate_load_reg(a0, rn); \
generate_load_reg(a1, rm); \
generate_function_call(execute_store_##type); \
generate_store_reg(s0, rd); \
} \
#define thumb_rn_op_reg(_rn) \
generate_load_reg(a0, _rn) \
#define thumb_rn_op_imm(_imm) \
generate_load_imm(a0, _imm) \
// Types: add_sub, add_sub_imm, alu_op, imm
// Affects N/Z/C/V flags
#define thumb_data_proc(type, name, rn_type, _rd, _rs, _rn) \
{ \
thumb_decode_##type(); \
thumb_rn_op_##rn_type(_rn); \
generate_load_reg(a1, _rs); \
generate_function_call(execute_##name); \
generate_store_reg(rv, _rd); \
} \
#define thumb_data_proc_test(type, name, rn_type, _rs, _rn) \
{ \
thumb_decode_##type(); \
thumb_rn_op_##rn_type(_rn); \
generate_load_reg(a1, _rs); \
generate_function_call(execute_##name); \
} \
#define thumb_data_proc_unary(type, name, rn_type, _rd, _rn) \
{ \
thumb_decode_##type(); \
thumb_rn_op_##rn_type(_rn); \
generate_function_call(execute_##name); \
generate_store_reg(rv, _rd); \
} \
#define thumb_data_proc_mov(type, rn_type, _rd, _rn) \
{ \
thumb_decode_##type(); \
thumb_rn_op_##rn_type(_rn); \
generate_store_reg(a0, _rd); \
} \
#define generate_store_reg_pc_thumb(ireg) \
generate_store_reg(ireg, rd); \
if(rd == 15) \
{ \
generate_indirect_branch_cycle_update(thumb); \
} \
#define thumb_data_proc_hi(name) \
{ \
thumb_decode_hireg_op(); \
generate_load_reg_pc(a0, rs, 4); \
generate_load_reg_pc(a1, rd, 4); \
generate_function_call(execute_##name); \
generate_store_reg_pc_thumb(rv); \
} \
#define thumb_data_proc_test_hi(name) \
{ \
thumb_decode_hireg_op(); \
generate_load_reg_pc(a0, rs, 4); \
generate_load_reg_pc(a1, rd, 4); \
generate_function_call(execute_##name); \
} \
#define thumb_data_proc_unary_hi(name) \
{ \
thumb_decode_hireg_op(); \
generate_load_reg_pc(a0, rn, 4); \
generate_function_call(execute_##name); \
generate_store_reg_pc_thumb(rv); \
} \
#define thumb_data_proc_mov_hi() \
{ \
thumb_decode_hireg_op(); \
generate_load_reg_pc(a0, rs, 4); \
generate_store_reg_pc_thumb(a0); \
} \
#define thumb_load_pc(_rd) \
{ \
thumb_decode_imm(); \
generate_load_pc(a0, (((pc & ~2) + 4) + (imm * 4))); \
generate_store_reg(a0, _rd); \
} \
#define thumb_load_sp(_rd) \
{ \
thumb_decode_imm(); \
generate_load_reg(a0, 13); \
generate_add_imm(a0, (imm * 4)); \
generate_store_reg(a0, _rd); \
} \
#define thumb_adjust_sp_up() \
generate_add_imm(a0, imm * 4) \
#define thumb_adjust_sp_down() \
generate_sub_imm(a0, imm * 4) \
#define thumb_adjust_sp(direction) \
{ \
thumb_decode_add_sp(); \
generate_load_reg(a0, REG_SP); \
thumb_adjust_sp_##direction(); \
generate_store_reg(a0, REG_SP); \
} \
// Decode types: shift, alu_op
// Operation types: lsl, lsr, asr, ror
// Affects N/Z/C flags
u32 function_cc execute_lsl_reg_op(u32 value, u32 shift)
{
if(shift != 0)
{
if(shift > 31)
{
if(shift == 32)
reg[REG_C_FLAG] = value & 0x01;
else
reg[REG_C_FLAG] = 0;
value = 0;
}
else
{
reg[REG_C_FLAG] = (value >> (32 - shift)) & 0x01;
value <<= shift;
}
}
calculate_flags_logic(value);
return value;
}
u32 function_cc execute_lsr_reg_op(u32 value, u32 shift)
{
if(shift != 0)
{
if(shift > 31)
{
if(shift == 32)
reg[REG_C_FLAG] = (value >> 31) & 0x01;
else
reg[REG_C_FLAG] = 0;
value = 0;
}
else
{
reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01;
value >>= shift;
}
}
calculate_flags_logic(value);
return value;
}
