gpsp/video.cc

2848 lines
126 KiB
C++

/* gameplaySP
*
* Copyright (C) 2006 Exophase <exophase@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
extern "C" {
#include "common.h"
}
u16* gba_screen_pixels = NULL;
#define get_screen_pixels() gba_screen_pixels
#define get_screen_pitch() GBA_SCREEN_PITCH
typedef struct {
u16 attr0, attr1, attr2, attr3;
} t_oam;
typedef struct {
u16 pad0[3];
u16 dx;
u16 pad1[3];
u16 dmx;
u16 pad2[3];
u16 dy;
u16 pad3[3];
u16 dmy;
} t_affp;
typedef void (* tile_render_function)(u32 layer_number, u32 start, u32 end,
void *dest_ptr);
typedef void (* bitmap_render_function)(u32 start, u32 end, void *dest_ptr);
typedef void (*conditional_render_function)(
u32 start, u32 end, u16 *scanline, u32 enable_flags);
typedef struct
{
tile_render_function base[4];
tile_render_function trans[4];
} tile_layer_render_struct;
typedef struct
{
bitmap_render_function blit_render;
bitmap_render_function scale_render;
bitmap_render_function affine_render;
} bitmap_layer_render_struct;
static void render_scanline_conditional_tile(
u32 start, u32 end, u16 *scanline, u32 enable_flags);
static void render_scanline_conditional_bitmap(
u32 start, u32 end, u16 *scanline, u32 enable_flags);
#define advance_dest_ptr_base(delta) \
dest_ptr += delta \
#define advance_dest_ptr_transparent(delta) \
advance_dest_ptr_base(delta) \
#define color_combine_mask_a(layer) \
((read_ioreg(REG_BLDCNT) >> layer) & 0x01) \
// For color blending operations, will create a mask that has in bit
// 10 if the layer is target B, and bit 9 if the layer is target A.
#define color_combine_mask(layer) \
(color_combine_mask_a(layer) | \
((read_ioreg(REG_BLDCNT) >> (layer + 7)) & 0x02)) << 9 \
// OBJ should only shift if the top isn't already OBJ
#define tile_expand_transparent_alpha_obj(index) \
dest = dest_ptr[index]; \
if(dest & 0x00000100) \
dest_ptr[index] = (dest & 0xFFFF0000) | current_pixel | pixel_combine; \
else \
dest_ptr[index] = (dest << 16) | current_pixel | pixel_combine; \
// For color effects that don't need to preserve the previous layer.
// The color32 version should be used with 32bit wide dest_ptr so as to be
// compatible with alpha combine on top of it.
#define tile_expand_base_color16(index) \
dest_ptr[index] = current_pixel | pixel_combine \
#define tile_expand_transparent_color16(index) \
tile_expand_base_color16(index) \
#define tile_expand_transparent_color32(index) \
tile_expand_base_color16(index) \
// Operations for isolation 8bpp pixels within 32bpp pixel blocks.
#define tile_8bpp_pixel_op_mask(op_param) \
current_pixel = current_pixels & 0xFF \
#define tile_8bpp_pixel_op_shift_mask(shift) \
current_pixel = (current_pixels >> shift) & 0xFF \
#define tile_8bpp_pixel_op_shift(shift) \
current_pixel = current_pixels >> shift \
#define tile_8bpp_pixel_op_none(shift) \
// Transparent (layered) writes should only replace what is there if the
// pixel is not transparent (zero)
#define tile_8bpp_draw_transparent(index, op, op_param, alpha_op) \
tile_8bpp_pixel_op_##op(op_param); \
if(current_pixel) \
{ \
tile_expand_transparent_##alpha_op(index); \
} \
// Get the current tile from the map in 8bpp mode
#define get_tile_8bpp() \
current_tile = eswap16(*map_ptr); \
tile_ptr = tile_base + ((current_tile & 0x3FF) * 64) \
// Draw half of a tile in 8bpp mode, for base renderer
#define tile_8bpp_draw_four_noflip(index, combine_op, alpha_op) \
tile_8bpp_draw_##combine_op(index + 0, mask, 0, alpha_op); \
tile_8bpp_draw_##combine_op(index + 1, shift_mask, 8, alpha_op); \
tile_8bpp_draw_##combine_op(index + 2, shift_mask, 16, alpha_op); \
tile_8bpp_draw_##combine_op(index + 3, shift, 24, alpha_op) \
// Like the above, but draws the half-tile horizontally flipped
#define tile_8bpp_draw_four_flip(index, combine_op, alpha_op) \
tile_8bpp_draw_##combine_op(index + 3, mask, 0, alpha_op); \
tile_8bpp_draw_##combine_op(index + 2, shift_mask, 8, alpha_op); \
tile_8bpp_draw_##combine_op(index + 1, shift_mask, 16, alpha_op); \
tile_8bpp_draw_##combine_op(index + 0, shift, 24, alpha_op) \
// Draw half of a tile in 8bpp mode, for transparent renderer; as an
// optimization the entire thing is checked against zero (in transparent
// capable renders it is more likely for the pixels to be transparent than
// opaque)
#define tile_8bpp_draw_four_transparent(index, alpha_op, flip_op) \
if(current_pixels != 0) \
{ \
tile_8bpp_draw_four_##flip_op(index, transparent, alpha_op); \
} \
// Helper macro for drawing 8bpp tiles clipped against the edge of the screen
#define partial_tile_8bpp(combine_op, alpha_op) \
for(i = 0; i < partial_tile_run; i++) \
{ \
tile_8bpp_draw_##combine_op(0, mask, 0, alpha_op); \
current_pixels >>= 8; \
advance_dest_ptr_##combine_op(1); \
} \
// Draws 8bpp tiles clipped against the left side of the screen,
// partial_tile_offset indicates how much clipped in it is, partial_tile_run
// indicates how much it should draw.
#define partial_tile_right_noflip_8bpp(combine_op, alpha_op) \
if(partial_tile_offset >= 4) \
{ \
current_pixels = eswap32(*((u32 *)(tile_ptr + 4))) >> \
((partial_tile_offset - 4) * 8); \
partial_tile_8bpp(combine_op, alpha_op); \
} \
else \
{ \
partial_tile_run -= 4; \
current_pixels = eswap32(*((u32 *)tile_ptr)) >> (partial_tile_offset * 8);\
partial_tile_8bpp(combine_op, alpha_op); \
current_pixels = eswap32(*((u32 *)(tile_ptr + 4))); \
tile_8bpp_draw_four_##combine_op(0, alpha_op, noflip); \
advance_dest_ptr_##combine_op(4); \
} \
// Draws 8bpp tiles clipped against both the left and right side of the
// screen, IE, runs of less than 8 - partial_tile_offset.
#define partial_tile_mid_noflip_8bpp(combine_op, alpha_op) \
if(partial_tile_offset >= 4) \
{ \
current_pixels = eswap32(*((u32 *)(tile_ptr + 4))) >> \
((partial_tile_offset - 4) * 8); \
} \
else \
{ \
current_pixels = eswap32(*((u32 *)tile_ptr)) >> (partial_tile_offset * 8);\
if((partial_tile_offset + partial_tile_run) > 4) \
{ \
u32 old_run = partial_tile_run; \
partial_tile_run = 4 - partial_tile_offset; \
partial_tile_8bpp(combine_op, alpha_op); \
partial_tile_run = old_run - partial_tile_run; \
current_pixels = eswap32(*((u32 *)(tile_ptr + 4))); \
} \
} \
partial_tile_8bpp(combine_op, alpha_op); \
// Draws 8bpp tiles clipped against the right side of the screen,
// partial_tile_run indicates how much there is to draw.
#define partial_tile_left_noflip_8bpp(combine_op, alpha_op) \
if(partial_tile_run >= 4) \
{ \
current_pixels = eswap32(*((u32 *)tile_ptr)); \
tile_8bpp_draw_four_##combine_op(0, alpha_op, noflip); \
advance_dest_ptr_##combine_op(4); \
tile_ptr += 4; \
partial_tile_run -= 4; \
} \
\
current_pixels = eswap32(*((u32 *)(tile_ptr))); \
partial_tile_8bpp(combine_op, alpha_op) \
// Draws a non-clipped (complete) 8bpp tile.
#define tile_noflip_8bpp(combine_op, alpha_op) \
current_pixels = eswap32(*((u32 *)tile_ptr)); \
tile_8bpp_draw_four_##combine_op(0, alpha_op, noflip); \
current_pixels = eswap32(*((u32 *)(tile_ptr + 4))); \
tile_8bpp_draw_four_##combine_op(4, alpha_op, noflip) \
// Like the above versions but draws flipped tiles.
#define partial_tile_flip_8bpp(combine_op, alpha_op) \
for(i = 0; i < partial_tile_run; i++) \
{ \
tile_8bpp_draw_##combine_op(0, shift, 24, alpha_op); \
current_pixels <<= 8; \
advance_dest_ptr_##combine_op(1); \
} \
#define partial_tile_right_flip_8bpp(combine_op, alpha_op) \
if(partial_tile_offset >= 4) \
{ \
current_pixels = eswap32(*((u32 *)tile_ptr)) << \
((partial_tile_offset - 4) * 8); \
partial_tile_flip_8bpp(combine_op, alpha_op); \
} \
else \
{ \
partial_tile_run -= 4; \
current_pixels = eswap32(*((u32 *)(tile_ptr + 4))) << \
((partial_tile_offset - 4) * 8); \
partial_tile_flip_8bpp(combine_op, alpha_op); \
current_pixels = eswap32(*((u32 *)tile_ptr)); \
tile_8bpp_draw_four_##combine_op(0, alpha_op, flip); \
advance_dest_ptr_##combine_op(4); \
} \
#define partial_tile_mid_flip_8bpp(combine_op, alpha_op) \
if(partial_tile_offset >= 4) \
current_pixels = eswap32(*((u32 *)tile_ptr)) << \
((partial_tile_offset - 4) * 8); \
else \
{ \
current_pixels = eswap32(*((u32 *)(tile_ptr + 4))) << \
((partial_tile_offset - 4) * 8); \
\
if((partial_tile_offset + partial_tile_run) > 4) \
{ \
u32 old_run = partial_tile_run; \
partial_tile_run = 4 - partial_tile_offset; \
partial_tile_flip_8bpp(combine_op, alpha_op); \
partial_tile_run = old_run - partial_tile_run; \
current_pixels = eswap32(*((u32 *)(tile_ptr))); \
} \
} \
partial_tile_flip_8bpp(combine_op, alpha_op); \
#define partial_tile_left_flip_8bpp(combine_op, alpha_op) \
if(partial_tile_run >= 4) \
{ \
current_pixels = eswap32(*((u32 *)(tile_ptr + 4))); \
tile_8bpp_draw_four_##combine_op(0, alpha_op, flip); \
advance_dest_ptr_##combine_op(4); \
tile_ptr -= 4; \
partial_tile_run -= 4; \
} \
\
current_pixels = eswap32(*((u32 *)(tile_ptr + 4))); \
partial_tile_flip_8bpp(combine_op, alpha_op) \
#define tile_flip_8bpp(combine_op, alpha_op) \
current_pixels = eswap32(*((u32 *)(tile_ptr + 4))); \
tile_8bpp_draw_four_##combine_op(0, alpha_op, flip); \
current_pixels = eswap32(*((u32 *)tile_ptr)); \
tile_8bpp_draw_four_##combine_op(4, alpha_op, flip) \
// Operations for isolating 4bpp tiles in a 32bit block
#define tile_4bpp_pixel_op_mask(op_param) \
current_pixel = current_pixels & 0x0F \
#define tile_4bpp_pixel_op_shift_mask(shift) \
current_pixel = (current_pixels >> shift) & 0x0F \
#define tile_4bpp_pixel_op_shift(shift) \
current_pixel = current_pixels >> shift \
#define tile_4bpp_pixel_op_none(op_param) \
// Draws a single 4bpp pixel as layered, if not transparent.
#define tile_4bpp_draw_transparent(index, op, op_param, alpha_op) \
tile_4bpp_pixel_op_##op(op_param); \
if(current_pixel) \
{ \
current_pixel |= current_palette; \
tile_expand_transparent_##alpha_op(index); \
} \
// Draws eight 4bpp pixels.
#define tile_4bpp_draw_eight_noflip(combine_op, alpha_op) \
tile_4bpp_draw_##combine_op(0, mask, 0, alpha_op); \
tile_4bpp_draw_##combine_op(1, shift_mask, 4, alpha_op); \
tile_4bpp_draw_##combine_op(2, shift_mask, 8, alpha_op); \
tile_4bpp_draw_##combine_op(3, shift_mask, 12, alpha_op); \
tile_4bpp_draw_##combine_op(4, shift_mask, 16, alpha_op); \
tile_4bpp_draw_##combine_op(5, shift_mask, 20, alpha_op); \
tile_4bpp_draw_##combine_op(6, shift_mask, 24, alpha_op); \
tile_4bpp_draw_##combine_op(7, shift, 28, alpha_op) \
// Draws eight 4bpp pixels in reverse order (for hflip).
#define tile_4bpp_draw_eight_flip(combine_op, alpha_op) \
tile_4bpp_draw_##combine_op(7, mask, 0, alpha_op); \
tile_4bpp_draw_##combine_op(6, shift_mask, 4, alpha_op); \
tile_4bpp_draw_##combine_op(5, shift_mask, 8, alpha_op); \
tile_4bpp_draw_##combine_op(4, shift_mask, 12, alpha_op); \
tile_4bpp_draw_##combine_op(3, shift_mask, 16, alpha_op); \
tile_4bpp_draw_##combine_op(2, shift_mask, 20, alpha_op); \
tile_4bpp_draw_##combine_op(1, shift_mask, 24, alpha_op); \
tile_4bpp_draw_##combine_op(0, shift, 28, alpha_op) \
// Draws eight 4bpp pixels in transparent (layered) mode, checks if all are
// zero and if so draws nothing.
