gpsp/psp/mips_emit.h

2472 lines
144 KiB
C

/* gameplaySP
*
* Copyright (C) 2006 Exophase <exophase@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef MIPS_EMIT_H
#define MIPS_EMIT_H
u32 mips_update_gba(u32 pc);
// Although these are defined as a function, don't call them as
// such (jump to it instead)
void mips_indirect_branch_arm(u32 address);
void mips_indirect_branch_thumb(u32 address);
void mips_indirect_branch_dual(u32 address);
u32 execute_read_cpsr();
u32 execute_read_spsr();
void execute_swi(u32 pc);
u32 execute_spsr_restore(u32 address);
void execute_store_cpsr(u32 new_cpsr, u32 store_mask);
void execute_store_spsr(u32 new_spsr, u32 store_mask);
u32 execute_spsr_restore_body(u32 address);
u32 execute_store_cpsr_body(u32 _cpsr, u32 store_mask, u32 address);
u32 execute_lsl_flags_reg(u32 value, u32 shift);
u32 execute_lsr_flags_reg(u32 value, u32 shift);
u32 execute_asr_flags_reg(u32 value, u32 shift);
u32 execute_ror_flags_reg(u32 value, u32 shift);
void execute_aligned_store32(u32 address, u32 value);
u32 execute_aligned_load32(u32 address);
void reg_check();
typedef enum
{
mips_reg_zero,
mips_reg_at,
mips_reg_v0,
mips_reg_v1,
mips_reg_a0,
mips_reg_a1,
mips_reg_a2,
mips_reg_a3,
mips_reg_t0,
mips_reg_t1,
mips_reg_t2,
mips_reg_t3,
mips_reg_t4,
mips_reg_t5,
mips_reg_t6,
mips_reg_t7,
mips_reg_s0,
mips_reg_s1,
mips_reg_s2,
mips_reg_s3,
mips_reg_s4,
mips_reg_s5,
mips_reg_s6,
mips_reg_s7,
mips_reg_t8,
mips_reg_t9,
mips_reg_k0,
mips_reg_k1,
mips_reg_gp,
mips_reg_sp,
mips_reg_fp,
mips_reg_ra
} mips_reg_number;
typedef enum
{
mips_special_sll = 0x00,
mips_special_srl = 0x02,
mips_special_sra = 0x03,
mips_special_sllv = 0x04,
mips_special_srlv = 0x06,
mips_special_srav = 0x07,
mips_special_jr = 0x08,
mips_special_jalr = 0x09,
mips_special_movz = 0x0A,
mips_special_movn = 0x0B,
mips_special_mfhi = 0x10,
mips_special_mthi = 0x11,
mips_special_mflo = 0x12,
mips_special_mtlo = 0x13,
mips_special_mult = 0x18,
mips_special_multu = 0x19,
mips_special_div = 0x1A,
mips_special_divu = 0x1B,
mips_special_madd = 0x1C,
mips_special_maddu = 0x1D,
mips_special_add = 0x20,
mips_special_addu = 0x21,
mips_special_sub = 0x22,
mips_special_subu = 0x23,
mips_special_and = 0x24,
mips_special_or = 0x25,
mips_special_xor = 0x26,
mips_special_nor = 0x27,
mips_special_slt = 0x2A,
mips_special_sltu = 0x2B
} mips_function_special;
typedef enum
{
mips_special3_ext = 0x00,
mips_special3_ins = 0x04,
mips_special3_bshfl = 0x20
} mips_function_special3;
typedef enum
{
mips_regimm_bltz = 0x00,
mips_regimm_bltzal = 0x10
} mips_function_regimm;
typedef enum
{
mips_opcode_special = 0x00,
mips_opcode_regimm = 0x01,
mips_opcode_j = 0x02,
mips_opcode_jal = 0x03,
mips_opcode_beq = 0x04,
mips_opcode_bne = 0x05,
mips_opcode_blez = 0x06,
mips_opcode_bgtz = 0x07,
mips_opcode_addi = 0x08,
mips_opcode_addiu = 0x09,
mips_opcode_slti = 0x0A,
mips_opcode_sltiu = 0x0B,
mips_opcode_andi = 0x0C,
mips_opcode_ori = 0x0D,
mips_opcode_xori = 0x0E,
mips_opcode_lui = 0x0F,
mips_opcode_llo = 0x18,
mips_opcode_lhi = 0x19,
mips_opcode_trap = 0x1A,
mips_opcode_special2 = 0x1C,
mips_opcode_special3 = 0x1F,
mips_opcode_lb = 0x20,
mips_opcode_lh = 0x21,
mips_opcode_lw = 0x23,
mips_opcode_lbu = 0x24,
mips_opcode_lhu = 0x25,
mips_opcode_sb = 0x28,
mips_opcode_sh = 0x29,
mips_opcode_sw = 0x2B,
} mips_opcode;
#define mips_emit_reg(opcode, rs, rt, rd, shift, function) \
*((u32 *)translation_ptr) = (mips_opcode_##opcode << 26) | \
(rs << 21) | (rt << 16) | (rd << 11) | (shift << 6) | function; \
translation_ptr += 4 \
#define mips_emit_special(function, rs, rt, rd, shift) \
*((u32 *)translation_ptr) = (mips_opcode_special << 26) | \
(rs << 21) | (rt << 16) | (rd << 11) | (shift << 6) | \
mips_special_##function; \
translation_ptr += 4 \
#define mips_emit_special3(function, rs, rt, imm_a, imm_b) \
*((u32 *)translation_ptr) = (mips_opcode_special3 << 26) | \
(rs << 21) | (rt << 16) | (imm_a << 11) | (imm_b << 6) | \
mips_special3_##function; \
translation_ptr += 4 \
#define mips_emit_imm(opcode, rs, rt, immediate) \
*((u32 *)translation_ptr) = (mips_opcode_##opcode << 26) | \
(rs << 21) | (rt << 16) | (immediate & 0xFFFF); \
translation_ptr += 4 \
#define mips_emit_regimm(function, rs, immediate) \
*((u32 *)translation_ptr) = (mips_opcode_regimm << 26) | \
(rs << 21) | (mips_regimm_##function << 16) | (immediate & 0xFFFF); \
translation_ptr += 4 \
#define mips_emit_jump(opcode, offset) \
*((u32 *)translation_ptr) = (mips_opcode_##opcode << 26) | \
(offset & 0x3FFFFFF); \
translation_ptr += 4 \
#define mips_relative_offset(source, offset) \
(((u32)offset - ((u32)source + 4)) / 4) \
#define mips_absolute_offset(offset) \
((u32)offset / 4) \
#define mips_emit_addu(rd, rs, rt) \
mips_emit_special(addu, rs, rt, rd, 0) \
#define mips_emit_subu(rd, rs, rt) \
mips_emit_special(subu, rs, rt, rd, 0) \
#define mips_emit_xor(rd, rs, rt) \
mips_emit_special(xor, rs, rt, rd, 0) \
#define mips_emit_add(rd, rs, rt) \
mips_emit_special(and, rs, rt, rd, 0) \
#define mips_emit_sub(rd, rs, rt) \
mips_emit_special(sub, rs, rt, rd, 0) \
#define mips_emit_and(rd, rs, rt) \
mips_emit_special(and, rs, rt, rd, 0) \
#define mips_emit_or(rd, rs, rt) \
mips_emit_special(or, rs, rt, rd, 0) \
#define mips_emit_nor(rd, rs, rt) \
mips_emit_special(nor, rs, rt, rd, 0) \
#define mips_emit_slt(rd, rs, rt) \
mips_emit_special(slt, rs, rt, rd, 0) \
#define mips_emit_sltu(rd, rs, rt) \
mips_emit_special(sltu, rs, rt, rd, 0) \
#define mips_emit_sllv(rd, rt, rs) \
mips_emit_special(sllv, rs, rt, rd, 0) \
#define mips_emit_srlv(rd, rt, rs) \
mips_emit_special(srlv, rs, rt, rd, 0) \
#define mips_emit_srav(rd, rt, rs) \
mips_emit_special(srav, rs, rt, rd, 0) \
#define mips_emit_rotrv(rd, rt, rs) \
mips_emit_special(srlv, rs, rt, rd, 1) \
#define mips_emit_sll(rd, rt, shift) \
mips_emit_special(sll, 0, rt, rd, shift) \
#define mips_emit_srl(rd, rt, shift) \
mips_emit_special(srl, 0, rt, rd, shift) \
#define mips_emit_sra(rd, rt, shift) \
mips_emit_special(sra, 0, rt, rd, shift) \
#define mips_emit_rotr(rd, rt, shift) \
mips_emit_special(srl, 1, rt, rd, shift) \
#define mips_emit_mfhi(rd) \
mips_emit_special(mfhi, 0, 0, rd, 0) \
#define mips_emit_mflo(rd) \
mips_emit_special(mflo, 0, 0, rd, 0) \
#define mips_emit_mthi(rs) \
mips_emit_special(mthi, rs, 0, 0, 0) \
#define mips_emit_mtlo(rs) \
mips_emit_special(mtlo, rs, 0, 0, 0) \
#define mips_emit_mult(rs, rt) \
mips_emit_special(mult, rs, rt, 0, 0) \
#define mips_emit_multu(rs, rt) \
mips_emit_special(multu, rs, rt, 0, 0) \
#define mips_emit_div(rs, rt) \
mips_emit_special(div, rs, rt, 0, 0) \
#define mips_emit_divu(rs, rt) \
mips_emit_special(divu, rs, rt, 0, 0) \
#define mips_emit_madd(rs, rt) \
mips_emit_special(madd, rs, rt, 0, 0) \
#define mips_emit_maddu(rs, rt) \
mips_emit_special(maddu, rs, rt, 0, 0) \
#define mips_emit_movn(rd, rs, rt) \
mips_emit_special(movn, rs, rt, rd, 0) \
#define mips_emit_movz(rd, rs, rt) \
mips_emit_special(movz, rs, rt, rd, 0) \
#define mips_emit_lb(rt, rs, offset) \
mips_emit_imm(lb, rs, rt, offset) \
#define mips_emit_lbu(rt, rs, offset) \
mips_emit_imm(lbu, rs, rt, offset) \
#define mips_emit_lh(rt, rs, offset) \
mips_emit_imm(lh, rs, rt, offset) \