u32 function_cc execute_asr_reg_op(u32 value, u32 shift)
{
if(shift != 0)
{
if(shift > 31)
{
value = (s32)value >> 31;
reg[REG_C_FLAG] = value & 0x01;
}
else
{
reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01;
value = (s32)value >> shift;
}
}
calculate_flags_logic(value);
return value;
}
u32 function_cc execute_ror_reg_op(u32 value, u32 shift)
{
if(shift != 0)
{
reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01;
ror(value, value, shift);
}
calculate_flags_logic(value);
return value;
}
u32 function_cc execute_lsl_imm_op(u32 value, u32 shift)
{
if(shift != 0)
{
reg[REG_C_FLAG] = (value >> (32 - shift)) & 0x01;
value <<= shift;
}
calculate_flags_logic(value);
return value;
}
u32 function_cc execute_lsr_imm_op(u32 value, u32 shift)
{
if(shift != 0)
{
reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01;
value >>= shift;
}
else
{
reg[REG_C_FLAG] = value >> 31;
value = 0;
}
calculate_flags_logic(value);
return value;
}
u32 function_cc execute_asr_imm_op(u32 value, u32 shift)
{
if(shift != 0)
{
reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01;
value = (s32)value >> shift;
}
else
{
value = (s32)value >> 31;
reg[REG_C_FLAG] = value & 0x01;
}
calculate_flags_logic(value);
return value;
}
u32 function_cc execute_ror_imm_op(u32 value, u32 shift)
{
if(shift != 0)
{
reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01;
ror(value, value, shift);
}
else
{
u32 c_flag = reg[REG_C_FLAG];
reg[REG_C_FLAG] = value & 0x01;
value = (value >> 1) | (c_flag << 31);
}
calculate_flags_logic(value);
return value;
}
#define generate_shift_load_operands_reg() \
generate_load_reg(a0, rd); \
generate_load_reg(a1, rs) \
#define generate_shift_load_operands_imm() \
generate_load_reg(a0, rs); \
generate_load_imm(a1, imm) \
#define thumb_shift(decode_type, op_type, value_type) \
{ \
thumb_decode_##decode_type(); \
generate_shift_load_operands_##value_type(); \
generate_function_call(execute_##op_type##_##value_type##_op); \
generate_store_reg(rv, rd); \
} \
// Operation types: imm, mem_reg, mem_imm
#define thumb_access_memory_load(mem_type, reg_rd) \
cycle_count += 2; \
generate_function_call(execute_load_##mem_type); \
generate_store_reg(rv, reg_rd) \
#define thumb_access_memory_store(mem_type, reg_rd) \
cycle_count++; \
generate_load_reg(a1, reg_rd); \
generate_load_pc(a2, (pc + 2)); \
generate_function_call(execute_store_##mem_type) \
#define thumb_access_memory_generate_address_pc_relative(offset, _rb, _ro) \
generate_load_pc(a0, (offset)) \
#define thumb_access_memory_generate_address_reg_imm_sp(offset, _rb, _ro) \
generate_load_reg(a0, _rb); \
generate_add_imm(a0, (offset * 4)) \
#define thumb_access_memory_generate_address_reg_imm(offset, _rb, _ro) \
generate_load_reg(a0, _rb); \
generate_add_imm(a0, (offset)) \
#define thumb_access_memory_generate_address_reg_reg(offset, _rb, _ro) \
generate_load_reg(a0, _rb); \
generate_load_reg(a1, _ro); \
generate_add(a0, a1) \
#define thumb_access_memory(access_type, op_type, _rd, _rb, _ro, \
address_type, offset, mem_type) \
{ \
thumb_decode_##op_type(); \
thumb_access_memory_generate_address_##address_type(offset, _rb, _ro); \
thumb_access_memory_##access_type(mem_type, _rd); \
} \
#define thumb_block_address_preadjust_up() \
generate_add_imm(s0, (bit_count[reg_list] * 4)) \
