gpsp/cpu_threaded.c

3416 lines
229 KiB
C

/* gameplaySP
*
* Copyright (C) 2006 Exophase <exophase@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
// Not-so-important todo:
// - stm reglist writeback when base is in the list needs adjustment
// - block memory needs psr swapping and user mode reg swapping
#include "common.h"
#if defined(VITA)
#include <psp2/kernel/sysmem.h>
#include <stdio.h>
#elif defined(PS2)
#include <kernel.h>
#endif
u8 *last_rom_translation_ptr = NULL;
u8 *last_ram_translation_ptr = NULL;
#if defined(MMAP_JIT_CACHE)
u8* rom_translation_cache;
u8* ram_translation_cache;
u8 *rom_translation_ptr;
u8 *ram_translation_ptr;
#elif defined(VITA)
u8* rom_translation_cache;
u8* ram_translation_cache;
u8 *rom_translation_ptr;
u8 *ram_translation_ptr;
int sceBlock;
#elif defined(_3DS)
u8* rom_translation_cache_ptr;
u8* ram_translation_cache_ptr;
u8 *rom_translation_ptr = rom_translation_cache;
u8 *ram_translation_ptr = ram_translation_cache;
#else
u8 *rom_translation_ptr = rom_translation_cache;
u8 *ram_translation_ptr = ram_translation_cache;
#endif
/* Note, see stub files for more cache definitions */
u32 iwram_code_min = ~0U;
u32 iwram_code_max = 0U;
u32 ewram_code_min = ~0U;
u32 ewram_code_max = 0U;
#define INITIAL_ROM_WATERMARK 16 // To avoid NULL aliasing
u32 rom_cache_watermark = INITIAL_ROM_WATERMARK;
u8 *bios_swi_entrypoint = NULL;
// Contains an offset table to rom_translation cache area
// It features a chaining linked list for collisions
// The rom area has a small header section that contains:
// - PC value for the entry
// - Offset to the next entry (if any)
typedef struct
{
u32 pc_value;
u32 next_entry;
} hashhdr_type;
u32 rom_branch_hash[ROM_BRANCH_HASH_SIZE];
typedef struct
{
u8 *block_offset;
u16 flag_data;
u8 condition;
u8 update_cycles;
} block_data_type;
typedef struct
{
u32 branch_target;
u8 *branch_source;
} block_exit_type;
// Div (6) and DivArm (7)
#define is_div_swi(swinum) (((swinum) & 0xFE) == 0x06)
#define arm_decode_data_proc_reg(opcode) \
u32 rn = (opcode >> 16) & 0x0F; \
u32 rd = (opcode >> 12) & 0x0F; \
u32 rm = opcode & 0x0F \
#define arm_decode_data_proc_imm(opcode) \
u32 rn = (opcode >> 16) & 0x0F; \
u32 rd = (opcode >> 12) & 0x0F; \
u32 imm = opcode & 0xFF; \
u32 imm_ror = ((opcode >> 8) & 0x0F) * 2 \
#define arm_decode_psr_reg(opcode) \
u32 psr_pfield = ((opcode >> 16) & 1) | ((opcode >> 18) & 2); \
u32 rd = (opcode >> 12) & 0x0F; \
u32 rm = opcode & 0x0F \
#define arm_decode_psr_imm(opcode) \
u32 psr_pfield = ((opcode >> 16) & 1) | ((opcode >> 18) & 2); \
u32 rd = (opcode >> 12) & 0x0F; \
u32 imm = opcode & 0xFF; \
u32 imm_ror = ((opcode >> 8) & 0x0F) * 2 \
#define arm_decode_branchx(opcode) \
u32 rn = opcode & 0x0F \
#define arm_decode_multiply() \
u32 rd = (opcode >> 16) & 0x0F; \
u32 rn = (opcode >> 12) & 0x0F; \
u32 rs = (opcode >> 8) & 0x0F; \
u32 rm = opcode & 0x0F \
#define arm_decode_multiply_long() \
u32 rdhi = (opcode >> 16) & 0x0F; \
u32 rdlo = (opcode >> 12) & 0x0F; \