#define mips_emit_lhu(rt, rs, offset) \
mips_emit_imm(lhu, rs, rt, offset) \
#define mips_emit_lw(rt, rs, offset) \
mips_emit_imm(lw, rs, rt, offset) \
#define mips_emit_sb(rt, rs, offset) \
mips_emit_imm(sb, rs, rt, offset) \
#define mips_emit_sh(rt, rs, offset) \
mips_emit_imm(sh, rs, rt, offset) \
#define mips_emit_sw(rt, rs, offset) \
mips_emit_imm(sw, rs, rt, offset) \
#define mips_emit_lui(rt, imm) \
mips_emit_imm(lui, 0, rt, imm) \
#define mips_emit_addiu(rt, rs, imm) \
mips_emit_imm(addiu, rs, rt, imm) \
#define mips_emit_xori(rt, rs, imm) \
mips_emit_imm(xori, rs, rt, imm) \
#define mips_emit_ori(rt, rs, imm) \
mips_emit_imm(ori, rs, rt, imm) \
#define mips_emit_andi(rt, rs, imm) \
mips_emit_imm(andi, rs, rt, imm) \
#define mips_emit_slti(rt, rs, imm) \
mips_emit_imm(slti, rs, rt, imm) \
#define mips_emit_sltiu(rt, rs, imm) \
mips_emit_imm(sltiu, rs, rt, imm) \
#define mips_emit_ext(rt, rs, pos, size) \
mips_emit_special3(ext, rs, rt, (size - 1), pos) \
#define mips_emit_ins(rt, rs, pos, size) \
mips_emit_special3(ins, rs, rt, (pos + size - 1), pos) \
// Breaks down if the backpatch offset is greater than 16bits, take care
// when using (should be okay if limited to conditional instructions)
#define mips_emit_b_filler(type, rs, rt, writeback_location) \
(writeback_location) = translation_ptr; \
mips_emit_imm(type, rs, rt, 0) \
// The backpatch code for this has to be handled differently than the above
#define mips_emit_j_filler(writeback_location) \
(writeback_location) = translation_ptr; \
mips_emit_jump(j, 0) \
#define mips_emit_b(type, rs, rt, offset) \
mips_emit_imm(type, rs, rt, offset) \
#define mips_emit_j(offset) \
mips_emit_jump(j, offset) \
#define mips_emit_jal(offset) \
mips_emit_jump(jal, offset) \
#define mips_emit_jr(rs) \
mips_emit_special(jr, rs, 0, 0, 0) \
#define mips_emit_bltzal(rs, offset) \
mips_emit_regimm(bltzal, rs, offset) \
#define mips_emit_nop() \
mips_emit_sll(reg_zero, reg_zero, 0) \
#define reg_base mips_reg_s0
#define reg_cycles mips_reg_s1
#define reg_a0 mips_reg_a0
#define reg_a1 mips_reg_a1
#define reg_a2 mips_reg_a2
#define reg_rv mips_reg_v0
#define reg_pc mips_reg_s3
#define reg_temp mips_reg_at
#define reg_zero mips_reg_zero
#define reg_n_cache mips_reg_s4
#define reg_z_cache mips_reg_s5
#define reg_c_cache mips_reg_s6
#define reg_v_cache mips_reg_s7
#define reg_r0 mips_reg_v1
#define reg_r1 mips_reg_a3
#define reg_r2 mips_reg_t0
#define reg_r3 mips_reg_t1
#define reg_r4 mips_reg_t2
#define reg_r5 mips_reg_t3
#define reg_r6 mips_reg_t4
#define reg_r7 mips_reg_t5
#define reg_r8 mips_reg_t6
#define reg_r9 mips_reg_t7
#define reg_r10 mips_reg_s2
#define reg_r11 mips_reg_t8
#define reg_r12 mips_reg_t9
#define reg_r13 mips_reg_gp
#define reg_r14 mips_reg_fp
// Writing to r15 goes straight to a0, to be chained with other ops
u32 arm_to_mips_reg[] =
{
reg_r0,
reg_r1,
reg_r2,
reg_r3,
reg_r4,
reg_r5,
reg_r6,
reg_r7,
reg_r8,
reg_r9,
reg_r10,
reg_r11,
reg_r12,
reg_r13,
reg_r14,
reg_a0,
reg_a1,
reg_a2,
reg_temp
};
#define arm_reg_a0 15
#define arm_reg_a1 16
#define arm_reg_a2 17
#define arm_reg_temp 18
#define generate_load_reg(ireg, reg_index) \
mips_emit_addu(ireg, arm_to_mips_reg[reg_index], reg_zero) \
#define generate_load_imm(ireg, imm) \
if(((s32)imm >= -32768) && ((s32)imm <= 32767)) \
{ \
mips_emit_addiu(ireg, reg_zero, imm); \
} \
else \
{ \
if(((u32)imm >> 16) == 0x0000) \
{ \
mips_emit_ori(ireg, reg_zero, imm); \
} \
else \
{ \
mips_emit_lui(ireg, imm >> 16); \
\
if(((u32)imm & 0x0000FFFF) != 0x00000000) \
{ \
mips_emit_ori(ireg, ireg, imm & 0xFFFF); \
} \
} \
} \
#define generate_load_pc(ireg, new_pc) \
{ \
s32 pc_delta = new_pc - stored_pc; \
if((pc_delta >= -32768) && (pc_delta <= 32767)) \
{ \
mips_emit_addiu(ireg, reg_pc, pc_delta); \
} \
else \
{ \
generate_load_imm(ireg, new_pc); \
} \
} \
#define generate_store_reg(ireg, reg_index) \
mips_emit_addu(arm_to_mips_reg[reg_index], ireg, reg_zero) \
#define generate_shift_left(ireg, imm) \
mips_emit_sll(ireg, ireg, imm) \
#define generate_shift_right(ireg, imm) \
mips_emit_srl(ireg, ireg, imm) \
#define generate_shift_right_arithmetic(ireg, imm) \
mips_emit_sra(ireg, ireg, imm) \
#define generate_rotate_right(ireg, imm) \
mips_emit_rotr(ireg, ireg, imm) \
#define generate_add(ireg_dest, ireg_src) \
mips_emit_addu(ireg_dest, ireg_dest, ireg_src) \
#define generate_sub(ireg_dest, ireg_src) \
mips_emit_subu(ireg_dest, ireg_dest, ireg_src) \
#define generate_or(ireg_dest, ireg_src) \
mips_emit_or(ireg_dest, ireg_dest, ireg_src) \
#define generate_xor(ireg_dest, ireg_src) \
mips_emit_xor(ireg_dest, ireg_dest, ireg_src) \
#define generate_alu_imm(imm_type, reg_type, ireg_dest, ireg_src, imm) \
if(((s32)imm >= -32768) && ((s32)imm <= 32767)) \
{ \
mips_emit_##imm_type(ireg_dest, ireg_src, imm); \
} \
else \
{ \
generate_load_imm(reg_temp, imm); \
mips_emit_##reg_type(ireg_dest, ireg_src, reg_temp); \
} \
#define generate_alu_immu(imm_type, reg_type, ireg_dest, ireg_src, imm) \
if(((u32)imm >= 0) && ((u32)imm <= 65535)) \
{ \
mips_emit_##imm_type(ireg_dest, ireg_src, imm); \
} \
else \
{ \
generate_load_imm(reg_temp, imm); \
mips_emit_##reg_type(ireg_dest, ireg_src, reg_temp); \
} \
#define generate_add_imm(ireg, imm) \
generate_alu_imm(addiu, add, ireg, ireg, imm) \
#define generate_sub_imm(ireg, imm) \
generate_alu_imm(addiu, add, ireg, ireg, -imm) \
#define generate_xor_imm(ireg, imm) \
generate_alu_immu(xori, xor, ireg, ireg, imm) \
#define generate_add_reg_reg_imm(ireg_dest, ireg_src, imm) \
generate_alu_imm(addiu, add, ireg_dest, ireg_src, imm) \
#define generate_and_imm(ireg, imm) \
generate_alu_immu(andi, and, ireg, ireg, imm) \
#define generate_mov(ireg_dest, ireg_src) \
mips_emit_addu(ireg_dest, ireg_src, reg_zero) \
#define generate_multiply_s64() \
mips_emit_mult(arm_to_mips_reg[rm], arm_to_mips_reg[rs]) \
#define generate_multiply_u64() \
mips_emit_multu(arm_to_mips_reg[rm], arm_to_mips_reg[rs]) \
#define generate_multiply_s64_add() \
mips_emit_madd(arm_to_mips_reg[rm], arm_to_mips_reg[rs]) \
#define generate_multiply_u64_add() \
mips_emit_maddu(arm_to_mips_reg[rm], arm_to_mips_reg[rs]) \
#define generate_function_call(function_location) \
mips_emit_jal(mips_absolute_offset(function_location)); \
mips_emit_nop() \
#define generate_function_call_swap_delay(function_location) \
{ \
u32 delay_instruction = address32(translation_ptr, -4); \
translation_ptr -= 4; \
mips_emit_jal(mips_absolute_offset(function_location)); \
address32(translation_ptr, 0) = delay_instruction; \
translation_ptr += 4; \
} \
#define generate_swap_delay() \
{ \
u32 delay_instruction = address32(translation_ptr, -8); \
u32 branch_instruction = address32(translation_ptr, -4); \
branch_instruction = (branch_instruction & 0xFFFF0000) | \
(((branch_instruction & 0x0000FFFF) + 1) & 0x0000FFFF); \
address32(translation_ptr, -8) = branch_instruction; \
address32(translation_ptr, -4) = delay_instruction; \
} \
#define generate_cycle_update() \
if(cycle_count != 0) \
{ \
mips_emit_addiu(reg_cycles, reg_cycles, -cycle_count); \
cycle_count = 0; \
} \
#define generate_cycle_update_force() \
mips_emit_addiu(reg_cycles, reg_cycles, -cycle_count); \
cycle_count = 0 \
