gpsp/sound.c

834 lines
33 KiB
C

/* gameplaySP
*
* Copyright (C) 2006 Exophase <exophase@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "common.h"
direct_sound_struct direct_sound_channel[2];
gbc_sound_struct gbc_sound_channel[4];
const u32 sound_frequency = GBA_SOUND_FREQUENCY;
u32 sound_on;
static s16 sound_buffer[BUFFER_SIZE];
static u32 sound_buffer_base;
static fixed16_16 gbc_sound_tick_step;
/* Queue 4 samples to the top of the DS FIFO, wrap around circularly */
void sound_timer_queue32(u32 channel, u32 value)
{
direct_sound_struct *ds = &direct_sound_channel[channel];
ds->fifo[ds->fifo_top++] = value & 0xFF;
ds->fifo_top &= 31;
ds->fifo[ds->fifo_top++] = (value >> 8) & 0xFF;
ds->fifo_top &= 31;
ds->fifo[ds->fifo_top++] = (value >> 16) & 0xFF;
ds->fifo_top &= 31;
ds->fifo[ds->fifo_top++] = (value >> 24);
ds->fifo_top &= 31;
}
unsigned sound_timer(fixed8_24 frequency_step, u32 channel)
{
int ret = 0;
u32 sample_status = DIRECT_SOUND_INACTIVE;
direct_sound_struct *ds = &direct_sound_channel[channel];
fixed8_24 fifo_fractional = ds->fifo_fractional;
u32 buffer_index = ds->buffer_index;
s16 current_sample, next_sample;
current_sample = ds->fifo[ds->fifo_base] * 16;
ds->fifo_base = (ds->fifo_base + 1) % 32;
next_sample = ds->fifo[ds->fifo_base] * 16;
if(sound_on == 1)
{
current_sample >>= ds->volume_halve;
next_sample >>= ds->volume_halve;
sample_status = ds->status;
}
// Unqueue 1 sample from the base of the DS FIFO and place it on the audio
// buffer for as many samples as necessary. If the DS FIFO is 16 bytes or
// smaller and if DMA is enabled for the sound channel initiate a DMA transfer
// to the DS FIFO.
switch(sample_status)
{
case DIRECT_SOUND_INACTIVE:
/* render samples NULL */
while(fifo_fractional <= 0xFFFFFF)
{
fifo_fractional += frequency_step;
buffer_index = (buffer_index + 2) % BUFFER_SIZE;
}
break;
case DIRECT_SOUND_RIGHT:
/* render samples RIGHT */
while(fifo_fractional <= 0xFFFFFF)
{
s16 dest_sample = current_sample +
fp16_16_to_u32((next_sample - current_sample) * (fifo_fractional >> 8));
sound_buffer[buffer_index + 1] += dest_sample;
fifo_fractional += frequency_step;
buffer_index = (buffer_index + 2) % BUFFER_SIZE;
}
break;
case DIRECT_SOUND_LEFT:
/* render samples LEFT */
while(fifo_fractional <= 0xFFFFFF)
{
s16 dest_sample = current_sample +
fp16_16_to_u32((next_sample - current_sample) * (fifo_fractional >> 8));
sound_buffer[buffer_index] += dest_sample;
fifo_fractional += frequency_step;
buffer_index = (buffer_index + 2) % BUFFER_SIZE;
}
break;
case DIRECT_SOUND_LEFTRIGHT:
/* render samples LEFT and RIGHT. */
while(fifo_fractional <= 0xFFFFFF)
{
s16 dest_sample = current_sample +
fp16_16_to_u32((next_sample - current_sample) * (fifo_fractional >> 8));
sound_buffer[buffer_index] += dest_sample;
sound_buffer[buffer_index + 1] += dest_sample;
fifo_fractional += frequency_step;
buffer_index = (buffer_index + 2) % BUFFER_SIZE;
}
break;
}
ds->buffer_index = buffer_index;
ds->fifo_fractional = fp8_24_fractional_part(fifo_fractional);
if(((ds->fifo_top - ds->fifo_base) % 32) <= 16)
{
if(dma[1].direct_sound_channel == channel)
dma_transfer(1, &ret);
if(dma[2].direct_sound_channel == channel)
dma_transfer(2, &ret);
}
return ret;
}
void sound_reset_fifo(u32 channel)
{
memset(direct_sound_channel[channel].fifo, 0, 32);
}
// Initial pattern data = 4bits (signed)
// Channel volume = 12bits
// Envelope volume = 14bits
// Master volume = 2bits
// Recalculate left and right volume as volume changes.