#define thumb_block_address_preadjust_down() \
generate_sub_imm(s0, (bit_count[reg_list] * 4)) \
#define thumb_block_address_preadjust_push_lr() \
generate_sub_imm(s0, ((bit_count[reg_list] + 1) * 4)) \
#define thumb_block_address_preadjust_no() \
#define thumb_block_address_postadjust_no(base_reg) \
generate_store_reg(s0, base_reg) \
#define thumb_block_address_postadjust_up(base_reg) \
generate_add_reg_reg_imm(a0, s0, (bit_count[reg_list] * 4)); \
generate_store_reg(a0, base_reg) \
#define thumb_block_address_postadjust_down(base_reg) \
generate_mov(a0, s0); \
generate_sub_imm(a0, (bit_count[reg_list] * 4)); \
generate_store_reg(a0, base_reg) \
#define thumb_block_address_postadjust_pop_pc(base_reg) \
generate_add_reg_reg_imm(a0, s0, ((bit_count[reg_list] + 1) * 4)); \
generate_store_reg(a0, base_reg) \
#define thumb_block_address_postadjust_push_lr(base_reg) \
generate_store_reg(s0, base_reg) \
#define thumb_block_memory_extra_no() \
#define thumb_block_memory_extra_up() \
#define thumb_block_memory_extra_down() \
#define thumb_block_memory_extra_pop_pc() \
generate_add_reg_reg_imm(a0, s0, (bit_count[reg_list] * 4)); \
generate_function_call(execute_aligned_load32); \
generate_store_reg(rv, REG_PC); \
generate_mov(a0, rv); \
generate_indirect_branch_cycle_update(thumb) \
#define thumb_block_memory_extra_push_lr(base_reg) \
generate_add_reg_reg_imm(a0, s0, (bit_count[reg_list] * 4)); \
generate_load_reg(a1, REG_LR); \
generate_function_call(execute_aligned_store32) \
#define thumb_block_memory_load() \
generate_function_call(execute_aligned_load32); \
generate_store_reg(rv, i) \
#define thumb_block_memory_store() \
generate_load_reg(a1, i); \
generate_function_call(execute_aligned_store32) \
#define thumb_block_memory_final_load() \
thumb_block_memory_load() \
#define thumb_block_memory_final_store() \
generate_load_reg(a1, i); \
generate_load_pc(a2, (pc + 2)); \
generate_function_call(execute_store_u32) \
#define thumb_block_memory_final_no(access_type) \
thumb_block_memory_final_##access_type() \
#define thumb_block_memory_final_up(access_type) \
thumb_block_memory_final_##access_type() \
#define thumb_block_memory_final_down(access_type) \
thumb_block_memory_final_##access_type() \
#define thumb_block_memory_final_push_lr(access_type) \
thumb_block_memory_##access_type() \
#define thumb_block_memory_final_pop_pc(access_type) \
thumb_block_memory_##access_type() \
#define thumb_block_memory(access_type, pre_op, post_op, base_reg) \
{ \
thumb_decode_rlist(); \
u32 i; \
u32 offset = 0; \
\
generate_load_reg(s0, base_reg); \
generate_and_imm(s0, ~0x03); \
thumb_block_address_preadjust_##pre_op(); \
thumb_block_address_postadjust_##post_op(base_reg); \
\
for(i = 0; i < 8; i++) \
{ \
if((reg_list >> i) & 0x01) \
{ \
cycle_count++; \
generate_add_reg_reg_imm(a0, s0, offset) \
if(reg_list & ~((2 << i) - 1)) \
{ \
thumb_block_memory_##access_type(); \
offset += 4; \
} \
else \
{ \
thumb_block_memory_final_##post_op(access_type); \
} \
} \
} \
\
thumb_block_memory_extra_##post_op(); \
} \
#define thumb_conditional_branch(condition) \
{ \
condition_check_type condition_check; \
generate_cycle_update(); \
generate_condition_##condition(a0, a1); \
generate_conditional_branch_type(a0, a1); \
generate_branch_no_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