#define generate_branch_patch_conditional(dest, offset) \
*((u16 *)(dest)) = mips_relative_offset(dest, offset) \
#define generate_branch_patch_unconditional(dest, offset) \
*((u32 *)(dest)) = (mips_opcode_j << 26) | \
((mips_absolute_offset(offset)) & 0x3FFFFFF) \
#define generate_branch_no_cycle_update(writeback_location, new_pc) \
if(pc == idle_loop_target_pc) \
{ \
generate_load_pc(reg_a0, new_pc); \
generate_function_call_swap_delay(mips_update_gba); \
mips_emit_j_filler(writeback_location); \
mips_emit_nop(); \
} \
else \
{ \
generate_load_pc(reg_a0, new_pc); \
mips_emit_bltzal(reg_cycles, \
mips_relative_offset(translation_ptr, update_trampoline)); \
generate_swap_delay(); \
mips_emit_j_filler(writeback_location); \
mips_emit_nop(); \
} \
#define generate_branch_cycle_update(writeback_location, new_pc) \
generate_cycle_update(); \
generate_branch_no_cycle_update(writeback_location, new_pc) \
#define generate_conditional_branch(ireg_a, ireg_b, type, writeback_location) \
generate_branch_filler_##type(ireg_a, ireg_b, writeback_location) \
// a0 holds the destination
#define generate_indirect_branch_cycle_update(type) \
mips_emit_j(mips_absolute_offset(mips_indirect_branch_##type)); \
generate_cycle_update_force() \
#define generate_indirect_branch_no_cycle_update(type) \
mips_emit_j(mips_absolute_offset(mips_indirect_branch_##type)); \
mips_emit_nop() \
#define generate_block_prologue() \
update_trampoline = translation_ptr; \
mips_emit_j(mips_absolute_offset(mips_update_gba)); \
mips_emit_nop(); \
generate_load_imm(reg_pc, stored_pc) \
#define block_prologue_size 8
#define check_generate_n_flag \
(flag_status & 0x08) \
#define check_generate_z_flag \
(flag_status & 0x04) \
#define check_generate_c_flag \
(flag_status & 0x02) \
#define check_generate_v_flag \
(flag_status & 0x01) \
#define generate_load_reg_pc(ireg, reg_index, pc_offset) \
if(reg_index == REG_PC) \
{ \
generate_load_pc(ireg, (pc + pc_offset)); \
} \
else \
{ \
generate_load_reg(ireg, reg_index); \
} \
#define check_load_reg_pc(arm_reg, reg_index, pc_offset) \
if(reg_index == REG_PC) \
{ \
reg_index = arm_reg; \
generate_load_pc(arm_to_mips_reg[arm_reg], (pc + pc_offset)); \
} \
#define check_store_reg_pc_no_flags(reg_index) \
if(reg_index == REG_PC) \
{ \
generate_indirect_branch_arm(); \
} \
#define check_store_reg_pc_flags(reg_index) \
if(reg_index == REG_PC) \
{ \
generate_function_call(execute_spsr_restore); \
generate_indirect_branch_dual(); \
} \
#define generate_shift_imm_lsl_no_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
mips_emit_sll(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
_rm = arm_reg; \
} \
#define generate_shift_imm_lsr_no_flags(arm_reg, _rm, _shift) \
if(_shift != 0) \
{ \
check_load_reg_pc(arm_reg, _rm, 8); \
mips_emit_srl(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
} \
else \
{ \
mips_emit_addu(arm_to_mips_reg[arm_reg], reg_zero, reg_zero); \
} \
_rm = arm_reg \
#define generate_shift_imm_asr_no_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
mips_emit_sra(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
} \
else \
{ \
mips_emit_sra(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], 31); \
} \
_rm = arm_reg \
#define generate_shift_imm_ror_no_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
mips_emit_rotr(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
} \
else \
{ \
mips_emit_srl(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], 1); \
mips_emit_ins(arm_to_mips_reg[arm_reg], reg_c_cache, 31, 1); \
} \
_rm = arm_reg \
#define generate_shift_imm_lsl_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
mips_emit_ext(reg_c_cache, arm_to_mips_reg[_rm], (32 - _shift), 1); \
mips_emit_sll(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
_rm = arm_reg; \
} \
#define generate_shift_imm_lsr_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
mips_emit_ext(reg_c_cache, arm_to_mips_reg[_rm], (_shift - 1), 1); \
mips_emit_srl(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
} \
else \
{ \
mips_emit_srl(reg_c_cache, arm_to_mips_reg[_rm], 31); \
mips_emit_addu(arm_to_mips_reg[arm_reg], reg_zero, reg_zero); \
} \
_rm = arm_reg \
#define generate_shift_imm_asr_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
mips_emit_ext(reg_c_cache, arm_to_mips_reg[_rm], (_shift - 1), 1); \
mips_emit_sra(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
} \
else \
{ \
mips_emit_sra(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], 31); \
mips_emit_andi(reg_c_cache, arm_to_mips_reg[arm_reg], 1); \
} \
_rm = arm_reg \
#define generate_shift_imm_ror_flags(arm_reg, _rm, _shift) \
check_load_reg_pc(arm_reg, _rm, 8); \
if(_shift != 0) \
{ \
mips_emit_ext(reg_c_cache, arm_to_mips_reg[_rm], (_shift - 1), 1); \
mips_emit_rotr(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], _shift); \
} \
else \
{ \
mips_emit_andi(reg_temp, arm_to_mips_reg[_rm], 1); \
mips_emit_srl(arm_to_mips_reg[arm_reg], arm_to_mips_reg[_rm], 1); \
mips_emit_ins(arm_to_mips_reg[arm_reg], reg_c_cache, 31, 1); \
mips_emit_addu(reg_c_cache, reg_temp, reg_zero); \
} \
_rm = arm_reg \
#define generate_shift_reg_lsl_no_flags(_rm, _rs) \
mips_emit_sltiu(reg_temp, arm_to_mips_reg[_rs], 32); \
mips_emit_sllv(reg_a0, arm_to_mips_reg[_rm], arm_to_mips_reg[_rs]); \
mips_emit_movz(reg_a0, reg_zero, reg_temp) \
#define generate_shift_reg_lsr_no_flags(_rm, _rs) \
mips_emit_sltiu(reg_temp, arm_to_mips_reg[_rs], 32); \
mips_emit_srlv(reg_a0, arm_to_mips_reg[_rm], arm_to_mips_reg[_rs]); \
mips_emit_movz(reg_a0, reg_zero, reg_temp) \
#define generate_shift_reg_asr_no_flags(_rm, _rs) \
mips_emit_sltiu(reg_temp, arm_to_mips_reg[_rs], 32); \
mips_emit_b(bne, reg_temp, reg_zero, 2); \
mips_emit_srav(reg_a0, arm_to_mips_reg[_rm], arm_to_mips_reg[_rs]); \
mips_emit_sra(reg_a0, reg_a0, 31) \
#define generate_shift_reg_ror_no_flags(_rm, _rs) \
mips_emit_rotrv(reg_a0, arm_to_mips_reg[_rm], arm_to_mips_reg[_rs]) \
#define generate_shift_reg_lsl_flags(_rm, _rs) \
generate_load_reg_pc(reg_a0, _rm, 12); \
generate_load_reg_pc(reg_a1, _rs, 8); \
generate_function_call_swap_delay(execute_lsl_flags_reg) \
#define generate_shift_reg_lsr_flags(_rm, _rs) \
generate_load_reg_pc(reg_a0, _rm, 12); \
generate_load_reg_pc(reg_a1, _rs, 8) \
generate_function_call_swap_delay(execute_lsr_flags_reg) \
#define generate_shift_reg_asr_flags(_rm, _rs) \
generate_load_reg_pc(reg_a0, _rm, 12); \
generate_load_reg_pc(reg_a1, _rs, 8) \
generate_function_call_swap_delay(execute_asr_flags_reg) \
#define generate_shift_reg_ror_flags(_rm, _rs) \
mips_emit_b(beq, arm_to_mips_reg[_rs], reg_zero, 3); \
mips_emit_addiu(reg_temp, arm_to_mips_reg[_rs], -1); \
mips_emit_srlv(reg_temp, arm_to_mips_reg[_rm], reg_temp); \
mips_emit_andi(reg_c_cache, reg_temp, 1); \
mips_emit_rotrv(reg_a0, arm_to_mips_reg[_rm], arm_to_mips_reg[_rs]) \
#define generate_shift_imm(arm_reg, name, flags_op) \
u32 shift = (opcode >> 7) & 0x1F; \
generate_shift_imm_##name##_##flags_op(arm_reg, rm, shift) \
#define generate_shift_reg(arm_reg, name, flags_op) \
u32 rs = ((opcode >> 8) & 0x0F); \
generate_shift_reg_##name##_##flags_op(rm, rs); \
rm = arm_reg \
// Made functions due to the macro expansion getting too large.