// To calculate the current sample, use (sample * volume) >> 16
// Square waves range from -8 (low) to 7 (high)
const s8 square_pattern_duty[4][8] =
{
{ -8, -8, -8, -8, 7, -8, -8, -8 },
{ -8, -8, -8, -8, 7, 7, -8, -8 },
{ -8, -8, 7, 7, 7, 7, -8, -8 },
{ 7, 7, 7, 7, -8, -8, 7, 7 },
};
s8 wave_samples[64];
u32 noise_table15[1024];
u32 noise_table7[4];
const u32 gbc_sound_master_volume_table[4] = { 1, 2, 4, 0 };
const u32 gbc_sound_channel_volume_table[8] =
{
fixed_div(0, 7, 12),
fixed_div(1, 7, 12),
fixed_div(2, 7, 12),
fixed_div(3, 7, 12),
fixed_div(4, 7, 12),
fixed_div(5, 7, 12),
fixed_div(6, 7, 12),
fixed_div(7, 7, 12)
};
const u32 gbc_sound_envelope_volume_table[16] =
{
fixed_div(0, 15, 14),
fixed_div(1, 15, 14),
fixed_div(2, 15, 14),
fixed_div(3, 15, 14),
fixed_div(4, 15, 14),
fixed_div(5, 15, 14),
fixed_div(6, 15, 14),
fixed_div(7, 15, 14),
fixed_div(8, 15, 14),
fixed_div(9, 15, 14),
fixed_div(10, 15, 14),
fixed_div(11, 15, 14),
fixed_div(12, 15, 14),
fixed_div(13, 15, 14),
fixed_div(14, 15, 14),
fixed_div(15, 15, 14)
};
u32 gbc_sound_buffer_index = 0;
u32 gbc_sound_last_cpu_ticks = 0;
u32 gbc_sound_partial_ticks = 0;
u32 gbc_sound_master_volume_left;
u32 gbc_sound_master_volume_right;
u32 gbc_sound_master_volume;
#define update_volume_channel_envelope(channel) \
volume_##channel = gbc_sound_envelope_volume_table[envelope_volume] * \
gbc_sound_channel_volume_table[gbc_sound_master_volume_##channel] * \
gbc_sound_master_volume_table[gbc_sound_master_volume] \
#define update_volume_channel_noenvelope(channel) \
volume_##channel = gs->wave_volume * \
gbc_sound_channel_volume_table[gbc_sound_master_volume_##channel] * \
gbc_sound_master_volume_table[gbc_sound_master_volume] \
#define update_volume(type) \
update_volume_channel_##type(left); \
update_volume_channel_##type(right) \
#define update_tone_sweep() \
if(gs->sweep_status) \
{ \
u32 sweep_ticks = gs->sweep_ticks - 1; \
\
if(sweep_ticks == 0) \
{ \
u32 rate = gs->rate; \
\
if(gs->sweep_direction) \
rate = rate - (rate >> gs->sweep_shift); \
else \
rate = rate + (rate >> gs->sweep_shift); \
\
if(rate > 2047) { \
rate = 2047; \
gs->active_flag = 0; \
break; \
} \
\
frequency_step = float_to_fp16_16(((131072.0f / (2048 - rate)) * 8.0f) \
/ sound_frequency); \
\
gs->frequency_step = frequency_step; \
gs->rate = rate; \
\
sweep_ticks = gs->sweep_initial_ticks; \
} \
gs->sweep_ticks = sweep_ticks; \
} \
#define update_tone_nosweep() \
#define update_tone_envelope() \
if(gs->envelope_status) \
{ \
u32 envelope_ticks = gs->envelope_ticks - 1; \
envelope_volume = gs->envelope_volume; \
\
if(envelope_ticks == 0) \
{ \
if(gs->envelope_direction) \
{ \
if(envelope_volume != 15) \
envelope_volume = gs->envelope_volume + 1; \
} \
else \
{ \
if(envelope_volume != 0) \
envelope_volume = gs->envelope_volume - 1; \
} \
\
update_volume(envelope); \
\
gs->envelope_volume = envelope_volume; \