#define tile_4bpp_draw_eight_transparent(alpha_op, flip_op) \
if(current_pixels != 0) \
{ \
tile_4bpp_draw_eight_##flip_op(transparent, alpha_op); \
} \
// Gets the current tile in 4bpp mode, also getting the current palette and
// the pixel block.
#define get_tile_4bpp() \
current_tile = eswap16(*map_ptr); \
current_palette = (current_tile >> 12) << 4; \
tile_ptr = tile_base + ((current_tile & 0x3FF) * 32); \
// Helper macro for drawing clipped 4bpp tiles.
#define partial_tile_4bpp(combine_op, alpha_op) \
for(i = 0; i < partial_tile_run; i++) \
{ \
tile_4bpp_draw_##combine_op(0, mask, 0, alpha_op); \
current_pixels >>= 4; \
advance_dest_ptr_##combine_op(1); \
} \
// Draws a 4bpp tile clipped against the left edge of the screen.
// partial_tile_offset is how far in it's clipped, partial_tile_run is
// how many to draw.
#define partial_tile_right_noflip_4bpp(combine_op, alpha_op) \
current_pixels = eswap32(*((u32 *)tile_ptr)) >> (partial_tile_offset * 4); \
partial_tile_4bpp(combine_op, alpha_op) \
// Draws a 4bpp tile clipped against both edges of the screen, same as right.
#define partial_tile_mid_noflip_4bpp(combine_op, alpha_op) \
partial_tile_right_noflip_4bpp(combine_op, alpha_op) \
// Draws a 4bpp tile clipped against the right edge of the screen.
// partial_tile_offset is how many to draw.
#define partial_tile_left_noflip_4bpp(combine_op, alpha_op) \
current_pixels = eswap32(*((u32 *)tile_ptr)); \
partial_tile_4bpp(combine_op, alpha_op) \
// Draws a complete 4bpp tile row (not clipped)
#define tile_noflip_4bpp(combine_op, alpha_op) \
current_pixels = eswap32(*((u32 *)tile_ptr)); \
tile_4bpp_draw_eight_##combine_op(alpha_op, noflip) \
// Like the above, but draws flipped tiles.
#define partial_tile_flip_4bpp(combine_op, alpha_op) \
for(i = 0; i < partial_tile_run; i++) \
{ \
tile_4bpp_draw_##combine_op(0, shift, 28, alpha_op); \
current_pixels <<= 4; \
advance_dest_ptr_##combine_op(1); \
} \
#define partial_tile_right_flip_4bpp(combine_op, alpha_op) \
current_pixels = eswap32(*((u32 *)tile_ptr)) << (partial_tile_offset * 4); \
partial_tile_flip_4bpp(combine_op, alpha_op) \
#define partial_tile_mid_flip_4bpp(combine_op, alpha_op) \
partial_tile_right_flip_4bpp(combine_op, alpha_op) \
#define partial_tile_left_flip_4bpp(combine_op, alpha_op) \
current_pixels = eswap32(*((u32 *)tile_ptr)); \
partial_tile_flip_4bpp(combine_op, alpha_op) \
#define tile_flip_4bpp(combine_op, alpha_op) \
current_pixels = eswap32(*((u32 *)tile_ptr)); \
tile_4bpp_draw_eight_##combine_op(alpha_op, flip) \
// Advances a non-flipped 4bpp obj to the next tile.
#define obj_advance_noflip_4bpp() \
tile_ptr += 32 \
// Advances a non-flipped 8bpp obj to the next tile.
#define obj_advance_noflip_8bpp() \
tile_ptr += 64 \
// Advances a flipped 4bpp obj to the next tile.
#define obj_advance_flip_4bpp() \
tile_ptr -= 32 \
// Advances a flipped 8bpp obj to the next tile.
#define obj_advance_flip_8bpp() \
tile_ptr -= 64 \
// Draws multiple sequential tiles from an obj, flip_op determines if it should
// be flipped or not (set to flip or noflip)
#define multiple_tile_obj(combine_op, color_depth, alpha_op, flip_op) \
for(i = 0; i < tile_run; i++) \
{ \
tile_##flip_op##_##color_depth(combine_op, alpha_op); \
obj_advance_##flip_op##_##color_depth(); \
advance_dest_ptr_##combine_op(8); \
} \
// Draws an obj's tile clipped against the left side of the screen
#define partial_tile_right_obj(combine_op, color_depth, alpha_op, flip_op) \
partial_tile_right_##flip_op##_##color_depth(combine_op, alpha_op); \
obj_advance_##flip_op##_##color_depth() \
// Draws an obj's tile clipped against both sides of the screen
#define partial_tile_mid_obj(combine_op, color_depth, alpha_op, flip_op) \
partial_tile_mid_##flip_op##_##color_depth(combine_op, alpha_op) \
// Draws an obj's tile clipped against the right side of the screen
#define partial_tile_left_obj(combine_op, color_depth, alpha_op, flip_op) \
partial_tile_left_##flip_op##_##color_depth(combine_op, alpha_op) \
// Extra variables specific for 8bpp/4bpp tile renderers.
#define tile_extra_variables_4bpp() \
u32 current_palette \
// Byte lengths of complete tiles and tile rows in 4bpp and 8bpp.
#define tile_width_4bpp 4
#define tile_size_4bpp 32
#define tile_width_8bpp 8
#define tile_size_8bpp 64
#define render_scanline_dest_partial_alpha u32
static const u32 map_widths[] = { 256, 512, 256, 512 };
typedef enum
{
FULLCOLOR, // Regular rendering, output a 16 bit color
INDXCOLOR, // Rendering to indexed color, so we can later apply dark/bright
STCKCOLOR, // Stacks two indexed pixels (+flags) to apply blending
PIXCOPY // Special mode used for sprites, to allow for obj-window drawing
} rendtype;
// Renders non-affine tiled background layer.
// Will process a full or partial tile (start and end within 0..8) and draw
// it in either 8 or 4 bpp mode. Honors vertical and horizontal flip.
template<typename dsttype, rendtype rdtype, bool transparent, bool hflip>
static inline void render_tile_Nbpp(u32 layer,
dsttype *dest_ptr, bool is8bpp, u32 start, u32 end, u16 tile,
const u8 *tile_base, int vertical_pixel_flip
) {
// tile contains the tile info (contains tile index, flip bits, pal info)
// hflip causes the tile pixels lookup to be reversed (from MSB to LSB
// If transparent is set, color 0 is honoured (no write). Otherwise we assume
// that we are drawing the base layer, so palette[0] is used (backdrop).
// Seek to the specified tile, using the tile number and size.
// tile_base already points to the right tile-line vertical offset
const u8 *tile_ptr = &tile_base[(tile & 0x3FF) * (is8bpp ? 64 : 32)];
// Calculate combine masks. These store 2 bits of info: 1st and 2nd target.
// If set, the current pixel belongs to a layer that is 1st or 2nd target.
u32 bg_comb = color_combine_mask(5);
u32 px_comb = color_combine_mask(layer);
// On vertical flip, apply the mirror offset
if (tile & 0x800)
tile_ptr += vertical_pixel_flip;
if (is8bpp) {
// Each byte is a color, mapped to a palete. 8 bytes can be read as 64bit
u64 tilepix = eswap64(*(u64*)tile_ptr);
for (u32 i = start; i < end; i++, dest_ptr++) {
// Honor hflip by selecting bytes in the correct order
u32 sel = hflip ? (7-i) : i;
u8 pval = (tilepix >> (sel*8)) & 0xFF;
// Combine mask is different if we are rendering the backdrop color
u16 combflg = pval ? px_comb : bg_comb;
// Alhpa mode stacks previous value (unless rendering the first layer)
if (!transparent || pval) {
if (rdtype == FULLCOLOR)
*dest_ptr = palette_ram_converted[pval];
else if (rdtype == INDXCOLOR)
*dest_ptr = pval | combflg; // Add combine flags
else if (rdtype == STCKCOLOR)
// Stack pixels on top of the pixel value and combine flags
*dest_ptr = pval | combflg | ((transparent ? *dest_ptr : bg_comb) << 16);
}
}
} else {
// In 4bpp mode, the tile[15..12] bits contain the sub-palette number.
u16 tilepal = (tile >> 12) << 4;
// Only 32 bits (8 pixels * 4 bits)
u32 tilepix = eswap32(*(u32*)tile_ptr);
for (u32 i = start; i < end; i++, dest_ptr++) {
u32 sel = hflip ? (7-i) : i;
u8 pval = (tilepix >> (sel*4)) & 0xF;
u16 combflg = pval ? px_comb : bg_comb;
if (!transparent || pval) {
u8 colidx = pval ? (pval | tilepal) : 0;
if (rdtype == FULLCOLOR)
*dest_ptr = palette_ram_converted[colidx];
else if (rdtype == INDXCOLOR)
*dest_ptr = colidx | combflg;
else if (rdtype == STCKCOLOR)
*dest_ptr = colidx | combflg | ((transparent ? *dest_ptr : bg_comb) << 16); // Stack pixels
}
}
}
}
template<typename stype, rendtype rdtype, bool transparent>
static void render_scanline_text(u32 layer,
u32 start, u32 end, void *scanline)
{
// TODO: Move this to the caller since it makes more sense
// If the layer is *NOT* first target, we will not combine with previous layer anyway
// so we can "drop" the mixing bit
if (rdtype == STCKCOLOR && transparent) {
bool first_target = (read_ioreg(REG_BLDCNT) >> layer) & 1;
if (!first_target) {
render_scanline_text<stype, INDXCOLOR, true>(layer, start, end, scanline);
return;
}
}
u32 bg_control = read_ioreg(REG_BGxCNT(layer));
u16 vcount = read_ioreg(REG_VCOUNT);
u32 map_size = (bg_control >> 14) & 0x03;
u32 map_width = map_widths[map_size];
u32 hoffset = (start + read_ioreg(REG_BGxHOFS(layer))) % 512;
u32 voffset = (vcount + read_ioreg(REG_BGxVOFS(layer))) % 512;
stype *dest_ptr = ((stype*)scanline) + start;
u32 i;
// Background map data is in vram, at an offset specified in 2K blocks.
// (each map data block is 32x32 tiles, at 16bpp, so 2KB)
u32 base_block = (bg_control >> 8) & 0x1F;
u16 *map_base = (u16 *)&vram[base_block * 2048];
u16 *map_ptr, *second_ptr;
end -= start;
// Skip the top one/two block(s) if using the bottom half
if ((map_size & 0x02) && (voffset >= 256))
map_base += ((map_width / 8) * 32);
// Skip the top tiles within the block
map_base += (((voffset % 256) / 8) * 32);
// we might need to render from two charblocks, store a second pointer.
second_ptr = map_ptr = map_base;
if(map_size & 0x01) // If background is 512 pixels wide
{
if(hoffset >= 256)
{
// If we are rendering the right block, skip a whole charblock
hoffset -= 256;
map_ptr += (32 * 32);
}
else
{
// If we are rendering the left block, we might overrun into the right
second_ptr += (32 * 32);
}
}
else
{
hoffset %= 256; // Background is 256 pixels wide
}
// Skip the left blocks within the block
map_ptr += hoffset / 8;
{
bool mode8bpp = (bg_control & 0x80); // Color depth 8bpp when set
// Render a single scanline of text tiles
u32 tilewidth = mode8bpp ? tile_width_8bpp : tile_width_4bpp;
u32 vert_pix_offset = (voffset % 8) * tilewidth;
// Calculate the pixel offset between a line and its "flipped" mirror.