// Returns a new rm if it redirects it (which will happen on most of these
// cases)
#define generate_load_rm_sh_builder(flags_op) \
u32 generate_load_rm_sh_##flags_op(u32 rm) \
{ \
switch((opcode >> 4) & 0x07) \
{ \
/* LSL imm */ \
case 0x0: \
{ \
generate_shift_imm(arm_reg_a0, lsl, flags_op); \
break; \
} \
\
/* LSL reg */ \
case 0x1: \
{ \
generate_shift_reg(arm_reg_a0, lsl, flags_op); \
break; \
} \
\
/* LSR imm */ \
case 0x2: \
{ \
generate_shift_imm(arm_reg_a0, lsr, flags_op); \
break; \
} \
\
/* LSR reg */ \
case 0x3: \
{ \
generate_shift_reg(arm_reg_a0, lsr, flags_op); \
break; \
} \
\
/* ASR imm */ \
case 0x4: \
{ \
generate_shift_imm(arm_reg_a0, asr, flags_op); \
break; \
} \
\
/* ASR reg */ \
case 0x5: \
{ \
generate_shift_reg(arm_reg_a0, asr, flags_op); \
break; \
} \
\
/* ROR imm */ \
case 0x6: \
{ \
generate_shift_imm(arm_reg_a0, ror, flags_op); \
break; \
} \
\
/* ROR reg */ \
case 0x7: \
{ \
generate_shift_reg(arm_reg_a0, ror, flags_op); \
break; \
} \
} \
\
return rm; \
} \
#define read_memory_constant_u8(address) \
read_memory8(address) \
#define read_memory_constant_u16(address) \
read_memory16(address) \
#define read_memory_constant_u32(address) \
read_memory32(address) \
#define read_memory_constant_s8(address) \
(s8)read_memory8(address) \
#define read_memory_constant_s16(address) \
(s16)read_memory16_signed(address) \
#define generate_load_memory_u8(ireg, offset) \
mips_emit_lbu(ireg, ireg, offset) \
#define generate_load_memory_u16(ireg, offset) \
mips_emit_lhu(ireg, ireg, offset) \
#define generate_load_memory_u32(ireg, offset) \
mips_emit_lw(ireg, ireg, offset) \
#define generate_load_memory_s8(ireg, offset) \
mips_emit_lb(ireg, ireg, offset) \
#define generate_load_memory_s16(ireg, offset) \
mips_emit_lh(ireg, ireg, offset) \
#define generate_load_memory(type, ireg, address) \
{ \
u32 _address = (u32)(address); \
u32 _address_hi = (_address + 0x8000) >> 16; \
generate_load_imm(ireg, address); \
mips_emit_lui(ireg, _address_hi >> 16) \
generate_load_memory_##type(ireg, _address - (_address_hi << 16)); \
} \
#define generate_known_address_load_builder(type) \
u32 generate_known_address_load_##type(u32 rd, u32 address) \
{ \
switch(address >> 24) \
{ \
/* Read from the BIOS ROM, can be converted to an immediate load. \
Only really possible to do this from the BIOS but should be okay \
to allow it everywhere */ \
case 0x00: \
u32 imm = read_memory_constant_##type(address); \
generate_load_imm(arm_to_mips_reg[rd], imm); \
return 1; \
\
/* Read from RAM, can be converted to a load */ \
case 0x02: \
generate_load_memory(type, arm_to_mips_reg[rd], (u8 *)ewram + \
(address & 0x7FFF) + ((address & 0x38000) * 2) + 0x8000); \
return 1; \
\
case 0x03: \
generate_load_memory(type, arm_to_mips_reg[rd], (u8 *)iwram + \
(address & 0x7FFF) + 0x8000); \
return 1; \
\
/* Read from gamepak ROM, this has to be an immediate load because \
it might not actually be in memory anymore when we get to it. */ \
case 0x08: \
u32 imm = read_memory_constant_##type(address); \
generate_load_imm(arm_to_mips_reg[rd], imm); \
return 1; \
\
default: \
return 0; \
} \
} \
#define generate_block_extra_vars() \
u32 stored_pc = pc; \
u8 *update_trampoline \
#define generate_block_extra_vars_arm() \
generate_block_extra_vars(); \
generate_load_rm_sh_builder(flags); \
generate_load_rm_sh_builder(no_flags); \
\
/* generate_known_address_load_builder(u8); \
generate_known_address_load_builder(u16); \
generate_known_address_load_builder(u32); \
generate_known_address_load_builder(s8); \
generate_known_address_load_builder(s16); */ \
\
u32 generate_load_offset_sh(u32 rm) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
/* LSL imm */ \
case 0x0: \
{ \
generate_shift_imm(arm_reg_a1, lsl, no_flags); \
break; \
} \
\
/* LSR imm */ \
case 0x1: \
{ \
generate_shift_imm(arm_reg_a1, lsr, no_flags); \
break; \
} \
\
/* ASR imm */ \
case 0x2: \
{ \
generate_shift_imm(arm_reg_a1, asr, no_flags); \
break; \
} \
\
/* ROR imm */ \
case 0x3: \
{ \
generate_shift_imm(arm_reg_a1, ror, no_flags); \
break; \
} \
} \
\
return rm; \
} \
\
void generate_indirect_branch_arm() \
{ \
if(condition == 0x0E) \
{ \
generate_indirect_branch_cycle_update(arm); \
} \
else \
{ \
generate_indirect_branch_no_cycle_update(arm); \
} \
} \
\
void generate_indirect_branch_dual() \
{ \
if(condition == 0x0E) \
{ \
generate_indirect_branch_cycle_update(dual); \
} \
else \
{ \
generate_indirect_branch_no_cycle_update(dual); \
} \
} \
#define generate_block_extra_vars_thumb() \
generate_block_extra_vars() \
// It should be okay to still generate result flags, spsr will overwrite them.
// This is pretty infrequent (returning from interrupt handlers, et al) so
// probably not worth optimizing for.
u32 execute_spsr_restore_body(u32 address)
{
set_cpu_mode(cpu_modes[reg[REG_CPSR] & 0x1F]);
if((io_registers[REG_IE] & io_registers[REG_IF]) &&
io_registers[REG_IME] && ((reg[REG_CPSR] & 0x80) == 0))
{
reg_mode[MODE_IRQ][6] = address + 4;
spsr[MODE_IRQ] = reg[REG_CPSR];
reg[REG_CPSR] = 0xD2;
address = 0x00000018;
set_cpu_mode(MODE_IRQ);
}
if(reg[REG_CPSR] & 0x20)
address |= 0x01;
return address;
}
typedef enum
{
CONDITION_TRUE,
CONDITION_FALSE,
CONDITION_EQUAL,
CONDITION_NOT_EQUAL
} condition_check_type;
#define generate_condition_eq() \
mips_emit_b_filler(beq, reg_z_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_ne() \
mips_emit_b_filler(bne, reg_z_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_cs() \
mips_emit_b_filler(beq, reg_c_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_cc() \
mips_emit_b_filler(bne, reg_c_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_mi() \
mips_emit_b_filler(beq, reg_n_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_pl() \
mips_emit_b_filler(bne, reg_n_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_vs() \
mips_emit_b_filler(beq, reg_v_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_vc() \
mips_emit_b_filler(bne, reg_v_cache, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_hi() \
mips_emit_xori(reg_temp, reg_c_cache, 1); \
mips_emit_or(reg_temp, reg_temp, reg_z_cache); \
mips_emit_b_filler(bne, reg_temp, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_ls() \
mips_emit_xori(reg_temp, reg_c_cache, 1); \
mips_emit_or(reg_temp, reg_temp, reg_z_cache); \
mips_emit_b_filler(beq, reg_temp, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_ge() \
mips_emit_b_filler(bne, reg_n_cache, reg_v_cache, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_lt() \
mips_emit_b_filler(beq, reg_n_cache, reg_v_cache, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_gt() \
mips_emit_xor(reg_temp, reg_n_cache, reg_v_cache); \
mips_emit_or(reg_temp, reg_temp, reg_z_cache); \
mips_emit_b_filler(bne, reg_temp, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition_le() \
mips_emit_xor(reg_temp, reg_n_cache, reg_v_cache); \
mips_emit_or(reg_temp, reg_temp, reg_z_cache); \
mips_emit_b_filler(beq, reg_temp, reg_zero, backpatch_address); \
generate_cycle_update_force() \
#define generate_condition() \
switch(condition) \
{ \
case 0x0: \
generate_condition_eq(); \
break; \
\
case 0x1: \
generate_condition_ne(); \
break; \
\
case 0x2: \
generate_condition_cs(); \
break; \
\
case 0x3: \
generate_condition_cc(); \
break; \
\
case 0x4: \
generate_condition_mi(); \
break; \
\
case 0x5: \
generate_condition_pl(); \
break; \
\
case 0x6: \
generate_condition_vs(); \
break; \
\
case 0x7: \
generate_condition_vc(); \
break; \
\
case 0x8: \
generate_condition_hi(); \
break; \
\
case 0x9: \
generate_condition_ls(); \
break; \
\
case 0xA: \
generate_condition_ge(); \
break; \
\
case 0xB: \
generate_condition_lt(); \
break; \
\
case 0xC: \
generate_condition_gt(); \
break; \
\
case 0xD: \
generate_condition_le(); \
break; \
\
case 0xE: \
break; \
\
case 0xF: \
break; \
} \
#define generate_branch() \
{ \
if(condition == 0x0E) \
{ \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
} \
else \
{ \
generate_branch_no_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
} \
block_exit_position++; \
} \
#define generate_op_and_reg(_rd, _rn, _rm) \
mips_emit_and(_rd, _rn, _rm) \
#define generate_op_orr_reg(_rd, _rn, _rm) \
mips_emit_or(_rd, _rn, _rm) \
#define generate_op_eor_reg(_rd, _rn, _rm) \
mips_emit_xor(_rd, _rn, _rm) \