gs->envelope_ticks = gs->envelope_initial_ticks; \
} \
else \
gs->envelope_ticks = envelope_ticks; \
} \
#define update_tone_noenvelope() \
#define update_tone_counters(envelope_op, sweep_op) \
tick_counter += gbc_sound_tick_step; \
if(tick_counter > 0xFFFF) \
{ \
if(gs->length_status) \
{ \
u32 length_ticks = gs->length_ticks - 1; \
gs->length_ticks = length_ticks; \
\
if(length_ticks == 0) \
{ \
gs->active_flag = 0; \
break; \
} \
} \
\
update_tone_##envelope_op(); \
update_tone_##sweep_op(); \
\
tick_counter &= 0xFFFF; \
} \
#define gbc_sound_render_sample_right() \
sound_buffer[buffer_index + 1] += (current_sample * volume_right) >> 22 \
#define gbc_sound_render_sample_left() \
sound_buffer[buffer_index] += (current_sample * volume_left) >> 22 \
#define gbc_sound_render_sample_both() \
gbc_sound_render_sample_right(); \
gbc_sound_render_sample_left() \
#define gbc_sound_render_samples(type, sample_length, envelope_op, sweep_op) \
for(i = 0; i < buffer_ticks; i++) \
{ \
current_sample = \
sample_data[fp16_16_to_u32(sample_index) % sample_length]; \
gbc_sound_render_sample_##type(); \
\
sample_index += frequency_step; \
buffer_index = (buffer_index + 2) % BUFFER_SIZE; \
\
update_tone_counters(envelope_op, sweep_op); \
} \
#define gbc_noise_wrap_full 32767
#define gbc_noise_wrap_half 126
#define get_noise_sample_full() \
current_sample = \
((s32)(noise_table15[fp16_16_to_u32(sample_index) >> 5] << \
(fp16_16_to_u32(sample_index) & 0x1F)) >> 31) ^ 0x07 \
#define get_noise_sample_half() \
current_sample = \
((s32)(noise_table7[fp16_16_to_u32(sample_index) >> 5] << \
(fp16_16_to_u32(sample_index) & 0x1F)) >> 31) ^ 0x07 \
#define gbc_sound_render_noise(type, noise_type, envelope_op, sweep_op) \
for(i = 0; i < buffer_ticks; i++) \
{ \
get_noise_sample_##noise_type(); \
gbc_sound_render_sample_##type(); \
\
sample_index += frequency_step; \
\
if(sample_index >= u32_to_fp16_16(gbc_noise_wrap_##noise_type)) \
sample_index -= u32_to_fp16_16(gbc_noise_wrap_##noise_type); \
\
buffer_index = (buffer_index + 2) % BUFFER_SIZE; \
update_tone_counters(envelope_op, sweep_op); \
} \
#define gbc_sound_render_channel(type, sample_length, envelope_op, sweep_op) \
buffer_index = gbc_sound_buffer_index; \
sample_index = gs->sample_index; \
frequency_step = gs->frequency_step; \
tick_counter = gs->tick_counter; \
\
update_volume(envelope_op); \
\
switch(gs->status) \
{ \
case GBC_SOUND_INACTIVE: \
break; \
\
case GBC_SOUND_LEFT: \
gbc_sound_render_##type(left, sample_length, envelope_op, sweep_op); \
break; \
\
case GBC_SOUND_RIGHT: \
gbc_sound_render_##type(right, sample_length, envelope_op, sweep_op); \
break; \
\
case GBC_SOUND_LEFTRIGHT: \
gbc_sound_render_##type(both, sample_length, envelope_op, sweep_op); \
break; \
} \
\
gs->sample_index = sample_index; \
gs->tick_counter = tick_counter; \
void render_gbc_sound()
{
u32 i, i2;
gbc_sound_struct *gs = gbc_sound_channel;