// The values can be {56, 40, 24, 8, -8, -24, -40, -56}
s32 vflip_off = mode8bpp ?
tile_size_8bpp - 2*vert_pix_offset - tile_width_8bpp :
tile_size_4bpp - 2*vert_pix_offset - tile_width_4bpp;
// The tilemap base is selected via bgcnt (16KiB chunks)
u32 tilecntrl = (bg_control >> 2) & 0x03;
// Account for the base offset plus the tile vertical offset
u8 *tile_base = &vram[tilecntrl * 16*1024 + vert_pix_offset];
// Number of pixels available until the end of the tile block
u32 pixel_run = 256 - hoffset;
u32 tile_hoff = hoffset % 8;
u32 partial_hcnt = 8 - tile_hoff;
if (tile_hoff) {
// First partial tile, only right side is visible.
u32 todraw = MIN(end, partial_hcnt); // [1..7]
u32 stop = tile_hoff + todraw; // Usually 8, unless short run.
u16 tile = eswap16(*map_ptr++);
if (tile & 0x400) // Tile horizontal flip
render_tile_Nbpp<stype, rdtype, transparent, true>(layer, dest_ptr, mode8bpp, tile_hoff, stop, tile, tile_base, vflip_off);
else
render_tile_Nbpp<stype, rdtype, transparent, false>(layer, dest_ptr, mode8bpp, tile_hoff, stop, tile, tile_base, vflip_off);
dest_ptr += todraw;
end -= todraw;
pixel_run -= todraw;
}
if (!end)
return;
// Now render full tiles
u32 todraw = MIN(end, pixel_run) / 8;
for (i = 0; i < todraw; i++) {
u16 tile = eswap16(*map_ptr++);
if (tile & 0x400) // Tile horizontal flip
render_tile_Nbpp<stype, rdtype, transparent, true>(layer, &dest_ptr[i * 8], mode8bpp, 0, 8, tile, tile_base, vflip_off);
else
render_tile_Nbpp<stype, rdtype, transparent, false>(layer, &dest_ptr[i * 8], mode8bpp, 0, 8, tile, tile_base, vflip_off);
}
end -= todraw * 8;
pixel_run -= todraw * 8;
dest_ptr += todraw * 8;
if (!end)
return;
// Switch to the next char block if we ran out of tiles
if (!pixel_run)
map_ptr = second_ptr;
todraw = end / 8;
if (todraw) {
for (i = 0; i < todraw; i++) {
u16 tile = eswap16(*map_ptr++);
if (tile & 0x400) // Tile horizontal flip
render_tile_Nbpp<stype, rdtype, transparent, true>(layer, &dest_ptr[i * 8], mode8bpp, 0, 8, tile, tile_base, vflip_off);
else
render_tile_Nbpp<stype, rdtype, transparent, false>(layer, &dest_ptr[i * 8], mode8bpp, 0, 8, tile, tile_base, vflip_off);
}
end -= todraw * 8;
dest_ptr += todraw * 8;
}
// Finalize the tile rendering the left side of it (from 0 up to "end").
if (end) {
u16 tile = eswap16(*map_ptr++);
if (tile & 0x400) // Tile horizontal flip
render_tile_Nbpp<stype, rdtype, transparent, true>(layer, dest_ptr, mode8bpp, 0, end, tile, tile_base, vflip_off);
else
render_tile_Nbpp<stype, rdtype, transparent, false>(layer, dest_ptr, mode8bpp, 0, end, tile, tile_base, vflip_off);
}
}
}
s32 affine_reference_x[2];
s32 affine_reference_y[2];
static inline s32 signext28(u32 value)
{
s32 ret = (s32)(value << 4);
return ret >> 4;
}
void video_reload_counters()
{
/* This happens every Vblank */
affine_reference_x[0] = signext28(read_ioreg32(REG_BG2X_L));
affine_reference_y[0] = signext28(read_ioreg32(REG_BG2Y_L));
affine_reference_x[1] = signext28(read_ioreg32(REG_BG3X_L));
affine_reference_y[1] = signext28(read_ioreg32(REG_BG3Y_L));
}
template<typename dsttype, rendtype rdtype, bool transparent>
static inline void render_pixel_8bpp(u32 layer,
dsttype *dest_ptr, u32 px, u32 py, const u8 *tile_base, const u8 *map_base, u32 map_size
) {
// Pitch represents the log2(number of tiles per row) (from 16 to 128)
u32 map_pitch = map_size + 4;
// Given coords (px,py) in the background space, find the tile.
u32 mapoff = (px / 8) + ((py / 8) << map_pitch);
// Each tile is 8x8, so 64 bytes each.
const u8 *tile_ptr = &tile_base[map_base[mapoff] * tile_size_8bpp];
// Read the 8bit color within the tile.
u8 pval = tile_ptr[(px % 8) + ((py % 8) * 8)];
// Calculate combine masks. These store 2 bits of info: 1st and 2nd target.
// If set, the current pixel belongs to a layer that is 1st or 2nd target.
u32 bg_comb = color_combine_mask(5);
u32 px_comb = color_combine_mask(layer);
// Combine mask is different if we are rendering the backdrop color
u16 combflg = pval ? px_comb : bg_comb;
// Alhpa mode stacks previous value (unless rendering the first layer)
if (!transparent || pval) {
if (rdtype == FULLCOLOR)
*dest_ptr = palette_ram_converted[pval];
else if (rdtype == INDXCOLOR)
*dest_ptr = pval | combflg; // Add combine flags
else if (rdtype == STCKCOLOR)
// Stack pixels on top of the pixel value and combine flags
*dest_ptr = pval | combflg | ((transparent ? *dest_ptr : bg_comb) << 16);
}
}
template<typename dsttype, rendtype rdtype>
static inline void render_bdrop_pixel_8bpp(dsttype *dest_ptr) {
// Calculate combine masks. These store 2 bits of info: 1st and 2nd target.
// If set, the current pixel belongs to a layer that is 1st or 2nd target.
u32 bg_comb = color_combine_mask(5);
u32 pval = 0;
// Alhpa mode stacks previous value (unless rendering the first layer)
if (rdtype == FULLCOLOR)
*dest_ptr = palette_ram_converted[pval];
else if (rdtype == INDXCOLOR)
*dest_ptr = pval | bg_comb; // Add combine flags
else if (rdtype == STCKCOLOR)
// Stack pixels on top of the pixel value and combine flags
*dest_ptr = pval | bg_comb | (bg_comb << 16);
// FIXME: Do we need double bg_comb? I do not think so!
}
// Affine background rendering logic.
// wrap extends the background infinitely, otherwise transparent/backdrop fill
// rotate indicates if there's any rotation (optimized version for no-rotation)
template <typename dsttype, rendtype rdtype, bool transparent, bool wrap, bool rotate>
static inline void render_affine_background(
u32 layer, u32 start, u32 cnt, const u8 *map_base,
u32 map_size, const u8 *tile_base, dsttype *dst_ptr) {
s32 dx = (s16)read_ioreg(REG_BGxPA(layer));
s32 dy = (s16)read_ioreg(REG_BGxPC(layer));
s32 source_x = affine_reference_x[layer - 2] + (start * dx);
s32 source_y = affine_reference_y[layer - 2] + (start * dy);
// Maps are squared, four sizes available (128x128 to 1024x1024)
u32 width_height = 128 << map_size;
if (wrap) {
// In wrap mode the entire space is covered, since it "wraps" at the edges
while (cnt--) {
u32 pixel_x = (u32)(source_x >> 8) & (width_height-1);
u32 pixel_y = (u32)(source_y >> 8) & (width_height-1);
// Lookup pixel and draw it.
render_pixel_8bpp<dsttype, rdtype, transparent>(
layer, dst_ptr++, pixel_x, pixel_y, tile_base, map_base, map_size);
// Move to the next pixel, update coords accordingly
source_x += dx;
if (rotate)
source_y += dy;
}
} else {
// Early optimization if Y-coord is out completely for this line.
// (if there's no rotation Y coord remains identical throughout the line).
bool is_y_out = !rotate && ((u32)(source_y >> 8)) >= width_height;
if (!is_y_out) {
// Draw backdrop pixels if necessary until we reach the background edge.
// TODO: on non-base cases this could perhaps be calculated in O(1)?
while (cnt) {
// Draw backdrop pixels if they lie outside of the background.
u32 pixel_x = (u32)(source_x >> 8), pixel_y = (u32)(source_y >> 8);
// Stop once we find a pixel that is actually *inside* the map.
if (pixel_x < width_height && pixel_y < width_height)
break;
// Draw a "transparent" pixel if we are the base layer.
if (!transparent)
render_bdrop_pixel_8bpp<dsttype, rdtype>(dst_ptr);
dst_ptr++;
source_x += dx;
if (rotate)
source_y += dy;
cnt--;
}
// Draw background pixels by looking them up in the map
while (cnt) {
u32 pixel_x = (u32)(source_x >> 8), pixel_y = (u32)(source_y >> 8);
// Check if we run out of background pixels, stop drawing.
if (pixel_x >= width_height || pixel_y >= width_height)
break;
// Lookup pixel and draw it.
render_pixel_8bpp<dsttype, rdtype, transparent>(
layer, dst_ptr++, pixel_x, pixel_y, tile_base, map_base, map_size);
// Move to the next pixel, update coords accordingly
cnt--;
source_x += dx;
if (rotate)
source_y += dy;
}
}
// Complete the line on the right, if we ran out over the bg edge.
// Only necessary for the base layer, otherwise we can safely finish.
if (!transparent)
while (cnt--)
render_bdrop_pixel_8bpp<dsttype, rdtype>(dst_ptr++);
}
}
// Renders affine backgrounds. These differ substantially from non-affine
// ones. Tile maps are byte arrays (instead of 16 bit), limiting the map to
// 256 different tiles (with no flip bits and just one single 256 color pal).
template<typename dsttype, rendtype rdtype, bool transparent>
static void render_scanline_affine(u32 layer,
u32 start, u32 end, void *scanline)
{
u32 bg_control = read_ioreg(REG_BGxCNT(layer));
u32 map_size = (bg_control >> 14) & 0x03;
// Char block base pointer
u32 base_block = (bg_control >> 8) & 0x1F;
u8 *map_base = &vram[base_block * 2048];
// The tilemap base is selected via bgcnt (16KiB chunks)
u32 tilecntrl = (bg_control >> 2) & 0x03;
u8 *tile_base = &vram[tilecntrl * 16*1024];
dsttype *dest_ptr = ((dsttype*)scanline) + start;
bool has_rotation = read_ioreg(REG_BGxPC(layer)) != 0;
bool has_wrap = (bg_control >> 13) & 1;
// Four specialized versions for faster rendering on specific cases like
// scaling only or non-wrapped backgrounds.
if (has_wrap) {
if (has_rotation)
render_affine_background<dsttype, rdtype, transparent, true, true>(
layer, start, end - start, map_base, map_size, tile_base, dest_ptr);
else
render_affine_background<dsttype, rdtype, transparent, true, false>(
layer, start, end - start, map_base, map_size, tile_base, dest_ptr);
} else {
if (has_rotation)
render_affine_background<dsttype, rdtype, transparent, false, true>(
layer, start, end - start, map_base, map_size, tile_base, dest_ptr);
else
render_affine_background<dsttype, rdtype, transparent, false, false>(
layer, start, end - start, map_base, map_size, tile_base, dest_ptr);
}
}
// Renders a bitmap honoring the pixel mode and any affine transformations.
// There's optimized versions for bitmaps without scaling / rotation.
template<unsigned mode, typename pixfmt, unsigned width, unsigned height, bool scale, bool rotate>
static inline void render_scanline_bitmap(u32 start, u32 end, void *scanline) {
// Modes 4 and 5 feature double buffering.
bool second_frame = (mode >= 4) && (read_ioreg(REG_DISPCNT) & 0x10);
pixfmt *src_ptr = (pixfmt*)&vram[second_frame ? 0xA000 : 0x0000];
u16 *dst_ptr = ((u16*)scanline) + start;
s32 dx = (s16)read_ioreg(REG_BG2PA);
s32 dy = (s16)read_ioreg(REG_BG2PC);
s32 source_x = affine_reference_x[0] + (start * dx); // Always BG2
s32 source_y = affine_reference_y[0] + (start * dy);
// Premature abort render optimization if bitmap out of Y coordinate.
bool is_y_out = !rotate && ((u32)(source_y >> 8)) >= height;
if (is_y_out)
return;
if (!scale) {
// Pretty much a blit onto the output buffer.
// Skip to the X pixel (dest) and start copying (drawing really)
if (source_x < 0) {
// TODO: Not sure if the math is OK for non-integer offsets
u32 delta = (-source_x + 255) >> 8;
dst_ptr += delta;
start += delta;
source_x += delta << 8;
}
u32 pixel_y = (u32)(source_y >> 8);
u32 pixel_x = (u32)(source_x >> 8);
while (start < end && pixel_x < width) {
// Pretty much pixel copier
pixfmt *valptr = &src_ptr[pixel_x + (pixel_y * width)];
pixfmt val = sizeof(pixfmt) == 2 ? eswap16(*valptr) : *valptr;
if (mode != 4)
*dst_ptr = convert_palette(val); // Direct color
else if (val)
*dst_ptr = palette_ram_converted[val]; // Indexed color
// Move to the next pixel, update coords accordingly
start++;
dst_ptr++;
pixel_x++;
}
} else {
// Look for the first pixel to be drawn.
// TODO This can be calculated in O(1), at least for non-rotation
while (start < end) {
u32 pixel_x = (u32)(source_x >> 8), pixel_y = (u32)(source_y >> 8);
// Stop once we find a pixel that is actually *inside*
if (pixel_x < width && pixel_y < height)
break;
dst_ptr++;
source_x += dx;
if (rotate)
source_y += dy;
start++;
}
// Draw background pixels by looking them up in the map
while (start < end) {
u32 pixel_x = (u32)(source_x >> 8), pixel_y = (u32)(source_y >> 8);
// Check if we run out of background pixels, stop drawing.
if (pixel_x >= width || pixel_y >= height)
break;
// Lookup pixel and draw it.
pixfmt *valptr = &src_ptr[pixel_x + (pixel_y * width)];
pixfmt val = sizeof(pixfmt) == 2 ? eswap16(*valptr) : *valptr;
if (mode != 4)
*dst_ptr = convert_palette(val); // Direct color
else if (val)
*dst_ptr = palette_ram_converted[val]; // Indexed color
// Move to the next pixel, update coords accordingly
start++;
dst_ptr++;
source_x += dx;
if (rotate)
source_y += dy;
}
}
}
// Fill in the renderers for a layer based on the mode type,
#define tile_layer_render_functions(type) \
{ \
{ \
render_scanline_##type<u16, FULLCOLOR, false>, \
render_scanline_##type<u16, INDXCOLOR, false>, /* former color16 */ \
render_scanline_##type<u32, INDXCOLOR, false>, /* former color32 */ \
render_scanline_##type<u32, STCKCOLOR, false>, /* for alpha blending */ \
},{ \
render_scanline_##type<u16, FULLCOLOR, true>, \
render_scanline_##type<u16, INDXCOLOR, true>, \
render_scanline_##type<u32, INDXCOLOR, true>, \
render_scanline_##type<u32, STCKCOLOR, true>, \
} \
} \
#define bitmap_layer_render_functions(mode, ttype, w, h) \
{ \
render_scanline_bitmap<mode, ttype, w, h, false, false>, \
render_scanline_bitmap<mode, ttype, w, h, true, false>, \
render_scanline_bitmap<mode, ttype, w, h, true, true>, \
} \
// Structs containing functions to render the layers for each mode, for
// each render type.
static const tile_layer_render_struct tile_mode_renderers[3][4] =
{
{
tile_layer_render_functions(text), tile_layer_render_functions(text),
tile_layer_render_functions(text), tile_layer_render_functions(text)
},
{
tile_layer_render_functions(text), tile_layer_render_functions(text),
tile_layer_render_functions(affine), tile_layer_render_functions(text)
},
{
tile_layer_render_functions(text), tile_layer_render_functions(text),
tile_layer_render_functions(affine), tile_layer_render_functions(affine)
}
};
static const bitmap_layer_render_struct bitmap_mode_renderers[3] =
{
bitmap_layer_render_functions(3, u16, 240, 160),
bitmap_layer_render_functions(4, u8, 240, 160),
bitmap_layer_render_functions(5, u16, 160, 128)
};
// Object/Sprite rendering logic
static const u32 obj_width_table[] =
{ 8, 16, 32, 64, 16, 32, 32, 64, 8, 8, 16, 32 };
static const u32 obj_height_table[] =
{ 8, 16, 32, 64, 8, 8, 16, 32, 16, 32, 32, 64 };
static const u8 obj_dim_table[3][4][2] = {
{ {8, 8}, {16, 16}, {32, 32}, {64, 64} },
{ {16, 8}, {32, 8}, {32, 16}, {64, 32} },
{ {8, 16}, {8, 32}, {16, 32}, {32, 64} }
};
static u8 obj_priority_list[5][160][128];
static u8 obj_priority_count[5][160];
static u8 obj_alpha_count[160];
typedef struct {
s32 obj_x, obj_y;
s32 obj_w, obj_h;
} t_sprite;
// Renders a tile row (8 pixels) for a regular (non-affine) object/sprite.
template<typename dsttype, rendtype rdtype, bool is8bpp, bool hflip>
static inline void render_obj_tile_Nbpp(
dsttype *dest_ptr, u32 start, u32 end, const u8 *tile_ptr, u16 palette
) {
// tile_ptr points to the tile row (32 or 64 bits depending on bpp).