#define generate_op_bic_reg(_rd, _rn, _rm) \
mips_emit_nor(reg_temp, _rm, reg_zero); \
mips_emit_and(_rd, _rn, reg_temp) \
#define generate_op_sub_reg(_rd, _rn, _rm) \
mips_emit_subu(_rd, _rn, _rm) \
#define generate_op_rsb_reg(_rd, _rn, _rm) \
mips_emit_subu(_rd, _rm, _rn) \
#define generate_op_sbc_reg(_rd, _rn, _rm) \
mips_emit_subu(_rd, _rn, _rm); \
mips_emit_xori(reg_temp, reg_c_cache, 1); \
mips_emit_subu(_rd, _rd, reg_temp) \
#define generate_op_rsc_reg(_rd, _rn, _rm) \
mips_emit_addu(reg_temp, _rm, reg_c_cache); \
mips_emit_addiu(reg_temp, reg_temp, -1); \
mips_emit_subu(_rd, reg_temp, _rn) \
#define generate_op_add_reg(_rd, _rn, _rm) \
mips_emit_addu(_rd, _rn, _rm) \
#define generate_op_adc_reg(_rd, _rn, _rm) \
mips_emit_addu(reg_temp, _rm, reg_c_cache); \
mips_emit_addu(_rd, _rn, reg_temp) \
#define generate_op_mov_reg(_rd, _rn, _rm) \
mips_emit_addu(_rd, _rm, reg_zero) \
#define generate_op_mvn_reg(_rd, _rn, _rm) \
mips_emit_nor(_rd, _rm, reg_zero) \
#define generate_op_imm_wrapper(name, _rd, _rn) \
if(imm != 0) \
{ \
generate_load_imm(reg_a0, imm); \
generate_op_##name##_reg(_rd, _rn, reg_a0); \
} \
else \
{ \
generate_op_##name##_reg(_rd, _rn, reg_zero); \
} \
#define generate_op_and_imm(_rd, _rn) \
generate_alu_immu(andi, and, _rd, _rn, imm) \
#define generate_op_orr_imm(_rd, _rn) \
generate_alu_immu(ori, or, _rd, _rn, imm) \
#define generate_op_eor_imm(_rd, _rn) \
generate_alu_immu(xori, xor, _rd, _rn, imm) \
#define generate_op_bic_imm(_rd, _rn) \
generate_alu_immu(andi, and, _rd, _rn, (~imm)) \
#define generate_op_sub_imm(_rd, _rn) \
generate_alu_imm(addiu, addu, _rd, _rn, (-imm)) \
#define generate_op_rsb_imm(_rd, _rn) \
if(imm != 0) \
{ \
generate_load_imm(reg_temp, imm); \
mips_emit_subu(_rd, reg_temp, _rn); \
} \
else \
{ \
mips_emit_subu(_rd, reg_zero, _rn); \
} \
#define generate_op_sbc_imm(_rd, _rn) \
generate_op_imm_wrapper(sbc, _rd, _rn) \
#define generate_op_rsc_imm(_rd, _rn) \
generate_op_imm_wrapper(rsc, _rd, _rn) \
#define generate_op_add_imm(_rd, _rn) \
generate_alu_imm(addiu, addu, _rd, _rn, imm) \
#define generate_op_adc_imm(_rd, _rn) \
generate_op_imm_wrapper(adc, _rd, _rn) \
#define generate_op_mov_imm(_rd, _rn) \
generate_load_imm(_rd, imm) \
#define generate_op_mvn_imm(_rd, _rn) \
generate_load_imm(_rd, (~imm)) \
#define generate_op_logic_flags(_rd) \
if(check_generate_n_flag) \
{ \
mips_emit_srl(reg_n_cache, _rd, 31); \
} \
if(check_generate_z_flag) \
{ \
mips_emit_sltiu(reg_z_cache, _rd, 1); \
} \
#define generate_op_sub_flags_prologue(_rn, _rm) \
if(check_generate_c_flag) \
{ \
mips_emit_sltu(reg_c_cache, _rn, _rm); \
mips_emit_xori(reg_c_cache, reg_c_cache, 1); \
} \
if(check_generate_v_flag) \
{ \
mips_emit_slt(reg_v_cache, _rn, _rm); \
} \
#define generate_op_sub_flags_epilogue(_rd) \
generate_op_logic_flags(_rd); \
if(check_generate_v_flag) \
{ \
if(!check_generate_n_flag) \
{ \
mips_emit_srl(reg_n_cache, _rd, 31); \
} \
mips_emit_xor(reg_v_cache, reg_v_cache, reg_n_cache); \
} \
#define generate_add_flags_prologue(_rn, _rm) \
if(check_generate_c_flag | check_generate_v_flag) \
{ \
mips_emit_addu(reg_c_cache, _rn, reg_zero); \
} \
if(check_generate_v_flag) \
{ \
mips_emit_slt(reg_v_cache, _rm, reg_zero); \
} \
#define generate_add_flags_epilogue(_rd) \
if(check_generate_v_flag) \
{ \
mips_emit_slt(reg_a0, _rd, reg_c_cache); \
mips_emit_xor(reg_v_cache, reg_v_cache, reg_a0); \
} \
if(check_generate_c_flag) \
{ \
mips_emit_sltu(reg_c_cache, _rd, reg_c_cache); \
} \
generate_op_logic_flags(_rd) \
#define generate_op_ands_reg(_rd, _rn, _rm) \
mips_emit_and(_rd, _rn, _rm); \
generate_op_logic_flags(_rd) \
#define generate_op_orrs_reg(_rd, _rn, _rm) \
mips_emit_or(_rd, _rn, _rm); \
generate_op_logic_flags(_rd) \
#define generate_op_eors_reg(_rd, _rn, _rm) \
mips_emit_xor(_rd, _rn, _rm); \
generate_op_logic_flags(_rd) \
#define generate_op_bics_reg(_rd, _rn, _rm) \
mips_emit_nor(reg_temp, _rm, reg_zero); \
mips_emit_and(_rd, _rn, reg_temp); \
generate_op_logic_flags(_rd) \
#define generate_op_subs_reg(_rd, _rn, _rm) \
generate_op_sub_flags_prologue(_rn, _rm); \
mips_emit_subu(_rd, _rn, _rm); \
generate_op_sub_flags_epilogue(_rd) \
#define generate_op_rsbs_reg(_rd, _rn, _rm) \
generate_op_sub_flags_prologue(_rm, _rn); \
mips_emit_subu(_rd, _rm, _rn); \
generate_op_sub_flags_epilogue(_rd) \
#define generate_op_sbcs_reg(_rd, _rn, _rm) \
mips_emit_subu(_rd, _rn, _rm); \
mips_emit_xori(reg_temp, reg_c_cache, 1); \
generate_op_sub_flags_prologue(_rd, reg_temp); \
mips_emit_subu(_rd, _rd, reg_temp); \
generate_op_sub_flags_epilogue(_rd) \
#define generate_op_rscs_reg(_rd, _rn, _rm) \
mips_emit_addu(reg_temp, _rm, reg_c_cache); \
mips_emit_addiu(reg_temp, reg_temp, -1); \
generate_op_sub_flags_prologue(reg_temp, _rn); \
mips_emit_subu(_rd, reg_temp, _rn); \
generate_op_sub_flags_epilogue(_rd) \
#define generate_op_adds_reg(_rd, _rn, _rm) \
generate_add_flags_prologue(_rn, _rm); \
mips_emit_addu(_rd, _rn, _rm); \
generate_add_flags_epilogue(_rd) \
#define generate_op_adcs_reg(_rd, _rn, _rm) \
mips_emit_addu(reg_temp, _rm, reg_c_cache); \
generate_add_flags_prologue(_rn, _rm); \
mips_emit_addu(_rd, _rn, reg_temp); \
generate_add_flags_epilogue(_rd) \
#define generate_op_movs_reg(_rd, _rn, _rm) \
mips_emit_addu(_rd, _rm, reg_zero); \
generate_op_logic_flags(_rd) \
#define generate_op_mvns_reg(_rd, _rn, _rm) \
mips_emit_nor(_rd, _rm, reg_zero); \
generate_op_logic_flags(_rd) \
#define generate_op_neg_reg(_rd, _rn, _rm) \
generate_op_subs_reg(_rd, reg_zero, _rm) \
#define generate_op_muls_reg(_rd, _rn, _rm) \
mips_emit_multu(_rn, _rm); \
mips_emit_mflo(_rd); \
generate_op_logic_flags(_rd) \
#define generate_op_cmp_reg(_rd, _rn, _rm) \
generate_op_subs_reg(reg_temp, _rn, _rm) \
#define generate_op_cmn_reg(_rd, _rn, _rm) \
generate_op_adds_reg(reg_temp, _rn, _rm) \
#define generate_op_tst_reg(_rd, _rn, _rm) \
generate_op_ands_reg(reg_temp, _rn, _rm) \
#define generate_op_teq_reg(_rd, _rn, _rm) \
generate_op_eors_reg(reg_temp, _rn, _rm) \
#define generate_op_ands_imm(_rd, _rn) \
generate_alu_immu(andi, and, _rd, _rn, imm); \
generate_op_logic_flags(_rd) \
#define generate_op_orrs_imm(_rd, _rn) \
generate_alu_immu(ori, or, _rd, _rn, imm); \
generate_op_logic_flags(_rd) \
#define generate_op_eors_imm(_rd, _rn) \
generate_alu_immu(xori, xor, _rd, _rn, imm); \
generate_op_logic_flags(_rd) \
#define generate_op_bics_imm(_rd, _rn) \
generate_alu_immu(andi, and, _rd, _rn, (~imm)); \
generate_op_logic_flags(_rd) \
#define generate_op_subs_imm(_rd, _rn) \
generate_op_imm_wrapper(subs, _rd, _rn) \
#define generate_op_rsbs_imm(_rd, _rn) \
generate_op_imm_wrapper(rsbs, _rd, _rn) \
#define generate_op_sbcs_imm(_rd, _rn) \
generate_op_imm_wrapper(sbcs, _rd, _rn) \
#define generate_op_rscs_imm(_rd, _rn) \
generate_op_imm_wrapper(rscs, _rd, _rn) \
#define generate_op_adds_imm(_rd, _rn) \
generate_op_imm_wrapper(adds, _rd, _rn) \
#define generate_op_adcs_imm(_rd, _rn) \
generate_op_imm_wrapper(adcs, _rd, _rn) \
#define generate_op_movs_imm(_rd, _rn) \
generate_load_imm(_rd, imm); \
generate_op_logic_flags(_rd) \
#define generate_op_mvns_imm(_rd, _rn) \
generate_load_imm(_rd, (~imm)); \
generate_op_logic_flags(_rd) \
#define generate_op_cmp_imm(_rd, _rn) \
generate_op_imm_wrapper(cmp, _rd, _rn) \
#define generate_op_cmn_imm(_rd, _rn) \
generate_op_imm_wrapper(cmn, _rd, _rn) \
#define generate_op_tst_imm(_rd, _rn) \
generate_op_ands_imm(reg_temp, _rn) \
#define generate_op_teq_imm(_rd, _rn) \
generate_op_eors_imm(reg_temp, _rn) \
#define arm_generate_op_load_yes() \
generate_load_reg_pc(reg_a1, rn, 8) \
#define arm_generate_op_load_no() \
#define arm_op_check_yes() \
check_load_reg_pc(arm_reg_a1, rn, 8) \
#define arm_op_check_no() \
#define arm_generate_op_reg_flags(name, load_op) \
arm_decode_data_proc_reg(opcode); \
if(check_generate_c_flag) \
{ \
rm = generate_load_rm_sh_flags(rm); \
} \
else \
{ \
rm = generate_load_rm_sh_no_flags(rm); \
} \
\
arm_op_check_##load_op(); \
generate_op_##name##_reg(arm_to_mips_reg[rd], arm_to_mips_reg[rn], \
arm_to_mips_reg[rm]) \
#define arm_generate_op_reg(name, load_op) \
arm_decode_data_proc_reg(opcode); \
rm = generate_load_rm_sh_no_flags(rm); \
arm_op_check_##load_op(); \
generate_op_##name##_reg(arm_to_mips_reg[rd], arm_to_mips_reg[rn], \
arm_to_mips_reg[rm]) \