generate_branch_patch_conditional(backpatch_address, translation_ptr); \
block_exit_position++; \
} \
#define flags_vars(src_a, src_b) \
u32 dest; \
const u32 _sa = src_a; \
const u32 _sb = src_b \
#define data_proc_generate_logic_function(name, expr) \
u32 function_cc execute_##name(u32 rm, u32 rn) \
{ \
return expr; \
} \
\
u32 function_cc execute_##name##s(u32 rm, u32 rn) \
{ \
u32 dest = expr; \
calculate_z_flag(dest); \
calculate_n_flag(dest); \
return expr; \
} \
#define data_proc_generate_logic_unary_function(name, expr) \
u32 function_cc execute_##name(u32 rm) \
{ \
return expr; \
} \
\
u32 function_cc execute_##name##s(u32 rm) \
{ \
u32 dest = expr; \
calculate_z_flag(dest); \
calculate_n_flag(dest); \
return expr; \
} \
#define data_proc_generate_sub_function(name, src_a, src_b) \
u32 function_cc execute_##name(u32 rm, u32 rn) \
{ \
return (src_a) - (src_b); \
} \
\
u32 function_cc execute_##name##s(u32 rm, u32 rn) \
{ \
flags_vars(src_a, src_b); \
dest = _sa - _sb; \
calculate_flags_sub(dest, _sa, _sb); \
return dest; \
} \
#define data_proc_generate_add_function(name, src_a, src_b) \
u32 function_cc execute_##name(u32 rm, u32 rn) \
{ \
return (src_a) + (src_b); \
} \
\
u32 function_cc execute_##name##s(u32 rm, u32 rn) \
{ \
flags_vars(src_a, src_b); \
dest = _sa + _sb; \
calculate_flags_add(dest, _sa, _sb); \
return dest; \
} \
#define data_proc_generate_sub_test_function(name, src_a, src_b) \
void function_cc execute_##name(u32 rm, u32 rn) \
{ \
flags_vars(src_a, src_b); \
dest = _sa - _sb; \
calculate_flags_sub(dest, _sa, _sb); \
} \
#define data_proc_generate_add_test_function(name, src_a, src_b) \
void function_cc execute_##name(u32 rm, u32 rn) \
{ \
flags_vars(src_a, src_b); \
dest = _sa + _sb; \
calculate_flags_add(dest, _sa, _sb); \
} \
#define data_proc_generate_logic_test_function(name, expr) \
void function_cc execute_##name(u32 rm, u32 rn) \
{ \
u32 dest = expr; \
calculate_z_flag(dest); \
calculate_n_flag(dest); \
} \
u32 function_cc execute_neg(u32 rm) \
{ \
u32 dest = 0 - rm; \
calculate_flags_sub(dest, 0, rm); \
return dest; \
} \
// Execute functions
data_proc_generate_logic_function(and, rn & rm);
data_proc_generate_logic_function(eor, rn ^ rm);
data_proc_generate_logic_function(orr, rn | rm);
data_proc_generate_logic_function(bic, rn & (~rm));
data_proc_generate_logic_function(mul, rn * rm);
data_proc_generate_logic_unary_function(mov, rm);
data_proc_generate_logic_unary_function(mvn, ~rm);
data_proc_generate_sub_function(sub, rn, rm);
data_proc_generate_sub_function(rsb, rm, rn);
data_proc_generate_sub_function(sbc, rn, (rm + (reg[REG_C_FLAG] ^ 1)));
data_proc_generate_sub_function(rsc, (rm + reg[REG_C_FLAG] - 1), rn);
data_proc_generate_add_function(add, rn, rm);
data_proc_generate_add_function(adc, rn, rm + reg[REG_C_FLAG]);
data_proc_generate_logic_test_function(tst, rn & rm);
data_proc_generate_logic_test_function(teq, rn ^ rm);
data_proc_generate_sub_test_function(cmp, rn, rm);
data_proc_generate_add_test_function(cmn, rn, rm);
u32 function_cc execute_swi(u32 pc)
{
reg_mode[MODE_SUPERVISOR][6] = pc;
collapse_flags();
spsr[MODE_SUPERVISOR] = reg[REG_CPSR];
reg[REG_CPSR] = (reg[REG_CPSR] & ~0x3F) | 0x13;
set_cpu_mode(MODE_SUPERVISOR);
}
#define arm_conditional_block_header() \
{ \