u32 rs = (opcode >> 8) & 0x0F; \
u32 rm = opcode & 0x0F \
#define arm_decode_swap() \
u32 rn = (opcode >> 16) & 0x0F; \
u32 rd = (opcode >> 12) & 0x0F; \
u32 rm = opcode & 0x0F \
#define arm_decode_half_trans_r() \
u32 rn = (opcode >> 16) & 0x0F; \
u32 rd = (opcode >> 12) & 0x0F; \
u32 rm = opcode & 0x0F \
#define arm_decode_half_trans_of() \
u32 rn = (opcode >> 16) & 0x0F; \
u32 rd = (opcode >> 12) & 0x0F; \
u32 offset = ((opcode >> 4) & 0xF0) | (opcode & 0x0F) \
#define arm_decode_data_trans_imm() \
u32 rn = (opcode >> 16) & 0x0F; \
u32 rd = (opcode >> 12) & 0x0F; \
u32 offset = opcode & 0x0FFF \
#define arm_decode_data_trans_reg() \
u32 rn = (opcode >> 16) & 0x0F; \
u32 rd = (opcode >> 12) & 0x0F; \
u32 rm = opcode & 0x0F \
#define arm_decode_block_trans() \
u32 rn = (opcode >> 16) & 0x0F; \
u32 reg_list = opcode & 0xFFFF \
#define arm_decode_branch() \
s32 offset = ((s32)(opcode & 0xFFFFFF) << 8) >> 6 \
#define thumb_decode_shift() \
u32 imm = (opcode >> 6) & 0x1F; \
u32 rs = (opcode >> 3) & 0x07; \
u32 rd = opcode & 0x07 \
#define thumb_decode_add_sub() \
u32 rn = (opcode >> 6) & 0x07; \
u32 rs = (opcode >> 3) & 0x07; \
u32 rd = opcode & 0x07 \
#define thumb_decode_add_sub_imm() \
u32 imm = (opcode >> 6) & 0x07; \
u32 rs = (opcode >> 3) & 0x07; \
u32 rd = opcode & 0x07 \
#define thumb_decode_imm() \
u32 imm = opcode & 0xFF \
#define thumb_decode_alu_op() \
u32 rs = (opcode >> 3) & 0x07; \
u32 rd = opcode & 0x07 \
#define thumb_decode_hireg_op() \
u32 rs = (opcode >> 3) & 0x0F; \
u32 rd = ((opcode >> 4) & 0x08) | (opcode & 0x07) \
#define thumb_decode_mem_reg() \
u32 ro = (opcode >> 6) & 0x07; \
u32 rb = (opcode >> 3) & 0x07; \
u32 rd = opcode & 0x07 \
#define thumb_decode_mem_imm() \
u32 imm = (opcode >> 6) & 0x1F; \
u32 rb = (opcode >> 3) & 0x07; \
u32 rd = opcode & 0x07 \
#define thumb_decode_add_sp() \
u32 imm = opcode & 0x7F \
#define thumb_decode_rlist() \
u32 reg_list = opcode & 0xFF \
#define thumb_decode_branch_cond() \
s32 offset = (s8)(opcode & 0xFF) \
#define thumb_decode_branch() \
u32 offset = opcode & 0x07FF \
/* Include the right emitter headers */
#if defined(MIPS_ARCH)
#include "mips/mips_emit.h"
#elif defined(ARM_ARCH)
#include "arm/arm_emit.h"
#elif defined(ARM64_ARCH)
#include "arm/arm64_emit.h"
#else
#include "x86/x86_emit.h"
#endif
/* Cache invalidation */
#if defined(PSP)
void platform_cache_sync(void *baseaddr, void *endptr) {
sceKernelDcacheWritebackRange(baseaddr, ((char*)endptr) - ((char*)baseaddr));
sceKernelIcacheInvalidateRange(baseaddr, ((char*)endptr) - ((char*)baseaddr));
}
#elif defined(PS2)
void platform_cache_sync(void *baseaddr, void *endptr) {
FlushCache(0); // Dcache flush
FlushCache(2); // Icache invalidate
}
#elif defined(VITA)
void platform_cache_sync(void *baseaddr, void *endptr) {
sceKernelSyncVMDomain(sceBlock, baseaddr, ((char*)endptr) - ((char*)baseaddr) + 64);
}
#elif defined(_3DS)
#include "3ds/3ds_utils.h"
void platform_cache_sync(void *baseaddr, void *endptr) {