fixed16_16 sample_index, frequency_step;
fixed16_16 tick_counter;
u32 buffer_index;
s32 volume_left, volume_right;
u32 envelope_volume;
s32 current_sample;
u16 sound_status = read_ioreg(REG_SOUNDCNT_X) & 0xFFF0;
const s8 *sample_data;
u32 tick_delta = cpu_ticks - gbc_sound_last_cpu_ticks;
fixed16_16 buffer_ticks = float_to_fp16_16((float)(tick_delta) *
sound_frequency / GBC_BASE_RATE);
if (!tick_delta)
return;
gbc_update_count++;
gbc_sound_partial_ticks += fp16_16_fractional_part(buffer_ticks);
buffer_ticks = fp16_16_to_u32(buffer_ticks);
if(gbc_sound_partial_ticks > 0xFFFF)
{
buffer_ticks += 1;
gbc_sound_partial_ticks &= 0xFFFF;
}
if(sound_on == 1)
{
s8 *wave_bank;
gs = gbc_sound_channel + 0;
if(gs->active_flag)
{
sound_status |= 0x01;
sample_data = &square_pattern_duty[gs->sample_table_idx][0];
envelope_volume = gs->envelope_volume;
gbc_sound_render_channel(samples, 8, envelope, sweep);
}
gs = gbc_sound_channel + 1;
if(gs->active_flag)
{
sound_status |= 0x02;
sample_data = &square_pattern_duty[gs->sample_table_idx][0];
envelope_volume = gs->envelope_volume;
gbc_sound_render_channel(samples, 8, envelope, nosweep);
}
gs = gbc_sound_channel + 2;
if(gbc_sound_wave_update)
{
unsigned bank = (gs->wave_bank == 1) ? 1 : 0;
u8 *wave_ram = ((u8 *)io_registers) + 0x90;
wave_bank = wave_samples + (bank * 32);
for(i = 0, i2 = 0; i < 16; i++, i2 += 2)
{
current_sample = wave_ram[i];
wave_bank[i2] = (((current_sample >> 4) & 0x0F) - 8);
wave_bank[i2 + 1] = ((current_sample & 0x0F) - 8);
}
gbc_sound_wave_update = 0;
}
if((gs->active_flag) && (gs->master_enable))
{
sound_status |= 0x04;
sample_data = wave_samples;
if(gs->wave_type == 0)
{
if(gs->wave_bank == 1)
sample_data += 32;
gbc_sound_render_channel(samples, 32, noenvelope, nosweep);
}
else
{
gbc_sound_render_channel(samples, 64, noenvelope, nosweep);
}
}
gs = gbc_sound_channel + 3;
if(gs->active_flag)
{
sound_status |= 0x08;
envelope_volume = gs->envelope_volume;
if(gs->noise_type == 1)
{
gbc_sound_render_channel(noise, half, envelope, nosweep);
}
else
{
gbc_sound_render_channel(noise, full, envelope, nosweep);
}
}
}
write_ioreg(REG_SOUNDCNT_X, sound_status);
gbc_sound_last_cpu_ticks = cpu_ticks;
gbc_sound_buffer_index =
(gbc_sound_buffer_index + (buffer_ticks * 2)) % BUFFER_SIZE;
}
// Special thanks to blarrg for the LSFR frequency used in Meridian, as posted
// on the forum at http://meridian.overclocked.org:
// http://meridian.overclocked.org/cgi-bin/wwwthreads/showpost.pl?Board=merid
// angeneraldiscussion&Number=2069&page=0&view=expanded&mode=threaded&sb=4
// Hope you don't mind me borrowing it ^_-
static void init_noise_table(u32 *table, u32 period, u32 bit_length)
{
u32 shift_register = 0xFF;
u32 mask = ~(1 << bit_length);
s32 table_pos, bit_pos;
u32 current_entry;
u32 table_period = (period + 31) / 32;
// Bits are stored in reverse order so they can be more easily moved to
// bit 31, for sign extended shift down.