condition_check_type condition_check; \
generate_condition(a0, a1); \
generate_conditional_branch_type(a0, a1); \
}
#define arm_b() \
generate_branch() \
#define arm_bl() \
generate_update_pc((pc + 4)); \
generate_store_reg(a0, REG_LR); \
generate_branch() \
#define arm_bx() \
arm_decode_branchx(); \
generate_load_reg(a0, rn); \
generate_indirect_branch_dual(); \
#define arm_swi() \
generate_swi_hle_handler((opcode >> 16) & 0xFF); \
generate_update_pc((pc + 4)); \
generate_function_call(execute_swi); \
generate_branch() \
#define thumb_b() \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
block_exit_position++ \
#define thumb_bl() \
generate_update_pc(((pc + 2) | 0x01)); \
generate_store_reg(a0, REG_LR); \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
block_exit_position++ \
#define thumb_blh() \
{ \
thumb_decode_branch(); \
generate_update_pc(((pc + 2) | 0x01)); \
generate_load_reg(a1, REG_LR); \
generate_store_reg(a0, REG_LR); \
generate_mov(a0, a1); \
generate_add_imm(a0, (offset * 2)); \
generate_indirect_branch_cycle_update(thumb); \
} \
#define thumb_bx() \
{ \
thumb_decode_hireg_op(); \
generate_load_reg_pc(a0, rs, 4); \
generate_indirect_branch_cycle_update(dual); \
} \
#define thumb_swi() \
generate_swi_hle_handler(opcode & 0xFF); \
generate_update_pc((pc + 2)); \
generate_function_call(execute_swi); \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
block_exit_position++ \
u8 swi_hle_handle[256] =
{
0x0, // SWI 0: SoftReset
0x0, // SWI 1: RegisterRAMReset
0x0, // SWI 2: Halt
0x0, // SWI 3: Stop/Sleep
0x0, // SWI 4: IntrWait
0x0, // SWI 5: VBlankIntrWait
0x1, // SWI 6: Div
0x0, // SWI 7: DivArm
0x0, // SWI 8: Sqrt
0x0, // SWI 9: ArcTan
0x0, // SWI A: ArcTan2
0x0, // SWI B: CpuSet
0x0, // SWI C: CpuFastSet
0x0, // SWI D: GetBIOSCheckSum
0x0, // SWI E: BgAffineSet
0x0, // SWI F: ObjAffineSet
0x0, // SWI 10: BitUnpack
0x0, // SWI 11: LZ77UnCompWram
0x0, // SWI 12: LZ77UnCompVram
0x0, // SWI 13: HuffUnComp
0x0, // SWI 14: RLUnCompWram
0x0, // SWI 15: RLUnCompVram
0x0, // SWI 16: Diff8bitUnFilterWram
0x0, // SWI 17: Diff8bitUnFilterVram
0x0, // SWI 18: Diff16bitUnFilter
0x0, // SWI 19: SoundBias
0x0, // SWI 1A: SoundDriverInit
0x0, // SWI 1B: SoundDriverMode
0x0, // SWI 1C: SoundDriverMain
0x0, // SWI 1D: SoundDriverVSync
0x0, // SWI 1E: SoundChannelClear
0x0, // SWI 1F: MidiKey2Freq
0x0, // SWI 20: SoundWhatever0
0x0, // SWI 21: SoundWhatever1
0x0, // SWI 22: SoundWhatever2
0x0, // SWI 23: SoundWhatever3
0x0, // SWI 24: SoundWhatever4
0x0, // SWI 25: MultiBoot
0x0, // SWI 26: HardReset
0x0, // SWI 27: CustomHalt
0x0, // SWI 28: SoundDriverVSyncOff
0x0, // SWI 29: SoundDriverVSyncOn
0x0 // SWI 2A: SoundGetJumpList
};
void function_cc swi_hle_div()
{
s32 result = (s32)reg[0] / (s32)reg[1];
reg[1] = (s32)reg[0] % (s32)reg[1];
reg[0] = result;
reg[3] = (result ^ (result >> 31)) - (result >> 31);
}
#define generate_swi_hle_handler(_swi_number) \
{ \
u32 swi_number = _swi_number; \
if(swi_hle_handle[swi_number]) \
{ \
/* Div */ \
if(swi_number == 0x06) \
{ \
generate_function_call(swi_hle_div); \
} \
break; \
} \
} \
#define generate_translation_gate(type) \
generate_update_pc(pc); \
generate_indirect_branch_no_cycle_update(type) \
#define generate_step_debug() \
generate_load_imm(a0, pc); \
generate_function_call(step_debug_x86) \
#endif