// renders the tile honoring hflip and start/end constraints
// Calculate combine masks. These store 2 bits of info: 1st and 2nd target.
// If set, the current pixel belongs to a layer that is 1st or 2nd target.
u32 px_comb = color_combine_mask(4);
if (is8bpp) {
// Each byte is a color, mapped to a palete. 8 bytes can be read as 64bit
u64 tilepix = eswap64(*(u64*)tile_ptr);
for (u32 i = start; i < end; i++, dest_ptr++) {
// Honor hflip by selecting bytes in the correct order
u32 sel = hflip ? (7-i) : i;
u8 pval = (tilepix >> (sel*8)) & 0xFF;
// Alhpa mode stacks previous value
if (pval) {
if (rdtype == FULLCOLOR)
*dest_ptr = palette_ram_converted[pval | 0x100];
else if (rdtype == INDXCOLOR)
*dest_ptr = pval | px_comb | 0x100; // Add combine flags
else if (rdtype == STCKCOLOR) {
// Stack pixels on top of the pixel value and combine flags
// We do not stack OBJ on OBJ, rather overwrite the previous object
if (*dest_ptr & 0x100)
*dest_ptr = pval | px_comb | 0x100 | ((*dest_ptr) & 0xFFFF0000);
else
*dest_ptr = pval | px_comb | 0x100 | ((*dest_ptr) << 16);
}
else if (rdtype == PIXCOPY)
*dest_ptr = dest_ptr[240];
// TODO implement partial alpha blending
}
}
} else {
// Only 32 bits (8 pixels * 4 bits)
u32 tilepix = eswap32(*(u32*)tile_ptr);
for (u32 i = start; i < end; i++, dest_ptr++) {
u32 sel = hflip ? (7-i) : i;
u8 pval = (tilepix >> (sel*4)) & 0xF;
if (pval) {
u8 colidx = pval | palette;
if (rdtype == FULLCOLOR)
*dest_ptr = palette_ram_converted[colidx | 0x100];
else if (rdtype == INDXCOLOR)
*dest_ptr = colidx | px_comb | 0x100;
else if (rdtype == STCKCOLOR) {
if (*dest_ptr & 0x100)
*dest_ptr = colidx | px_comb | 0x100 | ((*dest_ptr) & 0xFFFF0000);
else
*dest_ptr = colidx | px_comb | 0x100 | ((*dest_ptr) << 16); // Stack pixels
}
else if (rdtype == PIXCOPY)
*dest_ptr = dest_ptr[240];
}
}
}
}
// Renders a regular sprite (non-affine) row to screen.
// delta_x is the object X coordinate referenced from the window start.
// cnt is the maximum number of pixels to draw, honoring window, obj width, etc.
template <typename stype, rendtype rdtype, bool is8bpp, bool hflip>
static void render_object(
s32 delta_x, u32 cnt, stype *dst_ptr, const u8* tile_ptr, u16 palette
) {
// Tile size in bytes for each mode
u32 tile_bsize = is8bpp ? tile_size_8bpp : tile_size_4bpp;
// Number of bytes to advance (or rewind) on the tile map
s32 tile_size_off = hflip ? -tile_bsize : tile_bsize;
if (delta_x < 0) { // Left part is outside of the screen/window.
u32 offx = -delta_x; // How many pixels did we skip from the object?
s32 block_off = offx / 8;
u32 tile_off = offx % 8;
// Skip the first object tiles (skips in the flip direction)
tile_ptr += block_off * tile_size_off;
// Render a partial tile to the left
if (tile_off) {
u32 residual = 8 - tile_off; // Pixel count to complete the first tile
u32 maxpix = MIN(residual, cnt);
render_obj_tile_Nbpp<stype, rdtype, is8bpp, hflip>(dst_ptr, tile_off, tile_off + maxpix, tile_ptr, palette);
// Move to the next tile
tile_ptr += tile_size_off;
// Account for drawn pixels
cnt -= maxpix;
dst_ptr += maxpix;
}
} else {
// Render object completely from the left. Skip the empty space to the left
dst_ptr += delta_x;
}
// Render full tiles to the scan line.
s32 num_tiles = cnt / 8;
while (num_tiles--) {
// Render full tiles
render_obj_tile_Nbpp<stype, rdtype, is8bpp, hflip>(dst_ptr, 0, 8, tile_ptr, palette);
tile_ptr += tile_size_off;
dst_ptr += 8;
}
// Render any partial tile on the end
cnt = cnt % 8;
if (cnt)
render_obj_tile_Nbpp<stype, rdtype, is8bpp, hflip>(dst_ptr, 0, cnt, tile_ptr, palette);
}
// Renders an affine sprite row to screen.
template <typename stype, rendtype rdtype, bool is8bpp, bool rotate>
static void render_affine_object(
const t_sprite *obji, const t_affp *affp, bool is_double, u32 start, u32 end, stype *dst_ptr,
const u8 *base_tile, u16 palette
) {
// Tile size in bytes for each mode
const u32 tile_bsize = is8bpp ? tile_size_8bpp : tile_size_4bpp;
const u32 tile_bwidth = is8bpp ? tile_width_8bpp : tile_width_4bpp;
// Affine params
s32 dx = (s16)eswap16(affp->dx);
s32 dy = (s16)eswap16(affp->dy);
s32 dmx = (s16)eswap16(affp->dmx);
s32 dmy = (s16)eswap16(affp->dmy);
// Object dimensions and boundaries
u32 obj_dimw = obji->obj_w;
u32 obj_dimh = obji->obj_h;
s32 middle_x = is_double ? obji->obj_w : (obji->obj_w / 2);
s32 middle_y = is_double ? obji->obj_h : (obji->obj_h / 2);
s32 obj_width = is_double ? obji->obj_w * 2 : obji->obj_w;
s32 obj_height = is_double ? obji->obj_h * 2 : obji->obj_h;
s32 vcount = read_ioreg(REG_VCOUNT);
s32 y_delta = vcount - (obji->obj_y + middle_y);
if (obji->obj_x < (signed)start)
middle_x -= (start - obji->obj_x);
s32 source_x = (obj_dimw << 7) + (y_delta * dmx) - (middle_x * dx);
s32 source_y = (obj_dimh << 7) + (y_delta * dmy) - (middle_x * dy);
// Early optimization if Y-coord is out completely for this line.
// (if there's no rotation Y coord remains identical throughout the line).
if (!rotate && ((u32)(source_y >> 8)) >= (u32)obj_height)
return;
u32 d_start = MAX((signed)start, obji->obj_x);
u32 d_end = MIN((signed)end, obji->obj_x + obj_width);
u32 cnt = d_end - d_start;
dst_ptr += d_start;
bool obj1dmap = read_ioreg(REG_DISPCNT) & 0x40;
const u32 tile_pitch = obj1dmap ? (obj_dimw / 8) * tile_bsize : 1024;
// Skip pixels outside of the sprite area, until we reach the sprite "inside"
while (cnt) {
u32 pixel_x = (u32)(source_x >> 8), pixel_y = (u32)(source_y >> 8);
// Stop once we find a pixel that is actually *inside* the map.
if (pixel_x < obj_dimw && pixel_y < obj_dimh)
break;
dst_ptr++;
source_x += dx;
if (rotate)
source_y += dy;
cnt--;
}
// Draw sprite pixels by looking them up first. Lookup address is tricky!
while (cnt) {
u32 pixel_x = (u32)(source_x >> 8), pixel_y = (u32)(source_y >> 8);
// Check if we run out of the sprite, then we can safely abort.
if (pixel_x >= obj_dimw || pixel_y >= obj_dimh)
return;
// Lookup pixel and draw it.
//render_pixel_8bpp<dsttype, rdtype, transparent>(
// layer, dst_ptr++, pixel_x, pixel_y, tile_base, map_base, map_size);
u8 pixval;
if (is8bpp) {
// We lookup the byte directly and render it.
const u32 tile_off =
((pixel_y >> 3) * tile_pitch) + // Skip vertical blocks
((pixel_x >> 3) * tile_bsize) + // Skip horizontal blocks
((pixel_y & 0x7) * tile_bwidth) + // Skip vertical rows to the pixel
(pixel_x & 0x7); // Skip the horizontal offset
pixval = base_tile[tile_off]; // Read pixel value!
} else {
const u32 tile_off =
((pixel_y >> 3) * tile_pitch) + // Skip vertical blocks
((pixel_x >> 3) * tile_bsize) + // Skip horizontal blocks
((pixel_y & 0x7) * tile_bwidth) + // Skip vertical rows to the pixel
((pixel_x >> 1) & 0x3); // Skip the horizontal offset
u8 pixpair = base_tile[tile_off]; // Read two pixels (4bit each)
pixval = ((pixel_x & 1) ? pixpair >> 4 : pixpair & 0xF);
}
// Render the pixel value
u32 comb = color_combine_mask(4);
if (pixval) {
if (rdtype == FULLCOLOR)
*dst_ptr = palette_ram_converted[pixval | palette| 0x100];
else if (rdtype == INDXCOLOR)
*dst_ptr = pixval | palette | 0x100 | comb; // Add combine flags
else if (rdtype == STCKCOLOR) {
// Stack pixels on top of the pixel value and combine flags
if (*dst_ptr & 0x100)
*dst_ptr = pixval | palette | 0x100 | comb | ((*dst_ptr) & 0xFFFF0000);
else
*dst_ptr = pixval | palette | 0x100 | comb | ((*dst_ptr) << 16); // Stack pixels
// TODO partial alpha
}
else if (rdtype == PIXCOPY)
*dst_ptr = dst_ptr[240];
}
// Move to the next pixel, update coords accordingly
cnt--;
dst_ptr++;
source_x += dx;
if (rotate)
source_y += dy;
}
}
// Renders objects on a scanline for a given priority.
template <typename stype, rendtype rdtype, conditional_render_function copyfn>
static void render_scanline_objects(
u32 start, u32 end, stype *scanline, u32 priority
) {
// TODO move this to another place?