ctr_flush_invalidate_cache();
}
#elif defined(ARM_ARCH) || defined(ARM64_ARCH)
void platform_cache_sync(void *baseaddr, void *endptr) {
__clear_cache(baseaddr, endptr);
}
#elif defined(MIPS_ARCH)
void platform_cache_sync(void *baseaddr, void *endptr) {
__builtin___clear_cache(baseaddr, endptr);
}
#else
/* x86 CPUs have icache consistency checks */
void platform_cache_sync(void *baseaddr, void *endptr) {}
#endif
void translate_icache_sync() {
// Cache emitted code can only grow
if (last_rom_translation_ptr < rom_translation_ptr) {
platform_cache_sync(last_rom_translation_ptr, rom_translation_ptr);
last_rom_translation_ptr = rom_translation_ptr;
}
if (last_ram_translation_ptr < ram_translation_ptr) {
platform_cache_sync(last_ram_translation_ptr, ram_translation_ptr);
last_ram_translation_ptr = ram_translation_ptr;
}
}
/* End of Cache invalidation */
#define check_pc_region(pc) \
new_pc_region = (pc >> 15); \
if(new_pc_region != pc_region) \
{ \
pc_region = new_pc_region; \
pc_address_block = memory_map_read[new_pc_region]; \
\
if(!pc_address_block) \
pc_address_block = load_gamepak_page(pc_region & 0x3FF); \
} \
#define translate_arm_instruction() \
check_pc_region(pc); \
opcode = readaddress32(pc_address_block, (pc & 0x7FFF)); \
condition = block_data[block_data_position].condition; \
printf("%x: %08x ", pc, opcode); \
if((condition != last_condition) || (condition >= 0x20)) \
{ \
if((last_condition & 0x0F) != 0x0E) \
{ \
generate_branch_patch_conditional(backpatch_address, translation_ptr); \
} \
\
last_condition = condition; \
\
condition &= 0x0F; \
\
if(condition != 0x0E) \
{ \
arm_conditional_block_header(); \
} \
} \
emit_trace_arm_instruction(pc); \
\
switch((opcode >> 20) & 0xFF) \
{ \
case 0x00: \
if((opcode & 0x90) == 0x90) \
{ \
if(opcode & 0x20) \
{ \
printf("STRH rd, [rn], -rm\n"); \
arm_access_memory(store, down, post, u16, half_reg); \
} \
else \
{ \
printf("MUL rd, rm, rs\n"); \
arm_multiply(no, no); \
cycle_count += 2; /* variable 1..4, pick 2 as an aprox. */ \
} \
} \
else \
{ \
printf("AND rd, rn, reg_op\n"); \
arm_data_proc(and, reg, no_flags); \
} \
break; \
\
case 0x01: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 0: \
printf("MULS rd, rm, rs\n"); \
arm_multiply(no, yes); \
cycle_count += 2; /* variable 1..4, pick 2 as an aprox. */ \
break; \
\
case 1: \
printf("LDRH rd, [rn], -rm\n"); \
arm_access_memory(load, down, post, u16, half_reg); \
break; \
\
case 2: \
printf("LDRSB rd, [rn], -rm\n"); \
arm_access_memory(load, down, post, s8, half_reg); \
break; \
\
case 3: \
printf("LDRSH rd, [rn], -rm\n"); \
arm_access_memory(load, down, post, s16, half_reg); \
break; \
} \
} \
else \
{ \
printf("ANDS rd, rn, reg_op\n"); \
arm_data_proc(ands, reg_flags, flags); \
} \
break; \
\
case 0x02: \
if((opcode & 0x90) == 0x90) \
{ \
if(opcode & 0x20) \
{ \
printf("STRH rd, [rn], -rm\n"); \
arm_access_memory(store, down, post, u16, half_reg); \
} \
else \
{ \
printf("MLA rd, rm, rs, rn\n"); \
arm_multiply(yes, no); \