for(table_pos = 0; table_pos < table_period; table_pos++)
{
current_entry = 0;
for(bit_pos = 31; bit_pos >= 0; bit_pos--)
{
current_entry |= (shift_register & 0x01) << bit_pos;
shift_register =
((1 & (shift_register ^ (shift_register >> 1))) << bit_length) |
((shift_register >> 1) & mask);
}
table[table_pos] = current_entry;
}
}
void reset_sound(void)
{
direct_sound_struct *ds = direct_sound_channel;
gbc_sound_struct *gs = gbc_sound_channel;
u32 i;
sound_on = 0;
sound_buffer_base = 0;
memset(sound_buffer, 0, sizeof(sound_buffer));
for(i = 0; i < 2; i++, ds++)
{
ds->buffer_index = 0;
ds->status = DIRECT_SOUND_INACTIVE;
ds->fifo_top = 0;
ds->fifo_base = 0;
ds->fifo_fractional = 0;
ds->volume_halve = 1;
memset(ds->fifo, 0, 32);
}
gbc_sound_buffer_index = 0;
gbc_sound_last_cpu_ticks = 0;
gbc_sound_partial_ticks = 0;
gbc_sound_master_volume_left = 0;
gbc_sound_master_volume_right = 0;
gbc_sound_master_volume = 0;
memset(wave_samples, 0, 64);
memset(&gbc_sound_channel[0], 0, sizeof(gbc_sound_channel));
for(i = 0; i < 4; i++, gs++)
{
gs->status = GBC_SOUND_INACTIVE;
gs->sample_table_idx = 2;
gs->active_flag = 0;
}
}
void init_sound()
{
gbc_sound_tick_step =
float_to_fp16_16(256.0f / sound_frequency);
init_noise_table(noise_table15, 32767, 14);
init_noise_table(noise_table7, 127, 6);
reset_sound();
}
bool sound_check_savestate(const u8 *src)
{
static const char *gvars[] = {
"on", "buf-base", "gbc-buf-idx", "gbc-last-cpu-ticks",
"gbc-partial-ticks", "gbc-ms-vol-left", "gbc-ms-vol-right", "gbc-ms-vol"
};
static const char *dsvars[] = {
"status", "volume", "fifo-base", "fifo-top", "fifo-frac", "buf-idx"
};
static const char *gsvars[] = {
"status", "rate", "freq-step", "sample-idx", "tick-cnt", "volume",
"active", "enable", "env-vol0", "env-vol", "env-dir", "env-status",
"env-ticks0", "env-ticks", "sweep-status", "sweep-dir", "sweep-ticks0",
"sweep-ticks","sweep-shift", "wav-type", "wav-bank", "wav-vol",
"len-status", "len-ticks", "noise-type", "sample-tbl"
};
int i;
const u8 *snddoc = bson_find_key(src, "sound");
if (!snddoc)
return false;
for (i = 0; i < sizeof(gvars)/sizeof(gvars[0]); i++)
if (!bson_contains_key(snddoc, gvars[i], BSON_TYPE_INT32))
return false;
if (!bson_contains_key(snddoc, "wav-samples", BSON_TYPE_BIN))
return false;
for (i = 0; i < 2; i++)
{
char tn[4] = {'d', 's', '0' + i, 0};
const u8 *sndchan = bson_find_key(snddoc, tn);
if (!sndchan)
return false;
for (i = 0; i < sizeof(dsvars)/sizeof(dsvars[0]); i++)
if (!bson_contains_key(sndchan, dsvars[i], BSON_TYPE_INT32))
return false;
if (!bson_contains_key(sndchan, "fifo-bytes", BSON_TYPE_BIN))
return false;
}
for (i = 0; i < 4; i++)
{
char tn[4] = {'g', 's', '0' + i, 0};
const u8 *sndchan = bson_find_key(snddoc, tn);
if (!sndchan)
return false;
for (i = 0; i < sizeof(gsvars)/sizeof(gsvars[0]); i++)
if (!bson_contains_key(sndchan, gsvars[i], BSON_TYPE_INT32))
return false;
}
return true;
}
bool sound_read_savestate(const u8 *src)
{
int i;
const u8 *snddoc = bson_find_key(src, "sound");
if (!(
bson_read_int32(snddoc, "on", &sound_on) &&
bson_read_int32(snddoc, "buf-base", &sound_buffer_base) &&
bson_read_int32(snddoc, "gbc-buf-idx", &gbc_sound_buffer_index) &&
bson_read_int32(snddoc, "gbc-last-cpu-ticks", &gbc_sound_last_cpu_ticks) &&
bson_read_int32(snddoc, "gbc-partial-ticks", &gbc_sound_partial_ticks) &&
bson_read_int32(snddoc, "gbc-ms-vol-left", &gbc_sound_master_volume_left) &&