// Skip alpha pass if you can do a regular color32 pass
if (rdtype == STCKCOLOR && ((read_ioreg(REG_BLDCNT) >> 4) & 1) == 0) {
// We cannot skip if there's some object being rendered TODO TODO
render_scanline_objects<stype, INDXCOLOR, copyfn>(start, end, scanline, priority);
return;
}
s32 vcount = read_ioreg(REG_VCOUNT);
bool obj1dmap = read_ioreg(REG_DISPCNT) & 0x40;
u32 objn;
u32 objcnt = obj_priority_count[priority][vcount];
u8 *objlist = obj_priority_list[priority][vcount];
// Render all the visible objects for this priority.
for (objn = 0; objn < objcnt; objn++) {
// Objects in the list are pre-filtered and sorted in the appropriate order
u32 objoff = objlist[objn];
const t_oam *oamentry = &((t_oam*)oam_ram)[objoff];
u16 obj_attr0 = eswap16(oamentry->attr0);
u16 obj_attr1 = eswap16(oamentry->attr1);
u16 obj_attr2 = eswap16(oamentry->attr2);
u16 obj_shape = obj_attr0 >> 14;
u16 obj_size = (obj_attr1 >> 14);
bool is_affine = obj_attr0 & 0x100;
bool is_8bpp = obj_attr0 & 0x2000;
bool is_double = obj_attr0 & 0x200;
t_sprite obji = {
.obj_x = (s32)(obj_attr1 << 23) >> 23,
.obj_y = obj_attr0 & 0xFF,
.obj_w = obj_dim_table[obj_shape][obj_size][0],
.obj_h = obj_dim_table[obj_shape][obj_size][1]
};
s32 obj_maxw = (is_affine && is_double) ? obji.obj_w * 2 : obji.obj_w;
// The object could be out of the window, check and skip.
if (obji.obj_x >= (signed)end || obji.obj_x + obj_maxw <= (signed)start)
continue;
const u8 *base_tile = &vram[
0x10000 + // VRAM base for OBJ tile data
(obj_attr2 & 0x3FF) * 32]; // Selected character block
if (obji.obj_y > 160)
obji.obj_y -= 256;
// In PIXCOPY mode, we have already some stuff rendered (winout) and now
// we render the "win-in" area for this object. The PIXCOPY function will
// copy (merge) the two pixels depending on the result of the sprite render
// The temporary buffer is rendered on the next scanline area.
if (copyfn) {
u32 sec_start = MAX((signed)start, obji.obj_x);
u32 sec_end = MIN((signed)end, obji.obj_x + obj_maxw);
u32 obj_enable = read_ioreg(REG_WINOUT) >> 8;
u16 *tmp_ptr = (u16*)&scanline[GBA_SCREEN_PITCH];
copyfn(sec_start, sec_end, tmp_ptr, obj_enable);
}
if (is_affine) {
u32 pnum = (obj_attr1 >> 9) & 0x1f;
const t_affp *affp_base = (t_affp*)oam_ram;
const t_affp *affp = &affp_base[pnum];
u16 palette = (obj_attr2 >> 8) & 0xF0;
if (affp->dy == 0) { // No rotation happening (just scale)
if (is_8bpp)
render_affine_object<stype, rdtype, true, false>(&obji, affp, is_double, start, end, scanline, base_tile, 0);
else
render_affine_object<stype, rdtype, false, false>(&obji, affp, is_double, start, end, scanline, base_tile, palette);
} else { // Full rotation and scaling
if (is_8bpp)
render_affine_object<stype, rdtype, true, true>(&obji, affp, is_double, start, end, scanline, base_tile, 0);
else
render_affine_object<stype, rdtype, false, true>(&obji, affp, is_double, start, end, scanline, base_tile, palette);
}
} else {
// The object could be out of the window, check and skip.
if (obji.obj_x >= (signed)end || obji.obj_x + obji.obj_w <= (signed)start)
continue;
// Non-affine objects can be flipped on both edges.
bool hflip = obj_attr1 & 0x1000;
bool vflip = obj_attr1 & 0x2000;
// Calulate the vertical offset (row) to be displayed. Account for vflip.
u32 voffset = vflip ? obji.obj_y + obji.obj_h - vcount - 1 : vcount - obji.obj_y;
// Calculate base tile for the object (points to the row to be drawn).
u32 tile_bsize = is_8bpp ? tile_size_8bpp : tile_size_4bpp;
u32 tile_bwidth = is_8bpp ? tile_width_8bpp : tile_width_4bpp;
u32 obj_pitch = obj1dmap ? (obji.obj_w / 8) * tile_bsize : 1024;
u32 hflip_off = hflip ? ((obji.obj_w / 8) - 1) * tile_bsize : 0;
// Calculate the pointer to the tile.
const u8 *tile_ptr = &base_tile[
(voffset / 8) * obj_pitch + // Select tile row offset
(voffset % 8) * tile_bwidth + // Skip tile rows
hflip_off]; // Account for horizontal flip
// Make everything relative to start
s32 obj_x_offset = obji.obj_x - start;
u32 clipped_width = obj_x_offset >= 0 ? obji.obj_w : obji.obj_w + obj_x_offset;
u32 max_range = obj_x_offset >= 0 ? end - obji.obj_x : end - start;
u32 max_draw = MIN(max_range, clipped_width);
// Render the object scanline using the correct mode.
if (is_8bpp) {
if (hflip)
render_object<stype, rdtype, true, true>(obj_x_offset, max_draw, &scanline[start], tile_ptr, 0);
else
render_object<stype, rdtype, true, false>(obj_x_offset, max_draw, &scanline[start], tile_ptr, 0);
} else {
// In 4bpp mode calculate the palette number
u16 palette = (obj_attr2 >> 8) & 0xF0;
if (hflip)
render_object<stype, rdtype, false, true>(obj_x_offset, max_draw, &scanline[start], tile_ptr, palette);
else
render_object<stype, rdtype, false, false>(obj_x_offset, max_draw, &scanline[start], tile_ptr, palette);
}
}
}
}
// Adjust a flipped obj's starting position
#define obj_tile_offset_noflip(color_depth) \
#define obj_tile_offset_flip(color_depth) \
+ (tile_size_##color_depth * ((obj_width - 8) / 8)) \
// Adjust the obj's starting point if it goes too far off the left edge of
// the screen.
#define obj_tile_right_offset_noflip(color_depth) \
tile_ptr += (partial_tile_offset / 8) * tile_size_##color_depth \
#define obj_tile_right_offset_flip(color_depth) \
tile_ptr -= (partial_tile_offset / 8) * tile_size_##color_depth \
// Get the current row offset into an obj in 1D map space
#define obj_tile_offset_1D(color_depth, flip_op) \
tile_ptr = tile_base + ((obj_attribute_2 & 0x3FF) * 32) \
+ ((vertical_offset / 8) * (obj_width / 8) * tile_size_##color_depth) \
+ ((vertical_offset % 8) * tile_width_##color_depth) \
obj_tile_offset_##flip_op(color_depth) \
// Get the current row offset into an obj in 2D map space
#define obj_tile_offset_2D(color_depth, flip_op) \
tile_ptr = tile_base + ((obj_attribute_2 & 0x3FF) * 32) \
+ ((vertical_offset / 8) * 1024) \
+ ((vertical_offset % 8) * tile_width_##color_depth) \
obj_tile_offset_##flip_op(color_depth) \
// Get the palette for 4bpp obj.
#define obj_get_palette_4bpp() \
current_palette = (obj_attribute_2 >> 8) & 0xF0 \
#define obj_get_palette_8bpp() \
// Render the current row of an obj.
#define obj_render(combine_op, color_depth, alpha_op, map_space, flip_op) \
{ \
obj_get_palette_##color_depth(); \
obj_tile_offset_##map_space(color_depth, flip_op); \
\
if(obj_x < (s32)start) \
{ \
dest_ptr = scanline + start; \
pixel_run = obj_width - (start - obj_x); \
if((s32)pixel_run > 0) \
{ \
if((obj_x + obj_width) >= end) \
{ \
pixel_run = end - start; \
partial_tile_offset = start - obj_x; \
obj_tile_right_offset_##flip_op(color_depth); \
partial_tile_offset %= 8; \
\
if(partial_tile_offset) \
{ \
partial_tile_run = 8 - partial_tile_offset; \
if((s32)pixel_run < (s32)partial_tile_run) \
{ \
if((s32)pixel_run > 0) \
{ \
partial_tile_run = pixel_run; \
partial_tile_mid_obj(combine_op, color_depth, alpha_op, \
flip_op); \
} \
continue; \
} \
else \
{ \
pixel_run -= partial_tile_run; \
partial_tile_right_obj(combine_op, color_depth, alpha_op, \
flip_op); \
} \
} \
tile_run = pixel_run / 8; \
multiple_tile_obj(combine_op, color_depth, alpha_op, flip_op); \
partial_tile_run = pixel_run % 8; \
if(partial_tile_run) \
{ \
partial_tile_left_obj(combine_op, color_depth, alpha_op, \
flip_op); \
} \
} \
else \
{ \
partial_tile_offset = start - obj_x; \
obj_tile_right_offset_##flip_op(color_depth); \
partial_tile_offset %= 8; \
if(partial_tile_offset) \
{ \
partial_tile_run = 8 - partial_tile_offset; \
partial_tile_right_obj(combine_op, color_depth, alpha_op, \
flip_op); \
} \
tile_run = pixel_run / 8; \
multiple_tile_obj(combine_op, color_depth, alpha_op, flip_op); \
} \
} \
} \
else \
\
if((obj_x + obj_width) >= end) \
{ \
pixel_run = end - obj_x; \
if((s32)pixel_run > 0) \
{ \
dest_ptr = scanline + obj_x; \
tile_run = pixel_run / 8; \
multiple_tile_obj(combine_op, color_depth, alpha_op, flip_op); \
partial_tile_run = pixel_run % 8; \
if(partial_tile_run) \
{ \
partial_tile_left_obj(combine_op, color_depth, alpha_op, flip_op); \
} \
} \
} \
else \
{ \
dest_ptr = scanline + obj_x; \
tile_run = obj_width / 8; \
multiple_tile_obj(combine_op, color_depth, alpha_op, flip_op); \
} \
} \
#define obj_scale_offset_1D(color_depth) \
tile_ptr = tile_base + ((obj_attribute_2 & 0x3FF) * 32) \
+ ((vertical_offset / 8) * (max_x / 8) * tile_size_##color_depth) \
+ ((vertical_offset % 8) * tile_width_##color_depth) \
// Get the current row offset into an obj in 2D map space
#define obj_scale_offset_2D(color_depth) \
tile_ptr = tile_base + ((obj_attribute_2 & 0x3FF) * 32) \
+ ((vertical_offset / 8) * 1024) \
+ ((vertical_offset % 8) * tile_width_##color_depth) \
#define obj_render_scale_pixel_4bpp(combine_op, alpha_op) \
current_pixel = \
tile_ptr[tile_map_offset + ((tile_x >> 1) & 0x03)]; \
if(tile_x & 0x01) \
current_pixel >>= 4; \
else \
current_pixel &= 0x0F; \
\
tile_4bpp_draw_##combine_op(0, none, 0, alpha_op) \
#define obj_render_scale_pixel_8bpp(combine_op, alpha_op) \
current_pixel = tile_ptr[tile_map_offset + (tile_x & 0x07)]; \
tile_8bpp_draw_##combine_op(0, none, 0, alpha_op); \
#define obj_render_scale(combine_op, color_depth, alpha_op, map_space) \
{ \
u32 vertical_offset; \
source_y += (y_delta * dmy); \
vertical_offset = (source_y >> 8); \
if((u32)vertical_offset < (u32)max_y) \
{ \
obj_scale_offset_##map_space(color_depth); \
source_x += (y_delta * dmx) - (middle_x * dx); \
\
for(i = 0; i < obj_width; i++) \
{ \
tile_x = (source_x >> 8); \
\
if((u32)tile_x < (u32)max_x) \
break; \
\
source_x += dx; \
advance_dest_ptr_##combine_op(1); \
} \
\
for(; i < obj_width; i++) \
{ \
tile_x = (source_x >> 8); \
\
if((u32)tile_x >= (u32)max_x) \
break; \
\
tile_map_offset = (tile_x >> 3) * tile_size_##color_depth; \
obj_render_scale_pixel_##color_depth(combine_op, alpha_op); \
\
source_x += dx; \
advance_dest_ptr_##combine_op(1); \
} \
} \
} \
#define obj_rotate_offset_1D(color_depth) \
obj_tile_pitch = (max_x / 8) * tile_size_##color_depth \
#define obj_rotate_offset_2D(color_depth) \
obj_tile_pitch = 1024 \
#define obj_render_rotate_pixel_4bpp(combine_op, alpha_op) \
current_pixel = tile_ptr[tile_map_offset + \
((tile_x >> 1) & 0x03) + ((tile_y & 0x07) * obj_pitch)]; \
if(tile_x & 0x01) \
current_pixel >>= 4; \
else \
current_pixel &= 0x0F; \
\
tile_4bpp_draw_##combine_op(0, none, 0, alpha_op) \
#define obj_render_rotate_pixel_8bpp(combine_op, alpha_op) \
current_pixel = tile_ptr[tile_map_offset + \
(tile_x & 0x07) + ((tile_y & 0x07) * obj_pitch)]; \
\
tile_8bpp_draw_##combine_op(0, none, 0, alpha_op) \
#define obj_render_rotate(combine_op, color_depth, alpha_op, map_space) \
{ \
tile_ptr = tile_base + ((obj_attribute_2 & 0x3FF) * 32); \
obj_rotate_offset_##map_space(color_depth); \
\
source_x += (y_delta * dmx) - (middle_x * dx); \
source_y += (y_delta * dmy) - (middle_x * dy); \
\
for(i = 0; i < obj_width; i++) \
{ \
tile_x = (source_x >> 8); \
tile_y = (source_y >> 8); \
\
if(((u32)tile_x < (u32)max_x) && ((u32)tile_y < (u32)max_y)) \
break; \
\
source_x += dx; \
source_y += dy; \
advance_dest_ptr_##combine_op(1); \
} \
\
for(; i < obj_width; i++) \
{ \
tile_x = (source_x >> 8); \
tile_y = (source_y >> 8); \
\
if(((u32)tile_x >= (u32)max_x) || ((u32)tile_y >= (u32)max_y)) \
break; \
\
tile_map_offset = ((tile_x >> 3) * tile_size_##color_depth) + \
((tile_y >> 3) * obj_tile_pitch); \
obj_render_rotate_pixel_##color_depth(combine_op, alpha_op); \
\
source_x += dx; \
source_y += dy; \
advance_dest_ptr_##combine_op(1); \
} \
} \
// Render the current row of an affine transformed OBJ.