cycle_count += 3; /* variable 2..5, pick 3 as an aprox. */ \
} \
} \
else \
{ \
printf("EOR rd, rn, reg_op\n"); \
arm_data_proc(eor, reg, no_flags); \
} \
break; \
\
case 0x03: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 0: \
printf("MLAS rd, rm, rs, rn\n"); \
arm_multiply(yes, yes); \
cycle_count += 3; printf("variable 2..5, pick 3 as an aprox.\n"); \
break; \
\
case 1: \
printf("LDRH rd, [rn], -rm\n"); \
arm_access_memory(load, down, post, u16, half_reg); \
break; \
\
case 2: \
printf("LDRSB rd, [rn], -rm\n"); \
arm_access_memory(load, down, post, s8, half_reg); \
break; \
\
case 3: \
printf("LDRSH rd, [rn], -rm\n"); \
arm_access_memory(load, down, post, s16, half_reg); \
break; \
} \
} \
else \
{ \
printf("EORS rd, rn, reg_op\n"); \
arm_data_proc(eors, reg_flags, flags); \
} \
break; \
\
case 0x04: \
if((opcode & 0x90) == 0x90) \
{ \
printf("STRH rd, [rn], -imm\n"); \
arm_access_memory(store, down, post, u16, half_imm); \
} \
else \
{ \
printf("SUB rd, rn, reg_op\n"); \
arm_data_proc(sub, reg, no_flags); \
} \
break; \
\
case 0x05: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 1: \
printf("LDRH rd, [rn], -imm\n"); \
arm_access_memory(load, down, post, u16, half_imm); \
break; \
\
case 2: \
printf("LDRSB rd, [rn], -imm\n"); \
arm_access_memory(load, down, post, s8, half_imm); \
break; \
\
case 3: \
printf("LDRSH rd, [rn], -imm\n"); \
arm_access_memory(load, down, post, s16, half_imm); \
break; \
} \
} \
else \
{ \
printf("SUBS rd, rn, reg_op\n"); \
arm_data_proc(subs, reg, flags); \
} \
break; \
\
case 0x06: \
if((opcode & 0x90) == 0x90) \
{ \
printf("STRH rd, [rn], -imm\n"); \
arm_access_memory(store, down, post, u16, half_imm); \
} \
else \
{ \
printf("RSB rd, rn, reg_op\n"); \
arm_data_proc(rsb, reg, no_flags); \
} \
break; \
\
case 0x07: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 1: \
printf("LDRH rd, [rn], -imm\n"); \
arm_access_memory(load, down, post, u16, half_imm); \
break; \
\
case 2: \
printf("LDRSB rd, [rn], -imm\n"); \
arm_access_memory(load, down, post, s8, half_imm); \
break; \
\
case 3: \
printf("LDRSH rd, [rn], -imm\n"); \
arm_access_memory(load, down, post, s16, half_imm); \
break; \
} \
} \
else \
{ \
printf("RSBS rd, rn, reg_op\n"); \
arm_data_proc(rsbs, reg, flags); \
} \
break; \
\
case 0x08: \
if((opcode & 0x90) == 0x90) \
{ \
if(opcode & 0x20) \
{ \
printf("STRH rd, [rn], +rm\n"); \
arm_access_memory(store, up, post, u16, half_reg); \
} \
else \
{ \
printf("UMULL rd, rm, rs\n"); \
arm_multiply_long(u64, no, no); \
cycle_count += 3; /* this is an aproximation :P */ \
} \
} \
else \
{ \
printf("ADD rd, rn, reg_op\n"); \
arm_data_proc(add, reg, no_flags); \
} \
break; \
\
case 0x09: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 0: \
printf("UMULLS rdlo, rdhi, rm, rs\n"); \
arm_multiply_long(u64, no, yes); \
cycle_count += 3; /* this is an aproximation :P */ \
break; \
\
case 1: \
printf("LDRH rd, [rn], +rm\n"); \
arm_access_memory(load, up, post, u16, half_reg); \
break; \