bson_read_int32(snddoc, "gbc-ms-vol-right", &gbc_sound_master_volume_right) &&
bson_read_int32(snddoc, "gbc-ms-vol", &gbc_sound_master_volume) &&
bson_read_bytes(snddoc, "wav-samples", wave_samples, sizeof(wave_samples))))
return false;
for (i = 0; i < 2; i++)
{
direct_sound_struct *ds = &direct_sound_channel[i];
char tn[4] = {'d', 's', '0' + i, 0};
const u8 *sndchan = bson_find_key(snddoc, tn);
if (!(
bson_read_int32(sndchan, "status", &ds->status) &&
bson_read_int32(sndchan, "volume", &ds->volume_halve) &&
bson_read_int32(sndchan, "fifo-base", &ds->fifo_base) &&
bson_read_int32(sndchan, "fifo-top", &ds->fifo_top) &&
bson_read_int32(sndchan, "fifo-frac", &ds->fifo_fractional) &&
bson_read_bytes(sndchan, "fifo-bytes", ds->fifo, sizeof(ds->fifo)) &&
bson_read_int32(sndchan, "buf-idx", &ds->buffer_index)))
return false;
}
for (i = 0; i < 4; i++)
{
gbc_sound_struct *gs = &gbc_sound_channel[i];
char tn[4] = {'g', 's', '0' + i, 0};
const u8 *sndchan = bson_find_key(snddoc, tn);
if (!(
bson_read_int32(sndchan, "status", &gs->status) &&
bson_read_int32(sndchan, "rate", &gs->rate) &&
bson_read_int32(sndchan, "freq-step", &gs->frequency_step) &&
bson_read_int32(sndchan, "sample-idx", &gs->sample_index) &&
bson_read_int32(sndchan, "tick-cnt", &gs->tick_counter) &&
bson_read_int32(sndchan, "volume", &gs->total_volume) &&
bson_read_int32(sndchan, "active", &gs->active_flag) &&
bson_read_int32(sndchan, "enable", &gs->master_enable) &&
bson_read_int32(sndchan, "env-vol0", &gs->envelope_initial_volume) &&
bson_read_int32(sndchan, "env-vol", &gs->envelope_volume) &&
bson_read_int32(sndchan, "env-dir", &gs->envelope_direction) &&
bson_read_int32(sndchan, "env-status", &gs->envelope_status) &&
bson_read_int32(sndchan, "env-ticks0", &gs->envelope_initial_ticks) &&
bson_read_int32(sndchan, "env-ticks", &gs->envelope_ticks) &&
bson_read_int32(sndchan, "sweep-status", &gs->sweep_status) &&
bson_read_int32(sndchan, "sweep-dir", &gs->sweep_direction) &&
bson_read_int32(sndchan, "sweep-ticks0", &gs->sweep_initial_ticks) &&
bson_read_int32(sndchan, "sweep-ticks", &gs->sweep_ticks) &&
bson_read_int32(sndchan, "sweep-shift", &gs->sweep_shift) &&
bson_read_int32(sndchan, "wav-type", &gs->wave_type) &&
bson_read_int32(sndchan, "wav-bank", &gs->wave_bank) &&
bson_read_int32(sndchan, "wav-vol", &gs->wave_volume) &&
bson_read_int32(sndchan, "len-status", &gs->length_status) &&
bson_read_int32(sndchan, "len-ticks", &gs->length_ticks) &&
bson_read_int32(sndchan, "noise-type", &gs->noise_type) &&
bson_read_int32(sndchan, "sample-tbl", &gs->sample_table_idx)))
return false;
}
return true;
}
unsigned sound_write_savestate(u8 *dst)
{
int i;
u8 *wbptr, *startp = dst;
bson_start_document(dst, "sound", wbptr);
bson_write_int32(dst, "on", sound_on);
bson_write_int32(dst, "buf-base", sound_buffer_base);
bson_write_int32(dst, "gbc-buf-idx", gbc_sound_buffer_index);
bson_write_int32(dst, "gbc-last-cpu-ticks", gbc_sound_last_cpu_ticks);
bson_write_int32(dst, "gbc-partial-ticks", gbc_sound_partial_ticks);
bson_write_int32(dst, "gbc-ms-vol-left", gbc_sound_master_volume_left);
bson_write_int32(dst, "gbc-ms-vol-right", gbc_sound_master_volume_right);
bson_write_int32(dst, "gbc-ms-vol", gbc_sound_master_volume);
bson_write_bytes(dst, "wav-samples", wave_samples, sizeof(wave_samples));
for (i = 0; i < 2; i++)
{
u8 *wbptr2;
char tn[4] = {'d', 's', '0' + i, 0};
bson_start_document(dst, tn, wbptr2);