#define arm_generate_op_imm(name, load_op) \
arm_decode_data_proc_imm(opcode); \
ror(imm, imm, imm_ror); \
arm_op_check_##load_op(); \
generate_op_##name##_imm(arm_to_mips_reg[rd], arm_to_mips_reg[rn]) \
#define arm_generate_op_imm_flags(name, load_op) \
arm_generate_op_imm(name, load_op) \
#define arm_data_proc(name, type, flags_op) \
{ \
arm_generate_op_##type(name, yes); \
check_store_reg_pc_##flags_op(rd); \
} \
#define arm_data_proc_test(name, type) \
{ \
arm_generate_op_##type(name, yes); \
} \
#define arm_data_proc_unary(name, type, flags_op) \
{ \
arm_generate_op_##type(name, no); \
check_store_reg_pc_##flags_op(rd); \
} \
#define arm_multiply_flags_yes(_rd) \
generate_op_logic_flags(_rd) \
#define arm_multiply_flags_no(_rd) \
#define arm_multiply_add_no() \
mips_emit_mflo(arm_to_mips_reg[rd]) \
#define arm_multiply_add_yes() \
mips_emit_mflo(reg_temp); \
mips_emit_addu(arm_to_mips_reg[rd], reg_temp, arm_to_mips_reg[rn]) \
#define arm_multiply(add_op, flags) \
{ \
arm_decode_multiply(); \
mips_emit_multu(arm_to_mips_reg[rm], arm_to_mips_reg[rs]); \
arm_multiply_add_##add_op(); \
arm_multiply_flags_##flags(arm_to_mips_reg[rd]); \
} \
#define arm_multiply_long_flags_yes(_rdlo, _rdhi) \
mips_emit_sltiu(reg_z_cache, _rdlo, 1); \
mips_emit_sltiu(reg_a0, _rdhi, 1); \
mips_emit_and(reg_z_cache, reg_z_cache, reg_a0); \
mips_emit_srl(reg_n_cache, _rdhi, 31); \
#define arm_multiply_long_flags_no(_rdlo, _rdhi) \
#define arm_multiply_long_add_yes(name) \
mips_emit_mtlo(arm_to_mips_reg[rdlo]); \
mips_emit_mthi(arm_to_mips_reg[rdhi]); \
generate_multiply_##name() \
#define arm_multiply_long_add_no(name) \
generate_multiply_##name() \
#define arm_multiply_long(name, add_op, flags) \
{ \
arm_decode_multiply_long(); \
arm_multiply_long_add_##add_op(name); \
mips_emit_mflo(arm_to_mips_reg[rdlo]); \
mips_emit_mfhi(arm_to_mips_reg[rdhi]); \
arm_multiply_long_flags_##flags(arm_to_mips_reg[rdlo], \
arm_to_mips_reg[rdhi]); \
} \
#define arm_psr_read(op_type, psr_reg) \
generate_function_call(execute_read_##psr_reg); \
generate_store_reg(reg_rv, rd) \
u32 execute_store_cpsr_body(u32 _cpsr, u32 store_mask, u32 address)
{
reg[REG_CPSR] = _cpsr;
if(store_mask & 0xFF)
{
set_cpu_mode(cpu_modes[_cpsr & 0x1F]);
if((io_registers[REG_IE] & io_registers[REG_IF]) &&
io_registers[REG_IME] && ((_cpsr & 0x80) == 0))
{
reg_mode[MODE_IRQ][6] = address + 4;
spsr[MODE_IRQ] = _cpsr;
reg[REG_CPSR] = 0xD2;
set_cpu_mode(MODE_IRQ);
return 0x00000018;
}
}
return 0;
}
#define arm_psr_load_new_reg() \
generate_load_reg(reg_a0, rm) \
#define arm_psr_load_new_imm() \
generate_load_imm(reg_a0, imm) \
#define arm_psr_store(op_type, psr_reg) \
arm_psr_load_new_##op_type(); \
generate_load_imm(reg_a1, psr_masks[psr_field]); \
generate_load_pc(reg_a2, (pc + 4)); \
generate_function_call_swap_delay(execute_store_##psr_reg) \
#define arm_psr(op_type, transfer_type, psr_reg) \
{ \
arm_decode_psr_##op_type(opcode); \
arm_psr_##transfer_type(op_type, psr_reg); \
} \
#define arm_access_memory_load(mem_type) \
cycle_count += 2; \
mips_emit_jal(mips_absolute_offset(execute_load_##mem_type)); \
generate_load_pc(reg_a1, (pc + 8)); \
generate_store_reg(reg_rv, rd); \
check_store_reg_pc_no_flags(rd) \
#define arm_access_memory_store(mem_type) \
cycle_count++; \
generate_load_pc(reg_a2, (pc + 4)); \
generate_load_reg_pc(reg_a1, rd, 12); \
generate_function_call_swap_delay(execute_store_##mem_type) \
#define arm_access_memory_reg_pre_up() \
mips_emit_addu(reg_a0, arm_to_mips_reg[rn], arm_to_mips_reg[rm]) \
#define arm_access_memory_reg_pre_down() \
mips_emit_subu(reg_a0, arm_to_mips_reg[rn], arm_to_mips_reg[rm]) \
#define arm_access_memory_reg_pre(adjust_dir) \
check_load_reg_pc(arm_reg_a0, rn, 8); \
arm_access_memory_reg_pre_##adjust_dir() \
#define arm_access_memory_reg_pre_wb(adjust_dir) \
arm_access_memory_reg_pre(adjust_dir); \
generate_store_reg(reg_a0, rn) \
#define arm_access_memory_reg_post_up() \
mips_emit_addu(arm_to_mips_reg[rn], arm_to_mips_reg[rn], \
arm_to_mips_reg[rm]) \
#define arm_access_memory_reg_post_down() \
mips_emit_subu(arm_to_mips_reg[rn], arm_to_mips_reg[rn], \
arm_to_mips_reg[rm]) \
#define arm_access_memory_reg_post(adjust_dir) \
generate_load_reg(reg_a0, rn); \
arm_access_memory_reg_post_##adjust_dir() \
#define arm_access_memory_imm_pre_up() \
mips_emit_addiu(reg_a0, arm_to_mips_reg[rn], offset) \
#define arm_access_memory_imm_pre_down() \
mips_emit_addiu(reg_a0, arm_to_mips_reg[rn], -offset) \
#define arm_access_memory_imm_pre(adjust_dir) \
check_load_reg_pc(arm_reg_a0, rn, 8); \
arm_access_memory_imm_pre_##adjust_dir() \
#define arm_access_memory_imm_pre_wb(adjust_dir) \
arm_access_memory_imm_pre(adjust_dir); \
generate_store_reg(reg_a0, rn) \
#define arm_access_memory_imm_post_up() \
mips_emit_addiu(arm_to_mips_reg[rn], arm_to_mips_reg[rn], offset) \
#define arm_access_memory_imm_post_down() \
mips_emit_addiu(arm_to_mips_reg[rn], arm_to_mips_reg[rn], -offset) \
#define arm_access_memory_imm_post(adjust_dir) \
generate_load_reg(reg_a0, rn); \
arm_access_memory_imm_post_##adjust_dir() \
#define arm_data_trans_reg(adjust_op, adjust_dir) \
arm_decode_data_trans_reg(); \
rm = generate_load_offset_sh(rm); \
arm_access_memory_reg_##adjust_op(adjust_dir) \
#define arm_data_trans_imm(adjust_op, adjust_dir) \
arm_decode_data_trans_imm(); \
arm_access_memory_imm_##adjust_op(adjust_dir) \
#define arm_data_trans_half_reg(adjust_op, adjust_dir) \
arm_decode_half_trans_r(); \
arm_access_memory_reg_##adjust_op(adjust_dir) \
#define arm_data_trans_half_imm(adjust_op, adjust_dir) \
arm_decode_half_trans_of(); \
arm_access_memory_imm_##adjust_op(adjust_dir) \
#define arm_access_memory(access_type, direction, adjust_op, mem_type, \
offset_type) \
{ \
arm_data_trans_##offset_type(adjust_op, direction); \
arm_access_memory_##access_type(mem_type); \
} \
#define word_bit_count(word) \
(bit_count[word >> 8] + bit_count[word & 0xFF]) \
#define sprint_no(access_type, pre_op, post_op, wb) \
#define sprint_yes(access_type, pre_op, post_op, wb) \
printf("sbit on %s %s %s %s\n", #access_type, #pre_op, #post_op, #wb) \
#define arm_block_memory_load() \
generate_function_call_swap_delay(execute_aligned_load32); \
generate_store_reg(reg_rv, i) \
#define arm_block_memory_store() \
generate_load_reg_pc(reg_a1, i, 8); \
generate_function_call_swap_delay(execute_aligned_store32) \
#define arm_block_memory_final_load() \
arm_block_memory_load() \
#define arm_block_memory_final_store() \
generate_load_pc(reg_a2, (pc + 4)); \
mips_emit_jal(mips_absolute_offset(execute_store_u32)); \
generate_load_reg(reg_a1, i) \
#define arm_block_memory_adjust_pc_store() \
#define arm_block_memory_adjust_pc_load() \
if(reg_list & 0x8000) \
{ \
generate_mov(reg_a0, reg_rv); \
generate_indirect_branch_arm(); \
} \
#define arm_block_memory_sp_load() \
mips_emit_lw(arm_to_mips_reg[i], reg_a1, offset); \
#define arm_block_memory_sp_store() \
{ \
u32 store_reg = i; \
check_load_reg_pc(arm_reg_a0, store_reg, 8); \
mips_emit_sw(arm_to_mips_reg[store_reg], reg_a1, offset); \
} \
#define arm_block_memory_sp_adjust_pc_store() \
#define arm_block_memory_sp_adjust_pc_load() \
if(reg_list & 0x8000) \
{ \
generate_indirect_branch_arm(); \
} \
#define arm_block_memory_offset_down_a() \
mips_emit_addiu(reg_a2, base_reg, (-((word_bit_count(reg_list) * 4) - 4))) \
#define arm_block_memory_offset_down_b() \
mips_emit_addiu(reg_a2, base_reg, (word_bit_count(reg_list) * -4)) \
#define arm_block_memory_offset_no() \
mips_emit_addu(reg_a2, base_reg, reg_zero) \
#define arm_block_memory_offset_up() \
mips_emit_addiu(reg_a2, base_reg, 4) \
#define arm_block_memory_writeback_down() \
mips_emit_addiu(base_reg, base_reg, (-(word_bit_count(reg_list) * 4))) \
#define arm_block_memory_writeback_up() \
mips_emit_addiu(base_reg, base_reg, (word_bit_count(reg_list) * 4)) \
#define arm_block_memory_writeback_no()
// Only emit writeback if the register is not in the list
#define arm_block_memory_writeback_load(writeback_type) \
if(!((reg_list >> rn) & 0x01)) \
{ \
arm_block_memory_writeback_##writeback_type(); \
} \
#define arm_block_memory_writeback_store(writeback_type) \
arm_block_memory_writeback_##writeback_type() \
#define arm_block_memory(access_type, offset_type, writeback_type, s_bit) \
{ \
arm_decode_block_trans(); \