\
case 2: \
printf("LDRSB rd, [rn], +rm\n"); \
arm_access_memory(load, up, post, s8, half_reg); \
break; \
\
case 3: \
printf("LDRSH rd, [rn], +rm\n"); \
arm_access_memory(load, up, post, s16, half_reg); \
break; \
} \
} \
else \
{ \
printf("ADDS rd, rn, reg_op\n"); \
arm_data_proc(adds, reg, flags); \
} \
break; \
\
case 0x0A: \
if((opcode & 0x90) == 0x90) \
{ \
if(opcode & 0x20) \
{ \
printf("STRH rd, [rn], +rm\n"); \
arm_access_memory(store, up, post, u16, half_reg); \
} \
else \
{ \
printf("UMLAL rd, rm, rs\n"); \
arm_multiply_long(u64_add, yes, no); \
cycle_count += 3; /* Between 2 and 5 cycles? */ \
} \
} \
else \
{ \
printf("ADC rd, rn, reg_op\n"); \
arm_data_proc(adc, reg, no_flags); \
} \
break; \
\
case 0x0B: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 0: \
printf("UMLALS rdlo, rdhi, rm, rs\n"); \
arm_multiply_long(u64_add, yes, yes); \
cycle_count += 3; /* Between 2 and 5 cycles? */ \
break; \
\
case 1: \
printf("LDRH rd, [rn], +rm\n"); \
arm_access_memory(load, up, post, u16, half_reg); \
break; \
\
case 2: \
printf("LDRSB rd, [rn], +rm\n"); \
arm_access_memory(load, up, post, s8, half_reg); \
break; \
\
case 3: \
printf("LDRSH rd, [rn], +rm\n"); \
arm_access_memory(load, up, post, s16, half_reg); \
break; \
} \
} \
else \
{ \
printf("ADCS rd, rn, reg_op\n"); \
arm_data_proc(adcs, reg, flags); \
} \
break; \
\
case 0x0C: \
if((opcode & 0x90) == 0x90) \
{ \
if(opcode & 0x20) \
{ \
printf("STRH rd, [rn], +imm\n"); \
arm_access_memory(store, up, post, u16, half_imm); \
} \
else \
{ \
printf("SMULL rd, rm, rs\n"); \
arm_multiply_long(s64, no, no); \
cycle_count += 2; /* Between 1 and 4 cycles? */ \
} \
} \
else \
{ \
printf("SBC rd, rn, reg_op\n"); \
arm_data_proc(sbc, reg, no_flags); \
} \
break; \
\
case 0x0D: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 0: \
printf("SMULLS rdlo, rdhi, rm, rs\n"); \
arm_multiply_long(s64, no, yes); \
cycle_count += 2; /* Between 1 and 4 cycles? */ \
break; \
\
case 1: \
printf("LDRH rd, [rn], +imm\n"); \
arm_access_memory(load, up, post, u16, half_imm); \
break; \
\
case 2: \
printf("LDRSB rd, [rn], +imm\n"); \
arm_access_memory(load, up, post, s8, half_imm); \
break; \
\
case 3: \
printf("LDRSH rd, [rn], +imm\n"); \
arm_access_memory(load, up, post, s16, half_imm); \
break; \
} \
} \
else \
{ \
printf("SBCS rd, rn, reg_op\n"); \
arm_data_proc(sbcs, reg, flags); \
} \
break; \
\
case 0x0E: \
if((opcode & 0x90) == 0x90) \
{ \
if(opcode & 0x20) \
{ \
printf("STRH rd, [rn], +imm\n"); \
arm_access_memory(store, up, post, u16, half_imm); \
} \
else \
{ \
printf("SMLAL rd, rm, rs\n"); \
arm_multiply_long(s64_add, yes, no); \
cycle_count += 3; /* Between 2 and 5 cycles? */ \
} \
} \
else \
{ \
printf("RSC rd, rn, reg_op\n"); \
arm_data_proc(rsc, reg, no_flags); \
} \
break; \
\
case 0x0F: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 0: \
printf("SMLALS rdlo, rdhi, rm, rs\n"); \
arm_multiply_long(s64_add, yes, yes); \
cycle_count += 3; /* Between 2 and 5 cycles? */ \