bson_write_int32(dst, "status", direct_sound_channel[i].status);
bson_write_int32(dst, "volume", direct_sound_channel[i].volume_halve);
bson_write_int32(dst, "fifo-base", direct_sound_channel[i].fifo_base);
bson_write_int32(dst, "fifo-top", direct_sound_channel[i].fifo_top);
bson_write_int32(dst, "fifo-frac", direct_sound_channel[i].fifo_fractional);
bson_write_bytes(dst, "fifo-bytes", direct_sound_channel[i].fifo,
sizeof(direct_sound_channel[i].fifo));
bson_write_int32(dst, "buf-idx", direct_sound_channel[i].buffer_index);
bson_finish_document(dst, wbptr2);
}
for (i = 0; i < 4; i++)
{
gbc_sound_struct *gs = &gbc_sound_channel[i];
u8 *wbptr2;
char tn[4] = {'g', 's', '0' + i, 0};
bson_start_document(dst, tn, wbptr2);
bson_write_int32(dst, "status", gs->status);
bson_write_int32(dst, "rate", gs->rate);
bson_write_int32(dst, "freq-step", gs->frequency_step);
bson_write_int32(dst, "sample-idx", gs->sample_index);
bson_write_int32(dst, "tick-cnt", gs->tick_counter);
bson_write_int32(dst, "volume", gs->total_volume);
bson_write_int32(dst, "active", gs->active_flag);
bson_write_int32(dst, "enable", gs->master_enable);
bson_write_int32(dst, "env-vol0", gs->envelope_initial_volume);
bson_write_int32(dst, "env-vol", gs->envelope_volume);
bson_write_int32(dst, "env-dir", gs->envelope_direction);
bson_write_int32(dst, "env-status", gs->envelope_status);
bson_write_int32(dst, "env-ticks0", gs->envelope_initial_ticks);
bson_write_int32(dst, "env-ticks", gs->envelope_ticks);
bson_write_int32(dst, "sweep-status", gs->sweep_status);
bson_write_int32(dst, "sweep-dir", gs->sweep_direction);
bson_write_int32(dst, "sweep-ticks0", gs->sweep_initial_ticks);
bson_write_int32(dst, "sweep-ticks", gs->sweep_ticks);
bson_write_int32(dst, "sweep-shift", gs->sweep_shift);
bson_write_int32(dst, "wav-type", gs->wave_type);
bson_write_int32(dst, "wav-bank", gs->wave_bank);
bson_write_int32(dst, "wav-vol", gs->wave_volume);
bson_write_int32(dst, "len-status", gs->length_status);
bson_write_int32(dst, "len-ticks", gs->length_ticks);
bson_write_int32(dst, "noise-type", gs->noise_type);
bson_write_int32(dst, "sample-tbl", gs->sample_table_idx);
// No longer used fields, keep for backwards compatibility.
bson_write_int32(dst, "env-step", 0);
bson_finish_document(dst, wbptr2);
}
bson_finish_document(dst, wbptr);
return (unsigned int)(dst - startp);
}
u32 sound_read_samples(s16 *out, u32 frames)
{
u32 i;
u32 samples_to_read = frames << 1;
/* Get total number of samples in the buffer */
u32 samples_available = (gbc_sound_buffer_index - sound_buffer_base) & BUFFER_SIZE_MASK;
/* The last 512 samples are 'in use', and cannot
* be read out yet */
samples_available = (samples_available > 512) ? (samples_available - 512) : 0;
/* Available sample count must be an even number */
samples_available = (samples_available >> 1) << 1;
if (samples_to_read > samples_available)
samples_to_read = samples_available;
for(i = 0; i < samples_to_read; i++)
{
u32 source_index = (sound_buffer_base + i) & BUFFER_SIZE_MASK;
s32 current_sample = sound_buffer[source_index];
sound_buffer[source_index] = 0;
if(current_sample > 2047)
current_sample = 2047;
if(current_sample < -2048)
current_sample = -2048;
out[i] = current_sample * 16;
}
sound_buffer_base += samples_to_read;
sound_buffer_base &= BUFFER_SIZE_MASK;
/* Function returns number of frames read */
return (samples_to_read >> 1);
}