#define obj_render_affine(combine_op, color_depth, alpha_op, map_space) \
{ \
u16 *params = (u16 *)oam_ram + (((obj_attribute_1 >> 9) & 0x1F) * 16); \
s32 dx = (s16)eswap16(params[3]); \
s32 dmx = (s16)eswap16(params[7]); \
s32 dy = (s16)eswap16(params[11]); \
s32 dmy = (s16)eswap16(params[15]); \
s32 source_x, source_y; \
s32 tile_x, tile_y; \
u32 tile_map_offset; \
s32 middle_x; \
s32 middle_y; \
s32 max_x = obj_width; \
s32 max_y = obj_height; \
s32 y_delta; \
u32 obj_pitch = tile_width_##color_depth; \
u32 obj_tile_pitch; \
\
middle_x = (obj_width / 2); \
middle_y = (obj_height / 2); \
\
source_x = (middle_x << 8); \
source_y = (middle_y << 8); \
\
\
if(obj_attribute_0 & 0x200) \
{ \
obj_width *= 2; \
obj_height *= 2; \
middle_x *= 2; \
middle_y *= 2; \
} \
\
if((s32)obj_x < (s32)start) \
{ \
u32 x_delta = start - obj_x; \
middle_x -= x_delta; \
obj_width -= x_delta; \
obj_x = start; \
\
if((s32)obj_width <= 0) \
continue; \
} \
\
if((s32)(obj_x + obj_width) >= (s32)end) \
{ \
obj_width = end - obj_x; \
\
if((s32)obj_width <= 0) \
continue; \
} \
dest_ptr = scanline + obj_x; \
\
y_delta = vcount - (obj_y + middle_y); \
\
obj_get_palette_##color_depth(); \
\
if(dy == 0) \
{ \
obj_render_scale(combine_op, color_depth, alpha_op, map_space); \
} \
else \
{ \
obj_render_rotate(combine_op, color_depth, alpha_op, map_space); \
} \
} \
// Build obj rendering functions
#define render_scanline_obj_extra_variables_normal(bg_type) \
u16 *palette = palette_ram_converted + 256 \
#define render_scanline_obj_extra_variables_color() \
u32 pixel_combine = color_combine_mask(4) | (1 << 8) \
#define render_scanline_obj_extra_variables_alpha_obj(map_space) \
render_scanline_obj_extra_variables_color(); \
u32 dest; \
if((pixel_combine & 0x00000200) == 0) \
{ \
render_scanline_obj_color32_##map_space(priority, start, end, scanline); \
return; \
} \
#define render_scanline_obj_extra_variables_partial_alpha(map_space) \
render_scanline_obj_extra_variables_color(); \
u32 base_pixel_combine = pixel_combine; \
u32 dest \
#define render_scanline_obj_main(combine_op, alpha_op, map_space) \
if(obj_attribute_0 & 0x100) \
{ \
if((obj_attribute_0 >> 13) & 0x01) \
{ \
obj_render_affine(combine_op, 8bpp, alpha_op, map_space); \
} \
else \
{ \
obj_render_affine(combine_op, 4bpp, alpha_op, map_space); \
} \
} \
else \
{ \
vertical_offset = vcount - obj_y; \
\
if((obj_attribute_1 >> 13) & 0x01) \
vertical_offset = obj_height - vertical_offset - 1; \
\
switch(((obj_attribute_0 >> 12) & 0x02) | \
((obj_attribute_1 >> 12) & 0x01)) \
{ \
case 0x0: \
obj_render(combine_op, 4bpp, alpha_op, map_space, noflip); \
break; \
\
case 0x1: \
obj_render(combine_op, 4bpp, alpha_op, map_space, flip); \
break; \
\
case 0x2: \
obj_render(combine_op, 8bpp, alpha_op, map_space, noflip); \
break; \
\
case 0x3: \
obj_render(combine_op, 8bpp, alpha_op, map_space, flip); \
break; \
} \
} \
#define render_scanline_obj_no_partial_alpha(combine_op, alpha_op, map_space) \
render_scanline_obj_main(combine_op, alpha_op, map_space) \
#define render_scanline_obj_partial_alpha(combine_op, alpha_op, map_space) \
if((obj_attribute_0 >> 10) & 0x03) \
{ \
pixel_combine = 0x00000300; /* 1st target and palette 256 */ \
render_scanline_obj_main(combine_op, alpha_obj, map_space); \
} \
else \
{ \
pixel_combine = base_pixel_combine; \
render_scanline_obj_main(combine_op, color32, map_space); \
} \
#define render_scanline_obj_prologue_transparent(alpha_op) \
#define render_scanline_obj_builder(combine_op, alpha_op, map_space, \
partial_alpha_op) \
static void render_scanline_obj_##alpha_op##_##map_space(u32 priority, \
u32 start, u32 end, void *raw_dst) \
{ \
render_scanline_dest_##alpha_op *scanline = \
(render_scanline_dest_##alpha_op*)raw_dst; \
render_scanline_obj_extra_variables_##alpha_op(map_space); \
u32 obj_num, i; \
s32 obj_x, obj_y; \
u32 obj_size; \
u32 obj_width, obj_height; \
u32 obj_attribute_0, obj_attribute_1, obj_attribute_2; \
s32 vcount = read_ioreg(REG_VCOUNT); \
u32 tile_run; \
u32 current_pixels; \
u32 current_pixel; \
u32 current_palette; \
u32 vertical_offset; \
u32 partial_tile_run, partial_tile_offset; \
u32 pixel_run; \
u16 *oam_ptr; \
render_scanline_dest_##alpha_op *dest_ptr; \
u8 *tile_base = vram + 0x10000; \
u8 *tile_ptr; \
u32 obj_count = obj_priority_count[priority][vcount]; \
u8 *obj_list = obj_priority_list[priority][vcount]; \
\
for(obj_num = 0; obj_num < obj_count; obj_num++) \
{ \
oam_ptr = oam_ram + (obj_list[obj_num] * 4); \
obj_attribute_0 = eswap16(oam_ptr[0]); \
obj_attribute_1 = eswap16(oam_ptr[1]); \
obj_attribute_2 = eswap16(oam_ptr[2]); \
obj_size = ((obj_attribute_0 >> 12) & 0x0C) | (obj_attribute_1 >> 14); \
\
obj_x = (s32)(obj_attribute_1 << 23) >> 23; \
obj_width = obj_width_table[obj_size]; \
\
render_scanline_obj_prologue_##combine_op(alpha_op); \
\
obj_y = obj_attribute_0 & 0xFF; \
\
if(obj_y > 160) \
obj_y -= 256; \
\
obj_height = obj_height_table[obj_size]; \
render_scanline_obj_##partial_alpha_op(combine_op, alpha_op, map_space); \
} \
} \
// There are actually used to render sprites to the scanline
// render_scanline_obj_builder(transparent, normal, 1D, no_partial_alpha);
// render_scanline_obj_builder(transparent, normal, 2D, no_partial_alpha);
// render_scanline_obj_builder(transparent, color16, 1D, no_partial_alpha);
// render_scanline_obj_builder(transparent, color16, 2D, no_partial_alpha);
// render_scanline_obj_builder(transparent, color32, 1D, no_partial_alpha);
// render_scanline_obj_builder(transparent, color32, 2D, no_partial_alpha);
// render_scanline_obj_builder(transparent, alpha_obj, 1D, no_partial_alpha);
// render_scanline_obj_builder(transparent, alpha_obj, 2D, no_partial_alpha);
// WIP: Remove these once we merge things with partial alpha and copy mode.
void render_scanline_obj_normal_1D(u32 priority, u32 start, u32 end, void *raw_dst) {
render_scanline_objects<u16, FULLCOLOR, nullptr>(start, end, (u16*)raw_dst, priority);
}
void render_scanline_obj_normal_2D(u32 priority, u32 start, u32 end, void *raw_dst) {
render_scanline_objects<u16, FULLCOLOR, nullptr>(start, end, (u16*)raw_dst, priority);
}
void render_scanline_obj_color16_1D(u32 priority, u32 start, u32 end, void *raw_dst) {
render_scanline_objects<u16, INDXCOLOR, nullptr>(start, end, (u16*)raw_dst, priority);
}
void render_scanline_obj_color16_2D(u32 priority, u32 start, u32 end, void *raw_dst) {
render_scanline_objects<u16, INDXCOLOR, nullptr>(start, end, (u16*)raw_dst, priority);
}
void render_scanline_obj_color32_1D(u32 priority, u32 start, u32 end, void *raw_dst) {
render_scanline_objects<u32, INDXCOLOR, nullptr>(start, end, (u32*)raw_dst, priority);
}
void render_scanline_obj_color32_2D(u32 priority, u32 start, u32 end, void *raw_dst) {
render_scanline_objects<u32, INDXCOLOR, nullptr>(start, end, (u32*)raw_dst, priority);
}
void render_scanline_obj_alpha_obj_1D(u32 priority, u32 start, u32 end, void *raw_dst) {
render_scanline_objects<u32, STCKCOLOR, nullptr>(start, end, (u32*)raw_dst, priority);
}
void render_scanline_obj_alpha_obj_2D(u32 priority, u32 start, u32 end, void *raw_dst) {
render_scanline_objects<u32, STCKCOLOR, nullptr>(start, end, (u32*)raw_dst, priority);
}
render_scanline_obj_builder(transparent, partial_alpha, 1D, partial_alpha);
render_scanline_obj_builder(transparent, partial_alpha, 2D, partial_alpha);
static const tile_render_function obj_mode_renderers[5][2] = {
{ render_scanline_obj_normal_2D, render_scanline_obj_normal_1D },
{ render_scanline_obj_color16_2D, render_scanline_obj_color16_1D },
{ render_scanline_obj_color32_2D, render_scanline_obj_color32_1D },
{ render_scanline_obj_alpha_obj_2D, render_scanline_obj_alpha_obj_1D },
{ render_scanline_obj_partial_alpha_2D, render_scanline_obj_partial_alpha_1D },
};
// These are used for winobj rendering
// render_scanline_obj_builder(copy, copy_tile, 1D, no_partial_alpha);
// render_scanline_obj_builder(copy, copy_tile, 2D, no_partial_alpha);
// render_scanline_obj_builder(copy, copy_bitmap, 1D, no_partial_alpha);
// render_scanline_obj_builder(copy, copy_bitmap, 2D, no_partial_alpha);
#define OBJ_MOD_NORMAL 0
#define OBJ_MOD_SEMITRAN 1
#define OBJ_MOD_WINDOW 2
#define OBJ_MOD_INVALID 3
// Goes through the object list in the OAM (from #127 to #0) and adds objects
// into a sorted list by priority for the current row.
// Invisible objects are discarded.
static void order_obj(u32 video_mode)
{
s32 obj_num;
u32 row;
t_oam *oam_base = (t_oam*)oam_ram;
memset(obj_priority_count, 0, sizeof(obj_priority_count));
memset(obj_alpha_count, 0, sizeof(obj_alpha_count));
for(obj_num = 127; obj_num >= 0; obj_num--)
{
t_oam *oam_ptr = &oam_base[obj_num];
u16 obj_attr0 = eswap16(oam_ptr->attr0);
// Bit 9 disables regular sprites. Used as double bit for affine ones.
bool visible = (obj_attr0 & 0x0300) != 0x0200;
if (visible) {
u16 obj_shape = obj_attr0 >> 14;
u32 obj_mode = (obj_attr0 >> 10) & 0x03;
// Prohibited shape and mode
bool invalid = (obj_shape == 0x3) || (obj_mode == OBJ_MOD_INVALID);
if (!invalid) {
u16 obj_attr1 = eswap16(oam_ptr->attr1);
u16 obj_attr2 = eswap16(oam_ptr->attr2);
u32 obj_priority = (obj_attr2 >> 10) & 0x03;
if (((video_mode < 3) || ((obj_attr2 & 0x3FF) >= 512)))
{
// Calculate object size (from size and shape attr bits)
u16 obj_size = (obj_attr1 >> 14);
s32 obj_height = obj_dim_table[obj_shape][obj_size][1];
s32 obj_width = obj_dim_table[obj_shape][obj_size][0];
s32 obj_y = obj_attr0 & 0xFF;
if(obj_y > 160)
obj_y -= 256;
// Double size for affine sprites with double bit set
if(obj_attr0 & 0x200)
{
obj_height *= 2;
obj_width *= 2;
}
if(((obj_y + obj_height) > 0) && (obj_y < 160))
{
s32 obj_x = (s32)(obj_attr1 << 23) >> 23;
if(((obj_x + obj_width) > 0) && (obj_x < 240))
{
// Clip Y coord and height to the 0..159 interval
u32 starty = MAX(obj_y, 0);
u32 endy = MIN(obj_y + obj_height, 160);
switch (obj_mode) {
case OBJ_MOD_SEMITRAN:
for(row = starty; row < endy; row++)
{
u32 cur_cnt = obj_priority_count[obj_priority][row];
obj_priority_list[obj_priority][row][cur_cnt] = obj_num;
obj_priority_count[obj_priority][row] = cur_cnt + 1;
// Mark the row as having semi-transparent objects
obj_alpha_count[row] = 1;
}
break;
case OBJ_MOD_WINDOW:
obj_priority = 4;
/* fallthrough */
case OBJ_MOD_NORMAL:
// Add the object to the list.
for(row = starty; row < endy; row++)
{
u32 cur_cnt = obj_priority_count[obj_priority][row];
obj_priority_list[obj_priority][row][cur_cnt] = obj_num;
obj_priority_count[obj_priority][row] = cur_cnt + 1;
}
break;
};
}
}
}
}
}
}
}
u32 layer_order[16];
u32 layer_count;
// Sorts active BG/OBJ layers and generates an ordered list of layers.