break; \
\
case 1: \
printf("LDRH rd, [rn], +imm\n"); \
arm_access_memory(load, up, post, u16, half_imm); \
break; \
\
case 2: \
printf("LDRSB rd, [rn], +imm\n"); \
arm_access_memory(load, up, post, s8, half_imm); \
break; \
\
case 3: \
printf("LDRSH rd, [rn], +imm\n"); \
arm_access_memory(load, up, post, s16, half_imm); \
break; \
} \
} \
else \
{ \
printf("RSCS rd, rn, reg_op\n"); \
arm_data_proc(rscs, reg, flags); \
} \
break; \
\
case 0x10: \
if((opcode & 0x90) == 0x90) \
{ \
if(opcode & 0x20) \
{ \
printf("STRH rd, [rn - rm]\n"); \
arm_access_memory(store, down, pre, u16, half_reg); \
} \
else \
{ \
printf("SWP rd, rm, [rn]\n"); \
arm_swap(u32); \
} \
} \
else \
{ \
printf("MRS rd, cpsr\n"); \
arm_psr(reg, read, cpsr); \
} \
break; \
\
case 0x11: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 1: \
printf("LDRH rd, [rn - rm]\n"); \
arm_access_memory(load, down, pre, u16, half_reg); \
break; \
\
case 2: \
printf("LDRSB rd, [rn - rm]\n"); \
arm_access_memory(load, down, pre, s8, half_reg); \
break; \
\
case 3: \
printf("LDRSH rd, [rn - rm]\n"); \
arm_access_memory(load, down, pre, s16, half_reg); \
break; \
} \
} \
else \
{ \
printf("TST rd, rn, reg_op\n"); \
arm_data_proc_test(tst, reg_flags); \
} \
break; \
\
case 0x12: \
if((opcode & 0x90) == 0x90) \
{ \
printf("STRH rd, [rn - rm]!\n"); \
arm_access_memory(store, down, pre_wb, u16, half_reg); \
} \
else \
{ \
if(opcode & 0x10) \
{ \
printf("BX rn\n"); \
arm_bx(); \
} \
else \
{ \
printf("MSR cpsr, rm\n"); \
arm_psr(reg, store, cpsr); \
} \
} \
break; \
\
case 0x13: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 1: \
printf("LDRH rd, [rn - rm]!\n"); \
arm_access_memory(load, down, pre_wb, u16, half_reg); \
break; \
\
case 2: \
printf("LDRSB rd, [rn - rm]!\n"); \
arm_access_memory(load, down, pre_wb, s8, half_reg); \
break; \
\
case 3: \
printf("LDRSH rd, [rn - rm]!\n"); \
arm_access_memory(load, down, pre_wb, s16, half_reg); \
break; \
} \
} \
else \
{ \
printf("TEQ rd, rn, reg_op\n"); \
arm_data_proc_test(teq, reg_flags); \
} \
break; \
\
case 0x14: \
if((opcode & 0x90) == 0x90) \
{ \
if(opcode & 0x20) \
{ \
printf("STRH rd, [rn - imm]\n"); \
arm_access_memory(store, down, pre, u16, half_imm); \
} \
else \
{ \
printf("SWPB rd, rm, [rn]\n"); \
arm_swap(u8); \
} \
} \
else \
{ \
printf("MRS rd, spsr\n"); \
arm_psr(reg, read, spsr); \
} \
break; \
\
case 0x15: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 1: \
printf("LDRH rd, [rn - imm]\n"); \
arm_access_memory(load, down, pre, u16, half_imm); \
break; \
\
case 2: \
printf("LDRSB rd, [rn - imm]\n"); \
arm_access_memory(load, down, pre, s8, half_imm); \
break; \
\
case 3: \
printf("LDRSH rd, [rn - imm]\n"); \
arm_access_memory(load, down, pre, s16, half_imm); \
break; \
} \
} \
else \
{ \
printf("CMP rn, reg_op\n"); \
arm_data_proc_test(cmp, reg); \
} \
break; \
\
case 0x16: \
if((opcode & 0x90) == 0x90) \
{ \
printf("STRH rd, [rn - imm]!\n"); \
arm_access_memory(store, down, pre_wb, u16, half_imm); \