u32 i; \
u32 offset = 0; \
u32 base_reg = arm_to_mips_reg[rn]; \
\
arm_block_memory_offset_##offset_type(); \
arm_block_memory_writeback_##access_type(writeback_type); \
\
if((rn == REG_SP) && iwram_stack_optimize) \
{ \
mips_emit_andi(reg_a1, reg_a2, 0x7FFC); \
generate_load_imm(reg_a0, ((u32)(iwram + 0x8000))); \
mips_emit_addu(reg_a1, reg_a1, reg_a0); \
\
for(i = 0; i < 16; i++) \
{ \
if((reg_list >> i) & 0x01) \
{ \
cycle_count++; \
arm_block_memory_sp_##access_type(); \
offset += 4; \
} \
} \
\
arm_block_memory_sp_adjust_pc_##access_type(); \
} \
else \
{ \
mips_emit_ins(reg_a2, reg_zero, 0, 2); \
\
for(i = 0; i < 16; i++) \
{ \
if((reg_list >> i) & 0x01) \
{ \
cycle_count++; \
mips_emit_addiu(reg_a0, reg_a2, offset); \
if(reg_list & ~((2 << i) - 1)) \
{ \
arm_block_memory_##access_type(); \
offset += 4; \
} \
else \
{ \
arm_block_memory_final_##access_type(); \
break; \
} \
} \
} \
\
arm_block_memory_adjust_pc_##access_type(); \
} \
} \
#define arm_block_writeback_no()
#define arm_block_writeback_yes() \
mips_emit_addu(arm_to_mips_reg[rn], reg_a2, reg_zero) \
#define arm_block_address_preadjust_up_full(wb) \
mips_emit_addiu(reg_a2, arm_to_mips_reg[rn], \
((word_bit_count(reg_list)) * 4)); \
arm_block_writeback_##wb() \
#define arm_block_address_preadjust_up(wb) \
mips_emit_addiu(reg_a2, arm_to_mips_reg[rn], 4); \
arm_block_writeback_##wb() \
#define arm_block_address_preadjust_down_full(wb) \
mips_emit_addiu(reg_a2, arm_to_mips_reg[rn], \
-((word_bit_count(reg_list)) * 4)); \
arm_block_writeback_##wb() \
#define arm_block_address_preadjust_down(wb) \
mips_emit_addiu(reg_a2, arm_to_mips_reg[rn], \
-(((word_bit_count(reg_list)) * 4) - 4)); \
arm_block_writeback_##wb()
#define arm_block_address_preadjust_no(wb) \
mips_emit_addu(reg_a2, arm_to_mips_reg[rn], reg_zero) \
#define arm_block_address_postadjust_no() \
#define arm_block_address_postadjust_up() \
mips_emit_addiu(arm_to_mips_reg[rn], reg_a2, \
((word_bit_count(reg_list)) * 4)) \
#define arm_block_address_postadjust_down() \
mips_emit_addiu(arm_to_mips_reg[rn], reg_a2, \
-((word_bit_count(reg_list)) * 4)) \
#define sprint_no(access_type, pre_op, post_op, wb) \
#define sprint_yes(access_type, pre_op, post_op, wb) \
printf("sbit on %s %s %s %s\n", #access_type, #pre_op, #post_op, #wb) \
#define arm_block_memory_load() \
generate_function_call_swap_delay(execute_aligned_load32); \
generate_store_reg(reg_rv, i) \
#define arm_block_memory_store() \
generate_load_reg_pc(reg_a1, i, 8); \
generate_function_call_swap_delay(execute_aligned_store32) \
#define arm_block_memory_final_load() \
arm_block_memory_load() \
#define arm_block_memory_final_store() \
generate_load_pc(reg_a2, (pc + 4)); \
mips_emit_jal(mips_absolute_offset(execute_store_u32)); \
generate_load_reg(reg_a1, i) \
#define arm_block_memory_adjust_pc_store() \
#define arm_block_memory_adjust_pc_load() \
if(reg_list & 0x8000) \
{ \
generate_mov(reg_a0, reg_rv); \
generate_indirect_branch_arm(); \
} \
#define arm_block_memory_sp_load() \
mips_emit_lw(arm_to_mips_reg[i], reg_a1, offset); \
#define arm_block_memory_sp_store() \
{ \
u32 store_reg = i; \
check_load_reg_pc(arm_reg_a0, store_reg, 8); \
mips_emit_sw(arm_to_mips_reg[store_reg], reg_a1, offset); \
} \
#define arm_block_memory_sp_adjust_pc_store() \
#define arm_block_memory_sp_adjust_pc_load() \
if(reg_list & 0x8000) \
{ \
generate_indirect_branch_arm(); \
} \
// This isn't really a correct implementation, may have to fix later.
#define arm_swap(type) \
{ \
arm_decode_swap(); \
cycle_count += 3; \
mips_emit_jal(mips_absolute_offset(execute_load_##type)); \
generate_load_reg(reg_a0, rn); \
generate_mov(reg_a2, reg_rv); \
generate_load_reg(reg_a0, rn); \
mips_emit_jal(mips_absolute_offset(execute_store_##type)); \
generate_load_reg(reg_a1, rm); \
generate_store_reg(reg_a2, rd); \
} \
#define thumb_generate_op_load_yes(_rs) \
generate_load_reg(reg_a1, _rs) \
#define thumb_generate_op_load_no(_rs) \
#define thumb_generate_op_reg(name, _rd, _rs, _rn) \
generate_op_##name##_reg(arm_to_mips_reg[_rd], \
arm_to_mips_reg[_rs], arm_to_mips_reg[_rn]) \
#define thumb_generate_op_imm(name, _rd, _rs, _rn) \
generate_op_##name##_imm(arm_to_mips_reg[_rd], arm_to_mips_reg[_rs]) \
// Types: add_sub, add_sub_imm, alu_op, imm
// Affects N/Z/C/V flags
#define thumb_data_proc(type, name, rn_type, _rd, _rs, _rn) \
{ \
thumb_decode_##type(); \
thumb_generate_op_##rn_type(name, _rd, _rs, _rn); \
} \
#define thumb_data_proc_test(type, name, rn_type, _rs, _rn) \
{ \
thumb_decode_##type(); \
thumb_generate_op_##rn_type(name, 0, _rs, _rn); \
} \
#define thumb_data_proc_unary(type, name, rn_type, _rd, _rn) \
{ \
thumb_decode_##type(); \
thumb_generate_op_##rn_type(name, _rd, 0, _rn); \
} \
#define check_store_reg_pc_thumb(_rd) \
if(_rd == REG_PC) \
{ \
generate_indirect_branch_cycle_update(thumb); \
} \
#define thumb_data_proc_hi(name) \
{ \
thumb_decode_hireg_op(); \
u32 dest_rd = rd; \
check_load_reg_pc(arm_reg_a0, rs, 4); \
check_load_reg_pc(arm_reg_a1, rd, 4); \
generate_op_##name##_reg(arm_to_mips_reg[dest_rd], arm_to_mips_reg[rd], \
arm_to_mips_reg[rs]); \
check_store_reg_pc_thumb(dest_rd); \
} \
/*
#define thumb_data_proc_hi(name) \
{ \
thumb_decode_hireg_op(); \
check_load_reg_pc(arm_reg_a0, rs, 4); \
check_load_reg_pc(arm_reg_a1, rd, 4); \
generate_op_##name##_reg(arm_to_mips_reg[rd], arm_to_mips_reg[rd], \
arm_to_mips_reg[rs]); \
check_store_reg_pc_thumb(rd); \
} \
*/
#define thumb_data_proc_test_hi(name) \
{ \
thumb_decode_hireg_op(); \
check_load_reg_pc(arm_reg_a0, rs, 4); \
check_load_reg_pc(arm_reg_a1, rd, 4); \
generate_op_##name##_reg(reg_temp, arm_to_mips_reg[rd], \
arm_to_mips_reg[rs]); \
} \
#define thumb_data_proc_mov_hi() \
{ \
thumb_decode_hireg_op(); \
check_load_reg_pc(arm_reg_a0, rs, 4); \
mips_emit_addu(arm_to_mips_reg[rd], arm_to_mips_reg[rs], reg_zero); \
check_store_reg_pc_thumb(rd); \
} \
#define thumb_load_pc(_rd) \
{ \
thumb_decode_imm(); \
generate_load_pc(arm_to_mips_reg[_rd], (((pc & ~2) + 4) + (imm * 4))); \
} \
#define thumb_load_sp(_rd) \
{ \
thumb_decode_imm(); \
mips_emit_addiu(arm_to_mips_reg[_rd], reg_r13, (imm * 4)); \
} \
#define thumb_adjust_sp_up() \
mips_emit_addiu(reg_r13, reg_r13, (imm * 4)); \
#define thumb_adjust_sp_down() \
mips_emit_addiu(reg_r13, reg_r13, -(imm * 4)); \
#define thumb_adjust_sp(direction) \
{ \
thumb_decode_add_sp(); \
thumb_adjust_sp_##direction(); \
} \
// Decode types: shift, alu_op
// Operation types: lsl, lsr, asr, ror
// Affects N/Z/C flags
#define thumb_generate_shift_imm(name) \
if(check_generate_c_flag) \
{ \
generate_shift_imm_##name##_flags(rd, rs, imm); \
} \
else \
{ \
generate_shift_imm_##name##_no_flags(rd, rs, imm); \
} \
if(rs != rd) \
{ \
mips_emit_addu(arm_to_mips_reg[rd], arm_to_mips_reg[rs], reg_zero); \
} \
#define thumb_generate_shift_reg(name) \
{ \
u32 original_rd = rd; \
if(check_generate_c_flag) \
{ \
generate_shift_reg_##name##_flags(rd, rs); \
} \
else \
{ \
generate_shift_reg_##name##_no_flags(rd, rs); \
} \
mips_emit_addu(arm_to_mips_reg[original_rd], reg_a0, reg_zero); \
} \
#define thumb_shift(decode_type, op_type, value_type) \
{ \
thumb_decode_##decode_type(); \
thumb_generate_shift_##value_type(op_type); \
generate_op_logic_flags(arm_to_mips_reg[rd]); \
} \
// Operation types: imm, mem_reg, mem_imm
#define thumb_access_memory_load(mem_type, reg_rd) \
cycle_count += 2; \
mips_emit_jal(mips_absolute_offset(execute_load_##mem_type)); \
generate_load_pc(reg_a1, (pc + 4)); \
generate_store_reg(reg_rv, reg_rd) \
#define thumb_access_memory_store(mem_type, reg_rd) \
cycle_count++; \
generate_load_pc(reg_a2, (pc + 2)); \
mips_emit_jal(mips_absolute_offset(execute_store_##mem_type)); \
generate_load_reg(reg_a1, reg_rd) \
#define thumb_access_memory_generate_address_pc_relative(offset, reg_rb, \
reg_ro) \
generate_load_pc(reg_a0, (offset)) \
#define thumb_access_memory_generate_address_reg_imm(offset, reg_rb, reg_ro) \
mips_emit_addiu(reg_a0, arm_to_mips_reg[reg_rb], (offset)) \
#define thumb_access_memory_generate_address_reg_imm_sp(offset, reg_rb, reg_ro) \
mips_emit_addiu(reg_a0, arm_to_mips_reg[reg_rb], (offset * 4)) \
#define thumb_access_memory_generate_address_reg_reg(offset, reg_rb, reg_ro) \
mips_emit_addu(reg_a0, arm_to_mips_reg[reg_rb], arm_to_mips_reg[reg_ro]) \