// Things are drawn back to front, so lowest priority goes first.
static void order_layers(u32 layer_flags, u32 vcnt)
{
bool obj_enabled = (layer_flags & 0x10);
s32 priority;
layer_count = 0;
for(priority = 3; priority >= 0; priority--)
{
bool anyobj = obj_priority_count[priority][vcnt] > 0;
s32 lnum;
for(lnum = 3; lnum >= 0; lnum--)
{
if(((layer_flags >> lnum) & 1) &&
((read_ioreg(REG_BGxCNT(lnum)) & 0x03) == priority))
{
layer_order[layer_count++] = lnum;
}
}
if(obj_enabled && anyobj)
layer_order[layer_count++] = priority | 0x04;
}
}
// Blending is performed by separating an RGB value into 0G0R0B (32 bit)
// Since blending factors are at most 16, mult/add operations do not overflow
// to the neighbouring color and can be performed much faster than separatedly
// Here follow the mask value to separate/expand the color to 32 bit,
// the mask to detect overflows in the blend operation and
#define BLND_MSK (SATR_MSK | SATG_MSK | SATB_MSK)
#ifdef USE_XBGR1555_FORMAT
#define OVFG_MSK 0x04000000
#define OVFR_MSK 0x00008000
#define OVFB_MSK 0x00000020
#define SATG_MSK 0x03E00000
#define SATR_MSK 0x00007C00
#define SATB_MSK 0x0000001F
#else
#define OVFG_MSK 0x08000000
#define OVFR_MSK 0x00010000
#define OVFB_MSK 0x00000020
#define SATG_MSK 0x07E00000
#define SATR_MSK 0x0000F800
#define SATB_MSK 0x0000001F
#endif
typedef enum
{
BLEND_ONLY, // Just alpha blending (if the pixels are 1st and 2nd target)
BLEND_BRIGHT, // Perform alpha blending if appropiate, and brighten otherwise
BLEND_DARK, // Same but with darken effecg
} blendtype;
// Applies blending (and optional brighten/darken) effect to a bunch of
// color-indexed pixel pairs. Depending on the mode and the pixel target
// number, blending, darken/brighten or no effect will be applied.
template <blendtype bldtype>
static void merge_blend(u32 start, u32 end, u16 *dst, u32 *src) {
u32 bldalpha = read_ioreg(REG_BLDALPHA);
u32 brightf = MIN(16, read_ioreg(REG_BLDY) & 0x1F);
u32 blend_a = MIN(16, (bldalpha >> 0) & 0x1F);
u32 blend_b = MIN(16, (bldalpha >> 8) & 0x1F);
bool can_saturate = blend_a + blend_b > 16;
if (can_saturate) {
// If blending can result in saturation, we need to clamp output values.
while (start < end) {
u32 pixpair = src[start];
if ((pixpair & 0x04000200) == 0x04000200) {
// Top pixel is 1st target, pixel below is 2nd target. Blend!
u16 p1 = palette_ram_converted[(pixpair >> 0) & 0x1FF];
u16 p2 = palette_ram_converted[(pixpair >> 16) & 0x1FF];
u32 p1e = (p1 | (p1 << 16)) & BLND_MSK;
u32 p2e = (p2 | (p2 << 16)) & BLND_MSK;
u32 pfe = (((p1e * blend_a) + (p2e * blend_b)) >> 4);
// If the overflow bit is set, saturate (set) all bits to one.
if (pfe & (OVFR_MSK | OVFG_MSK | OVFB_MSK)) {
if (pfe & OVFG_MSK)
pfe |= SATG_MSK;
if (pfe & OVFR_MSK)
pfe |= SATR_MSK;
if (pfe & OVFB_MSK)
pfe |= SATB_MSK;
}
pfe &= BLND_MSK;
dst[start++] = (pfe >> 16) | pfe;
}
else if ((bldtype != BLEND_ONLY) && (pixpair & 0x200) == 0x200) {
// Top pixel is 1st-target, can still apply bright/dark effect.
u16 pidx = palette_ram_converted[pixpair & 0x1FF];
u32 epixel = (pidx | (pidx << 16)) & BLND_MSK;
u32 pa = bldtype == BLEND_DARK ? 0 : ((BLND_MSK * brightf) >> 4) & BLND_MSK;
u32 pb = ((epixel * (16 - brightf)) >> 4) & BLND_MSK;
epixel = (pa + pb) & BLND_MSK;
dst[start++] = (epixel >> 16) | epixel;
}
else {
dst[start++] = palette_ram_converted[pixpair & 0x1FF]; // No effects
}
}
} else {
while (start < end) {
u32 pixpair = src[start];
if ((pixpair & 0x04000200) == 0x04000200) {
// Top pixel is 1st target, pixel below is 2nd target. Blend!
u16 p1 = palette_ram_converted[(pixpair >> 0) & 0x1FF];
u16 p2 = palette_ram_converted[(pixpair >> 16) & 0x1FF];
u32 p1e = (p1 | (p1 << 16)) & BLND_MSK;
u32 p2e = (p2 | (p2 << 16)) & BLND_MSK;
u32 pfe = (((p1e * blend_a) + (p2e * blend_b)) >> 4) & BLND_MSK;
dst[start++] = (pfe >> 16) | pfe;
}
else if ((bldtype != BLEND_ONLY) && (pixpair & 0x200) == 0x200) {
// Top pixel is 1st-target, can still apply bright/dark effect.
u16 pidx = palette_ram_converted[pixpair & 0x1FF];
u32 epixel = (pidx | (pidx << 16)) & BLND_MSK;
u32 pa = bldtype == BLEND_DARK ? 0 : ((BLND_MSK * brightf) >> 4) & BLND_MSK;
u32 pb = ((epixel * (16 - brightf)) >> 4) & BLND_MSK;
epixel = (pa + pb) & BLND_MSK;
dst[start++] = (epixel >> 16) | epixel;
}
else {
dst[start++] = palette_ram_converted[pixpair & 0x1FF]; // No effects
}
}
}
}
// Applies brighten/darken effect to a bunch of color-indexed pixels.
template <blendtype bldtype>
static void merge_brightness(u32 start, u32 end, u16 *srcdst) {
u32 brightness = MIN(16, read_ioreg(REG_BLDY) & 0x1F);
while (start < end) {
u16 spix = srcdst[start];
u16 pixcol = palette_ram_converted[spix & 0x1FF];
if ((spix & 0x200) == 0x200) {
// Pixel is 1st target, can apply color effect.
u32 epixel = (pixcol | (pixcol << 16)) & BLND_MSK;
u32 pa = bldtype == BLEND_DARK ? 0 : ((BLND_MSK * brightness) >> 4) & BLND_MSK; // B/W
u32 pb = ((epixel * (16 - brightness)) >> 4) & BLND_MSK; // Pixel color
epixel = (pa + pb) & BLND_MSK;
pixcol = (epixel >> 16) | epixel;
}
srcdst[start++] = pixcol;
}
}
// Render an OBJ layer from start to end, depending on the type (1D or 2D)
// stored in dispcnt.
#define render_obj_layer(type, dest, _start, _end) \
current_layer &= ~0x04; \
if(dispcnt & 0x40) \
render_scanline_obj_##type##_1D(current_layer, _start, _end, dest); \
else \
render_scanline_obj_##type##_2D(current_layer, _start, _end, dest) \
// Render a target all the way with the background color as taken from the
// palette.
template<bool indexed, typename dsttype>
void fill_line_background(u32 start, u32 end, void *scanline) {
dsttype *ptr = (dsttype*)scanline;
while (start < end)
if (indexed)
ptr[start++] = 0;
else
ptr[start++] = palette_ram_converted[0];
}
#define COL_EFFECT_NONE 0x0
#define COL_EFFECT_BLEND 0x1
#define COL_EFFECT_BRIGHT 0x2
#define COL_EFFECT_DARK 0x3
// Renders the backdrop color (ie. whenever no layer is active) applying
// any effects that might still apply (usually darken/brighten).
static void render_backdrop(u32 start, u32 end, u16 *scanline) {
u16 bldcnt = read_ioreg(REG_BLDCNT);
u16 pixcol = palette_ram_converted[0];
u32 effect = (bldcnt >> 6) & 0x03;
u32 bd_1st_target = ((bldcnt >> 0x5) & 0x01);
if (bd_1st_target && effect == COL_EFFECT_BRIGHT) {
u32 brightness = MIN(16, read_ioreg(REG_BLDY) & 0x1F);
// Unpack 16 bit pixel for fast blending operation
u32 epixel = (pixcol | (pixcol << 16)) & BLND_MSK;
u32 pa = ((BLND_MSK * brightness) >> 4) & BLND_MSK; // White color
u32 pb = ((epixel * (16 - brightness)) >> 4) & BLND_MSK; // Pixel color
epixel = (pa + pb) & BLND_MSK;
pixcol = (epixel >> 16) | epixel;
}
else if (bd_1st_target && effect == COL_EFFECT_DARK) {
u32 brightness = MIN(16, read_ioreg(REG_BLDY) & 0x1F);
u32 epixel = (pixcol | (pixcol << 16)) & BLND_MSK;
epixel = ((epixel * (16 - brightness)) >> 4) & BLND_MSK; // Pixel color
pixcol = (epixel >> 16) | epixel;
}
// Fill the line with that color
while (start < end)
scanline[start++] = pixcol;
}
#define RENDER_NORMAL 0
#define RENDER_COL16 1
#define RENDER_COL32 2
#define RENDER_ALPHA 3
#define OBJ_NORMAL 0
#define OBJ_COL16 1
#define OBJ_COL32 2
#define OBJ_ALPHA 3
#define OBJ_PALPHA 4
void render_layers(u32 start, u32 end, void *dst_ptr, u32 enabled_layers,
u32 rend_mode, u32 obj_mode) {
u32 lnum;
u16 dispcnt = read_ioreg(REG_DISPCNT);
bool obj_enabled = (enabled_layers & 0x10); // Objects are visible
// Renderers for this mode (affine or text pointers)
const tile_layer_render_struct * r = tile_mode_renderers[dispcnt & 0x07];
for (lnum = 0; lnum < layer_count; lnum++) {
u32 layer = layer_order[lnum];
bool is_obj = layer & 0x4;
if (is_obj && obj_enabled) {
// Draw an object first-layer, we need to fill backdrop color first!
if (rend_mode == RENDER_NORMAL)
fill_line_background<false, u16>(start, end, dst_ptr);
else if (rend_mode == OBJ_COL16)
fill_line_background<true, u16>(start, end, dst_ptr);
else
fill_line_background<true, u32>(start, end, dst_ptr);
obj_mode_renderers[obj_mode][(dispcnt >> 6) & 1](layer & 0x3, start, end, dst_ptr);
break;
}
else if (!is_obj && ((1 << layer) & enabled_layers)) {
// Draw base layer
r[layer].base[rend_mode](layer, start, end, dst_ptr);
break;
}
}
if (lnum == layer_count) {
// Render background, no layers are active!
// TODO improve this code.
if (rend_mode == RENDER_NORMAL)
fill_line_background<false, u16>(start, end, dst_ptr);
else if (rend_mode == OBJ_COL16)
fill_line_background<true, u16>(start, end, dst_ptr);
else
fill_line_background<true, u32>(start, end, dst_ptr);
return;
}
while (++lnum < layer_count) {
u32 layer = layer_order[lnum];
bool is_obj = layer & 0x4;
if (is_obj && obj_enabled)
obj_mode_renderers[obj_mode][(dispcnt >> 6) & 1](layer & 0x3, start, end, dst_ptr);
else if (!is_obj && ((1 << layer) & enabled_layers))
r[layer].trans[rend_mode](layer, start, end, dst_ptr);
}
}
// Renders a partial scanline without using any coloring effects (with the
// exception of OBJ blending).
static void render_color_no_effect(
u32 start, u32 end, u16* scanline, u32 enable_flags
) {
bool obj_blend = obj_alpha_count[read_ioreg(REG_VCOUNT)] > 0;
// Default rendering mode, without layer effects (except perhaps sprites).
if (obj_blend) {
u32 screen_buffer[240];
render_layers(start, end, screen_buffer, enable_flags, RENDER_COL32, OBJ_PALPHA);
merge_blend<BLEND_ONLY>(start, end, scanline, screen_buffer);
} else {
render_layers(start, end, scanline, enable_flags, RENDER_NORMAL, OBJ_NORMAL);
}
}
// Renders all layers honoring color effects (blending, brighten/darken).
// It uses different rendering routines depending on the coloring effect
// requirements, speeding up common cases where no effects are used.
// No effects use NORMAL mode (RBB565 color is written on the buffer).
// For blending, we use BLEND mode to record the two top-most pixels.