} \
else \
{ \
printf("MSR spsr, rm\n"); \
arm_psr(reg, store, spsr); \
} \
break; \
\
case 0x17: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 1: \
printf("LDRH rd, [rn - imm]!\n"); \
arm_access_memory(load, down, pre_wb, u16, half_imm); \
break; \
\
case 2: \
printf("LDRSB rd, [rn - imm]!\n"); \
arm_access_memory(load, down, pre_wb, s8, half_imm); \
break; \
\
case 3: \
printf("LDRSH rd, [rn - imm]!\n"); \
arm_access_memory(load, down, pre_wb, s16, half_imm); \
break; \
} \
} \
else \
{ \
printf("CMN rd, rn, reg_op\n"); \
arm_data_proc_test(cmn, reg); \
} \
break; \
\
case 0x18: \
if((opcode & 0x90) == 0x90) \
{ \
printf("STRH rd, [rn + rm]\n"); \
arm_access_memory(store, up, pre, u16, half_reg); \
} \
else \
{ \
printf("ORR rd, rn, reg_op\n"); \
arm_data_proc(orr, reg, no_flags); \
} \
break; \
\
case 0x19: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 1: \
printf("LDRH rd, [rn + rm]\n"); \
arm_access_memory(load, up, pre, u16, half_reg); \
break; \
\
case 2: \
printf("LDRSB rd, [rn + rm]\n"); \
arm_access_memory(load, up, pre, s8, half_reg); \
break; \
\
case 3: \
printf("LDRSH rd, [rn + rm]\n"); \
arm_access_memory(load, up, pre, s16, half_reg); \
break; \
} \
} \
else \
{ \
printf("ORRS rd, rn, reg_op\n"); \
arm_data_proc(orrs, reg_flags, flags); \
} \
break; \
\
case 0x1A: \
if((opcode & 0x90) == 0x90) \
{ \
printf("STRH rd, [rn + rm]!\n"); \
arm_access_memory(store, up, pre_wb, u16, half_reg); \
} \
else \
{ \
printf("MOV rd, reg_op\n"); \
arm_data_proc_unary(mov, reg, no_flags); \
} \
break; \
\
case 0x1B: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 1: \
printf("LDRH rd, [rn + rm]!\n"); \
arm_access_memory(load, up, pre_wb, u16, half_reg); \
break; \
\
case 2: \
printf("LDRSB rd, [rn + rm]!\n"); \
arm_access_memory(load, up, pre_wb, s8, half_reg); \
break; \
\
case 3: \
printf("LDRSH rd, [rn + rm]!\n"); \
arm_access_memory(load, up, pre_wb, s16, half_reg); \
break; \
} \
} \
else \
{ \
printf("MOVS rd, reg_op\n"); \
arm_data_proc_unary(movs, reg_flags, flags); \
} \
break; \
\
case 0x1C: \
if((opcode & 0x90) == 0x90) \
{ \
printf("STRH rd, [rn + imm]\n"); \
arm_access_memory(store, up, pre, u16, half_imm); \
} \
else \
{ \
printf("BIC rd, rn, reg_op\n"); \
arm_data_proc(bic, reg, no_flags); \
} \
break; \
\
case 0x1D: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 1: \
printf("LDRH rd, [rn + imm]\n"); \
arm_access_memory(load, up, pre, u16, half_imm); \
break; \
\
case 2: \
printf("LDRSB rd, [rn + imm]\n"); \
arm_access_memory(load, up, pre, s8, half_imm); \
break; \
\
case 3: \
printf("LDRSH rd, [rn + imm]\n"); \
arm_access_memory(load, up, pre, s16, half_imm); \
break; \
} \
} \
else \
{ \
printf("BICS rd, rn, reg_op\n"); \
arm_data_proc(bics, reg_flags, flags); \
} \
break; \
\
case 0x1E: \
if((opcode & 0x90) == 0x90) \
{ \
printf("STRH rd, [rn + imm]!\n"); \
arm_access_memory(store, up, pre_wb, u16, half_imm); \
} \
else \
{ \
printf("MVN rd, reg_op\n"); \
arm_data_proc_unary(mvn, reg, no_flags); \