#define thumb_access_memory(access_type, op_type, reg_rd, reg_rb, reg_ro, \
address_type, offset, mem_type) \
{ \
thumb_decode_##op_type(); \
thumb_access_memory_generate_address_##address_type(offset, reg_rb, \
reg_ro); \
thumb_access_memory_##access_type(mem_type, reg_rd); \
} \
#define thumb_block_address_preadjust_no(base_reg) \
mips_emit_addu(reg_a2, arm_to_mips_reg[base_reg], reg_zero) \
#define thumb_block_address_preadjust_up(base_reg) \
mips_emit_addiu(reg_a2, arm_to_mips_reg[base_reg], \
(bit_count[reg_list] * 4)); \
mips_emit_addu(arm_to_mips_reg[base_reg], reg_a2, reg_zero) \
#define thumb_block_address_preadjust_down(base_reg) \
mips_emit_addiu(reg_a2, arm_to_mips_reg[base_reg], \
-(bit_count[reg_list] * 4)); \
mips_emit_addu(arm_to_mips_reg[base_reg], reg_a2, reg_zero) \
#define thumb_block_address_preadjust_push_lr(base_reg) \
mips_emit_addiu(reg_a2, arm_to_mips_reg[base_reg], \
-((bit_count[reg_list] + 1) * 4)); \
mips_emit_addu(arm_to_mips_reg[base_reg], reg_a2, reg_zero) \
#define thumb_block_address_postadjust_no(base_reg) \
#define thumb_block_address_postadjust_up(base_reg) \
mips_emit_addiu(arm_to_mips_reg[base_reg], reg_a2, \
(bit_count[reg_list] * 4)) \
#define thumb_block_address_postadjust_down(base_reg) \
mips_emit_addiu(arm_to_mips_reg[base_reg], reg_a2, \
-(bit_count[reg_list] * 4)) \
#define thumb_block_address_postadjust_pop_pc(base_reg) \
mips_emit_addiu(arm_to_mips_reg[base_reg], reg_a2, \
((bit_count[reg_list] * 4) + 4)) \
#define thumb_block_address_postadjust_push_lr(base_reg) \
#define thumb_block_memory_load() \
generate_function_call_swap_delay(execute_aligned_load32); \
generate_store_reg(reg_rv, i) \
#define thumb_block_memory_store() \
mips_emit_jal(mips_absolute_offset(execute_aligned_store32)); \
generate_load_reg(reg_a1, i) \
#define thumb_block_memory_final_load() \
thumb_block_memory_load() \
#define thumb_block_memory_final_store() \
generate_load_pc(reg_a2, (pc + 2)); \
mips_emit_jal(mips_absolute_offset(execute_store_u32)); \
generate_load_reg(reg_a1, i) \
#define thumb_block_memory_final_no(access_type) \
thumb_block_memory_final_##access_type() \
#define thumb_block_memory_final_up(access_type) \
thumb_block_memory_final_##access_type() \
#define thumb_block_memory_final_down(access_type) \
thumb_block_memory_final_##access_type() \
#define thumb_block_memory_final_push_lr(access_type) \
thumb_block_memory_##access_type() \
#define thumb_block_memory_final_pop_pc(access_type) \
thumb_block_memory_##access_type() \
#define thumb_block_memory_extra_no() \
#define thumb_block_memory_extra_up() \
#define thumb_block_memory_extra_down() \
#define thumb_block_memory_extra_push_lr() \
mips_emit_addiu(reg_a0, reg_a2, (bit_count[reg_list] * 4)); \
mips_emit_jal(mips_absolute_offset(execute_aligned_store32)); \
generate_load_reg(reg_a1, REG_LR) \
#define thumb_block_memory_extra_pop_pc() \
mips_emit_jal(mips_absolute_offset(execute_aligned_load32)); \
mips_emit_addiu(reg_a0, reg_a2, (bit_count[reg_list] * 4)); \
generate_mov(reg_a0, reg_rv); \
generate_indirect_branch_cycle_update(thumb) \
#define thumb_block_memory_sp_load() \
mips_emit_lw(arm_to_mips_reg[i], reg_a1, offset) \
#define thumb_block_memory_sp_store() \
mips_emit_sw(arm_to_mips_reg[i], reg_a1, offset) \
#define thumb_block_memory_sp_extra_no() \
#define thumb_block_memory_sp_extra_up() \
#define thumb_block_memory_sp_extra_down() \
#define thumb_block_memory_sp_extra_pop_pc() \
mips_emit_lw(reg_a0, reg_a1, (bit_count[reg_list] * 4)); \
generate_indirect_branch_cycle_update(thumb) \
#define thumb_block_memory_sp_extra_push_lr() \
mips_emit_sw(reg_r14, reg_a1, (bit_count[reg_list] * 4)) \
#define thumb_block_memory(access_type, pre_op, post_op, base_reg) \
{ \
thumb_decode_rlist(); \
u32 i; \
u32 offset = 0; \
\
thumb_block_address_preadjust_##pre_op(base_reg); \
thumb_block_address_postadjust_##post_op(base_reg); \
\
if((base_reg == REG_SP) && iwram_stack_optimize) \
{ \
mips_emit_andi(reg_a1, reg_a2, 0x7FFC); \
generate_load_imm(reg_a0, ((u32)(iwram + 0x8000))); \
generate_add(reg_a1, reg_a0); \
\
for(i = 0; i < 8; i++) \
{ \
if((reg_list >> i) & 0x01) \
{ \
cycle_count++; \
thumb_block_memory_sp_##access_type(); \
offset += 4; \
} \
} \
\
thumb_block_memory_sp_extra_##post_op(); \
} \
else \
{ \
mips_emit_ins(reg_a2, reg_zero, 0, 2); \
\
for(i = 0; i < 8; i++) \
{ \
if((reg_list >> i) & 0x01) \
{ \
cycle_count++; \
mips_emit_addiu(reg_a0, reg_a2, offset); \
if(reg_list & ~((2 << i) - 1)) \
{ \
thumb_block_memory_##access_type(); \
offset += 4; \
} \
else \
{ \
thumb_block_memory_final_##post_op(access_type); \
break; \
} \
} \
} \
\
thumb_block_memory_extra_##post_op(); \
} \
}
#define thumb_conditional_branch(condition) \
{ \
condition_check_type condition_check; \
generate_condition_##condition(); \
generate_branch_no_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
generate_branch_patch_conditional(backpatch_address, translation_ptr); \
block_exit_position++; \
} \
#define arm_conditional_block_header() \
generate_condition(); \
#define arm_b() \
generate_branch() \
#define arm_bl() \
generate_load_pc(reg_r14, (pc + 4)); \
generate_branch() \
#define arm_bx() \
arm_decode_branchx(opcode); \
generate_load_reg(reg_a0, rn); \
/*generate_load_pc(reg_a2, pc);*/ \
generate_indirect_branch_dual() \
#define arm_swi() \
generate_swi_hle_handler((opcode >> 16) & 0xFF); \
generate_load_pc(reg_a0, (pc + 4)); \
generate_function_call_swap_delay(execute_swi); \
generate_branch() \
#define thumb_b() \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
block_exit_position++ \
#define thumb_bl() \
generate_load_pc(reg_r14, ((pc + 2) | 0x01)); \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
block_exit_position++ \
#define thumb_blh() \
{ \
thumb_decode_branch(); \
generate_alu_imm(addiu, addu, reg_a0, reg_r14, (offset * 2)); \
generate_load_pc(reg_r14, ((pc + 2) | 0x01)); \
generate_indirect_branch_cycle_update(dual); \
break; \
} \
#define thumb_bx() \
{ \
thumb_decode_hireg_op(); \
generate_load_reg_pc(reg_a0, rs, 4); \
/*generate_load_pc(reg_a2, pc);*/ \
generate_indirect_branch_cycle_update(dual); \
} \
#define thumb_swi() \
generate_swi_hle_handler(opcode & 0xFF); \
generate_load_pc(reg_a0, (pc + 2)); \
generate_function_call_swap_delay(execute_swi); \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target); \
block_exit_position++ \
u8 swi_hle_handle[256] =
{
0x0, // SWI 0: SoftReset
0x0, // SWI 1: RegisterRAMReset
0x0, // SWI 2: Halt
0x0, // SWI 3: Stop/Sleep
0x0, // SWI 4: IntrWait
0x0, // SWI 5: VBlankIntrWait
0x1, // SWI 6: Div
0x0, // SWI 7: DivArm
0x0, // SWI 8: Sqrt
0x0, // SWI 9: ArcTan
0x0, // SWI A: ArcTan2
0x0, // SWI B: CpuSet
0x0, // SWI C: CpuFastSet
0x0, // SWI D: GetBIOSCheckSum
0x0, // SWI E: BgAffineSet
0x0, // SWI F: ObjAffineSet
0x0, // SWI 10: BitUnpack
0x0, // SWI 11: LZ77UnCompWram
0x0, // SWI 12: LZ77UnCompVram
0x0, // SWI 13: HuffUnComp
0x0, // SWI 14: RLUnCompWram
0x0, // SWI 15: RLUnCompVram
0x0, // SWI 16: Diff8bitUnFilterWram
0x0, // SWI 17: Diff8bitUnFilterVram
0x0, // SWI 18: Diff16bitUnFilter
0x0, // SWI 19: SoundBias
0x0, // SWI 1A: SoundDriverInit
0x0, // SWI 1B: SoundDriverMode
0x0, // SWI 1C: SoundDriverMain
0x0, // SWI 1D: SoundDriverVSync
0x0, // SWI 1E: SoundChannelClear
0x0, // SWI 1F: MidiKey2Freq
0x0, // SWI 20: SoundWhatever0
0x0, // SWI 21: SoundWhatever1
0x0, // SWI 22: SoundWhatever2
0x0, // SWI 23: SoundWhatever3
0x0, // SWI 24: SoundWhatever4
0x0, // SWI 25: MultiBoot
0x0, // SWI 26: HardReset
0x0, // SWI 27: CustomHalt
0x0, // SWI 28: SoundDriverVSyncOff
0x0, // SWI 29: SoundDriverVSyncOn
0x0 // SWI 2A: SoundGetJumpList
};
#define generate_swi_hle_handler(_swi_number) \
{ \
u32 swi_number = _swi_number; \
if(swi_hle_handle[swi_number]) \
{ \
/* Div */ \
if(swi_number == 0x06) \
{ \
mips_emit_div(reg_r0, reg_r1); \
mips_emit_mflo(reg_r0); \
mips_emit_mfhi(reg_r1); \
mips_emit_sra(reg_a0, reg_r0, 31); \
mips_emit_xor(reg_r3, reg_r0, reg_a0); \
mips_emit_subu(reg_r3, reg_r3, reg_a0); \
} \
break; \
} \
} \
#define generate_translation_gate(type) \
generate_load_pc(reg_a0, pc); \
generate_indirect_branch_no_cycle_update(type) \
#define generate_update_pc_reg() \
generate_load_pc(reg_a0, pc); \
mips_emit_sw(reg_a0, reg_base, (REG_PC * 4)) \
#endif