// For other effects we use COLOR16, which records an indexed color in the
// buffer (used for darken/brighten effects at later passes) or COLOR32,
// which similarly uses an indexed color for rendering but recording one
// color for the background and another one for the object layer.
static void render_color_effect(
u32 start, u32 end, u16* scanline, u32 enable_flags = 0x1F /* all enabled */
) {
bool obj_blend = obj_alpha_count[read_ioreg(REG_VCOUNT)] > 0;
u16 bldcnt = read_ioreg(REG_BLDCNT);
switch((bldcnt >> 6) & 0x03) {
case COL_EFFECT_BRIGHT:
{
// If no layers are 1st target, no effect will really happen.
bool some_1st_tgt = (read_ioreg(REG_BLDCNT) & 0x3F) != 0;
// If the factor is zero, it's the same as "regular" rendering.
bool non_zero_blend = (read_ioreg(REG_BLDY) & 0x1F) != 0;
if (some_1st_tgt && non_zero_blend) {
if (obj_blend) {
u32 screen_buffer[240];
render_layers(start, end, screen_buffer, enable_flags, RENDER_COL32, OBJ_PALPHA);
merge_blend<BLEND_BRIGHT>(start, end, scanline, screen_buffer);
} else {
render_layers(start, end, scanline, enable_flags, RENDER_COL16, OBJ_COL16);
merge_brightness<BLEND_BRIGHT>(start, end, scanline);
}
return;
}
}
break;
case COL_EFFECT_DARK:
{
// If no layers are 1st target, no effect will really happen.
bool some_1st_tgt = (read_ioreg(REG_BLDCNT) & 0x3F) != 0;
// If the factor is zero, it's the same as "regular" rendering.
bool non_zero_blend = (read_ioreg(REG_BLDY) & 0x1F) != 0;
if (some_1st_tgt && non_zero_blend) {
if (obj_blend) {
u32 screen_buffer[240];
render_layers(start, end, screen_buffer, enable_flags, RENDER_COL32, OBJ_PALPHA);
merge_blend<BLEND_DARK>(start, end, scanline, screen_buffer);
} else {
render_layers(start, end, scanline, enable_flags, RENDER_COL16, OBJ_COL16);
merge_brightness<BLEND_DARK>(start, end, scanline);
}
return;
}
}
break;
case COL_EFFECT_BLEND:
{
// If no layers are 1st or 2nd target, no effect will really happen.
bool some_1st_tgt = (read_ioreg(REG_BLDCNT) & 0x003F) != 0;
bool some_2nd_tgt = (read_ioreg(REG_BLDCNT) & 0x3F00) != 0;
// If 1st target is 100% opacity and 2nd is 0%, just render regularly.
bool non_trns_tgt = (read_ioreg(REG_BLDALPHA) & 0x1F1F) != 0x001F;
if (some_1st_tgt && some_2nd_tgt && non_trns_tgt) {
u32 screen_buffer[240];
render_layers(start, end, screen_buffer, enable_flags, RENDER_ALPHA, OBJ_ALPHA);
merge_blend<BLEND_ONLY>(start, end, scanline, screen_buffer);
return;
}
}
break;
case COL_EFFECT_NONE:
// Default case, see below.
break;
};
// Default case, just a regular no-effects render.
render_color_no_effect(start, end, scanline, enable_flags);
}
// Renders an entire scanline from 0 to 240, based on current color mode.
template<bool tiled>
static void render_scanline(u16 *scanline)
{
u32 current_layer;
u32 layer_order_pos;
if (tiled) {
if (layer_count)
render_color_effect(0, 240, scanline);
else
render_backdrop(0, 240, scanline);
} else {
u16 dispcnt = read_ioreg(REG_DISPCNT);
const bitmap_layer_render_struct *lrend = &bitmap_mode_renderers[(dispcnt & 0x07) - 3];
fill_line_background<false, u16>(0, 240, scanline);
for(layer_order_pos = 0; layer_order_pos < layer_count; layer_order_pos++)
{
current_layer = layer_order[layer_order_pos];
if(current_layer & 0x04)
{
render_obj_layer(normal, scanline, 0, 240);
}
else
{
s32 dx = (s16)read_ioreg(REG_BG2PA);
s32 dy = (s16)read_ioreg(REG_BG2PC);
if (dy)
lrend->affine_render(0, 240, scanline);
else if (dx == 256)
lrend->blit_render(0, 240, scanline);
else
lrend->scale_render(0, 240, scanline);
}
}
}
}
// Render all of the BG and OBJ in a tiled scanline from start to end ONLY if
// enable_flag allows that layer/OBJ. Also conditionally render color effects.
static void render_scanline_conditional_tile(u32 start, u32 end, u16 *scanline,
u32 enable_flags)
{
if (layer_count && (enable_flags & 0x1F)) {
bool effects_enabled = enable_flags & 0x20; // Window bit for effects.
if (effects_enabled)
render_color_effect(start, end, scanline, enable_flags);
else
render_color_no_effect(start, end, scanline, enable_flags);
}
else
render_backdrop(start, end, scanline);
}
// Render the BG and OBJ in a bitmap scanline from start to end ONLY if
// enable_flag allows that layer/OBJ. Also conditionally render color effects.
static void render_scanline_conditional_bitmap(u32 start, u32 end, u16 *scanline,
u32 enable_flags)
{
u16 dispcnt = read_ioreg(REG_DISPCNT);
const bitmap_layer_render_struct *layer_renderers =
&bitmap_mode_renderers[(dispcnt & 0x07) - 3];
u32 current_layer;
u32 layer_order_pos;
fill_line_background<false, u16>(start, end, scanline);
for(layer_order_pos = 0; layer_order_pos < layer_count; layer_order_pos++)
{
current_layer = layer_order[layer_order_pos];
if(current_layer & 0x04)
{
if(enable_flags & 0x10)
{
render_obj_layer(normal, scanline, start, end);
}
}
else
{
if(enable_flags & 0x04) {
s32 dx = (s16)read_ioreg(REG_BG2PA);
s32 dy = (s16)read_ioreg(REG_BG2PC);
if (dy)
layer_renderers->affine_render(start, end, scanline);
else if (dx == 256)
layer_renderers->blit_render(start, end, scanline);
else
layer_renderers->scale_render(start, end, scanline);
}
}
}
}
// If the window Y coordinates are out of the window range we can skip
// rendering the inside of the window.
inline bool in_window_y(u32 vcount, u32 top, u32 bottom) {
// TODO: check if these are reversed when top-bottom are also reversed.
if (top > 227) // This causes the window to be invisible
return false;
if (bottom > 227) // This makes it all visible
return true;
if (top > bottom) /* Reversed: if not in the "band" */
return vcount > top || vcount <= bottom;
return vcount >= top && vcount < bottom;
}
// Temporary wrap functions, to be removed once all the plain calls do not exist
template <bool tiled>
static inline void render_scanline_conditional(u32 start, u32 end,
u16 *scanline, u32 enable_flags)
{
if (tiled)
render_scanline_conditional_tile(start, end, scanline, enable_flags);
else
render_scanline_conditional_bitmap(start, end, scanline, enable_flags);
}
// Renders window1 (low priority window) and outside/obj areas for a given range.
template <bool tiled>
static void render_windowobj_pass(u16 *scanline, u32 start, u32 end)
{
u16 dispcnt = read_ioreg(REG_DISPCNT);
u32 winout = read_ioreg(REG_WINOUT);
u32 wndout_enable = winout & 0x3F;
// First we render the "window-out" segment.
render_scanline_conditional<tiled>(start, end, scanline, wndout_enable);
// Now we render the objects in "copy" mode. This renders the scanline in
// WinObj-mode to a temporary buffer and performs a "copy-mode" render.
// In this mode, we copy pixels from the temp buffer to the final buffer
// whenever an object pixel is rendered.
if (dispcnt >> 15) {
// Perform the actual object rendering in copy mode
if (tiled) {
// TODO: Make version 1D/2D? if (dispcnt & 0x40)
render_scanline_objects<u16, PIXCOPY, render_scanline_conditional_tile>(start, end, scanline, 4);
} else {
render_scanline_objects<u16, PIXCOPY, render_scanline_conditional_bitmap>(start, end, scanline, 4);
}
}
}
// Renders window1 (low priority window) and outside/obj areas for a given range.
template <bool tiled>
static void render_window1_pass(u16 *scanline, u32 start, u32 end)
{
u16 dispcnt = read_ioreg(REG_DISPCNT);
u32 winout = read_ioreg(REG_WINOUT);
u32 wndout_enable = winout & 0x3F;
switch (dispcnt >> 14) {
case 0x0: // No Win1 nor WinObj
render_scanline_conditional<tiled>(
start, end, scanline, wndout_enable);
break;
case 0x2: // Only winobj enabled, render it.
render_windowobj_pass<tiled>(scanline, start, end);
break;
case 0x1: case 0x3: // Win1 is enabled (and perhaps WinObj too)
{
// Attempt to render window 1
u32 vcount = read_ioreg(REG_VCOUNT);
// Check the Y coordinates to check if they fall in the right row
u32 win_top = read_ioreg(REG_WINxV(1)) >> 8;
u32 win_bot = read_ioreg(REG_WINxV(1)) & 0xFF;
// Check the X coordinates and generate up to three segments
// Clip the coordinates to the [start, end) range.
u32 win_l = MAX(start, MIN(end, read_ioreg(REG_WINxH(1)) >> 8));
u32 win_r = MAX(start, MIN(end, read_ioreg(REG_WINxH(1)) & 0xFF));
if (!in_window_y(vcount, win_top, win_bot) || (win_l == win_r))
// Window1 is completely out, just render all out.
render_windowobj_pass<tiled>(scanline, start, end);
else {
// Render win1 withtin the clipped range
// Enable bits for stuff inside the window (and outside)
u32 winin = read_ioreg(REG_WININ);
u32 wnd1_enable = (winin >> 8) & 0x3F;
// If the window is defined upside down, the areas are inverted.
if (win_l < win_r) {
// Render [start, win_l) range (which is outside the window)
if (win_l != start)
render_windowobj_pass<tiled>(scanline, start, win_l);
// Render the actual window0 pixels
render_scanline_conditional<tiled>(
win_l, win_r, scanline, wnd1_enable);
// Render the [win_l, end] range (outside)
if (win_r != end)
render_windowobj_pass<tiled>(scanline, win_r, end);
} else {
// Render [0, win_r) range (which is "inside" window0)
if (win_r != start)
render_scanline_conditional<tiled>(
start, win_r, scanline, wnd1_enable);
// The actual window is now outside, render recursively
render_windowobj_pass<tiled>(scanline, win_r, win_l);
// Render the [win_l, 240] range ("inside")
if (win_l != end)
render_scanline_conditional<tiled>(
win_l, end, scanline, wnd1_enable);
}
}
}
break;
};
}
// Renders window0 (high priority window) and renders window1 or out
// on the area that falls outside. It will call the above function for
// outside areas to "recursively" render segments.
template <bool tiled>
static void render_window0_pass(u16 *scanline)
{
u32 vcount = read_ioreg(REG_VCOUNT);
// Check the Y coordinates to check if they fall in the right row
u32 win_top = read_ioreg(REG_WINxV(0)) >> 8;
u32 win_bot = read_ioreg(REG_WINxV(0)) & 0xFF;
// Check the X coordinates and generate up to three segments
u32 win_l = MIN(240, read_ioreg(REG_WINxH(0)) >> 8);
u32 win_r = MIN(240, read_ioreg(REG_WINxH(0)) & 0xFF);
if (!in_window_y(vcount, win_top, win_bot) || (win_l == win_r))
// No windowing, everything is "outside", just render win1.
render_window1_pass<tiled>(scanline, 0, 240);
else {
u32 winin = read_ioreg(REG_WININ);
// Enable bits for stuff inside the window
u32 wnd0_enable = (winin) & 0x3F;
// If the window is defined upside down, the areas are inverted.
if (win_l < win_r) {
// Render [0, win_l) range (which is outside the window)
if (win_l)
render_window1_pass<tiled>(scanline, 0, win_l);
// Render the actual window0 pixels
render_scanline_conditional<tiled>(
win_l, win_r, scanline, wnd0_enable);
// Render the [win_l, 240] range (outside)
if (win_r != 240)
render_window1_pass<tiled>(scanline, win_r, 240);
} else {
// Render [0, win_r) range (which is "inside" window0)
if (win_r)
render_scanline_conditional<tiled>(
0, win_r, scanline, wnd0_enable);
// The actual window is now outside, render recursively
render_window1_pass<tiled>(scanline, win_r, win_l);
// Render the [win_l, 240] range ("inside")
if (win_l != 240)
render_scanline_conditional<tiled>(
win_l, 240, scanline, wnd0_enable);
}
}
}
// Renders a full scaleline, taking into consideration windowing effects.
// Breaks the rendering step into N steps, for each windowed region.
template <bool tiled>
static void render_scanline_window(u16 *scanline)
{
u16 dispcnt = read_ioreg(REG_DISPCNT);
u32 win_ctrl = (dispcnt >> 13);
// Priority decoding for windows
switch (win_ctrl) {
case 0x1: case 0x3: case 0x5: case 0x7:
// Window 0 is enabled, call the win0 render function. It does recursively
// check for window 1 and Obj, so no worries.
render_window0_pass<tiled>(scanline);
break;
case 0x2: case 0x6:
// Window 1 is active, call the window1 renderer.
render_window1_pass<tiled>(scanline, 0, 240);
break;
case 0x4:
// Only winobj seems active
render_windowobj_pass<tiled>(scanline, 0, 240);
break;
case 0x0:
// No windows are active?
render_scanline<tiled>(scanline);
break;
}
}
static const u8 active_layers[] = {
0x1F, // Mode 0, Tile BG0-3 and OBJ
0x17, // Mode 1, Tile BG0-2 and OBJ
0x1C, // Mode 2, Tile BG2-3 and OBJ
0x14, // Mode 3, BMP BG2 and OBJ
0x14, // Mode 4, BMP BG2 and OBJ
0x14, // Mode 5, BMP BG2 and OBJ
0, // Unused
0,
};
void update_scanline(void)
{
u32 pitch = get_screen_pitch();
u16 dispcnt = read_ioreg(REG_DISPCNT);
u32 vcount = read_ioreg(REG_VCOUNT);
u16 *screen_offset = get_screen_pixels() + (vcount * pitch);
u32 video_mode = dispcnt & 0x07;
// If OAM has been modified since the last scanline has been updated then
// reorder and reprofile the OBJ lists.
if(reg[OAM_UPDATED])
{
order_obj(video_mode);
reg[OAM_UPDATED] = 0;
}
order_layers((dispcnt >> 8) & active_layers[video_mode], vcount);
if(skip_next_frame)
return;
if(dispcnt & 0x80)
{
// If the screen is in in forced blank draw pure white.
memset(screen_offset, 0xff, 240*sizeof(u16));
}
else
{
// Modes 0..2 are tiled modes, 3..5 are bitmap-based modes.
if(video_mode < 3)
render_scanline_window<true>(screen_offset);
else
render_scanline_window<false>(screen_offset);
}
affine_reference_x[0] += (s16)read_ioreg(REG_BG2PB);
affine_reference_y[0] += (s16)read_ioreg(REG_BG2PD);
affine_reference_x[1] += (s16)read_ioreg(REG_BG3PB);
affine_reference_y[1] += (s16)read_ioreg(REG_BG3PD);
}