} \
break; \
\
case 0x1F: \
if((opcode & 0x90) == 0x90) \
{ \
switch((opcode >> 5) & 0x03) \
{ \
case 1: \
printf("LDRH rd, [rn + imm]!\n"); \
arm_access_memory(load, up, pre_wb, u16, half_imm); \
break; \
\
case 2: \
printf("LDRSB rd, [rn + imm]!\n"); \
arm_access_memory(load, up, pre_wb, s8, half_imm); \
break; \
\
case 3: \
printf("LDRSH rd, [rn + imm]!\n"); \
arm_access_memory(load, up, pre_wb, s16, half_imm); \
break; \
} \
} \
else \
{ \
printf("MVNS rd, rn, reg_op\n"); \
arm_data_proc_unary(mvns, reg_flags, flags); \
} \
break; \
\
case 0x20: \
printf("AND rd, rn, imm\n"); \
arm_data_proc(and, imm, no_flags); \
break; \
\
case 0x21: \
printf("ANDS rd, rn, imm\n"); \
arm_data_proc(ands, imm_flags, flags); \
break; \
\
case 0x22: \
printf("EOR rd, rn, imm\n"); \
arm_data_proc(eor, imm, no_flags); \
break; \
\
case 0x23: \
printf("EORS rd, rn, imm\n"); \
arm_data_proc(eors, imm_flags, flags); \
break; \
\
case 0x24: \
printf("SUB rd, rn, imm\n"); \
arm_data_proc(sub, imm, no_flags); \
break; \
\
case 0x25: \
printf("SUBS rd, rn, imm\n"); \
arm_data_proc(subs, imm, flags); \
break; \
\
case 0x26: \
printf("RSB rd, rn, imm\n"); \
arm_data_proc(rsb, imm, no_flags); \
break; \
\
case 0x27: \
printf("RSBS rd, rn, imm\n"); \
arm_data_proc(rsbs, imm, flags); \
break; \
\
case 0x28: \
printf("ADD rd, rn, imm\n"); \
arm_data_proc(add, imm, no_flags); \
break; \
\
case 0x29: \
printf("ADDS rd, rn, imm\n"); \
arm_data_proc(adds, imm, flags); \
break; \
\
case 0x2A: \
printf("ADC rd, rn, imm\n"); \
arm_data_proc(adc, imm, no_flags); \
break; \
\
case 0x2B: \
printf("ADCS rd, rn, imm\n"); \
arm_data_proc(adcs, imm, flags); \
break; \
\
case 0x2C: \
printf("SBC rd, rn, imm\n"); \
arm_data_proc(sbc, imm, no_flags); \
break; \
\
case 0x2D: \
printf("SBCS rd, rn, imm\n"); \
arm_data_proc(sbcs, imm, flags); \
break; \
\
case 0x2E: \
printf("RSC rd, rn, imm\n"); \
arm_data_proc(rsc, imm, no_flags); \
break; \
\
case 0x2F: \
printf("RSCS rd, rn, imm\n"); \
arm_data_proc(rscs, imm, flags); \
break; \
\
case 0x30 ... 0x31: \
printf("TST rn, imm\n"); \
arm_data_proc_test(tst, imm); \
break; \
\
case 0x32: \
printf("MSR cpsr, imm\n"); \
arm_psr(imm, store, cpsr); \
break; \
\
case 0x33: \
printf("TEQ rn, imm\n"); \
arm_data_proc_test(teq, imm); \
break; \
\
case 0x34 ... 0x35: \
printf("CMP rn, imm\n"); \
arm_data_proc_test(cmp, imm); \
break; \
\
case 0x36: \
printf("MSR spsr, imm\n"); \
arm_psr(imm, store, spsr); \
break; \
\
case 0x37: \
printf("CMN rn, imm\n"); \
arm_data_proc_test(cmn, imm); \
break; \
\
case 0x38: \
printf("ORR rd, rn, imm\n"); \
arm_data_proc(orr, imm, no_flags); \
break; \
\
case 0x39: \
printf("ORRS rd, rn, imm\n"); \
arm_data_proc(orrs, imm_flags, flags); \
break; \
\
case 0x3A: \
printf("MOV rd, imm\n"); \
arm_data_proc_unary(mov, imm, no_flags); \
break; \
\
case 0x3B: \
printf("MOVS rd, imm\n"); \
arm_data_proc_unary(movs, imm_flags, flags); \
break; \
\
case 0x3C: \
printf("BIC rd, rn, imm\n"); \
arm_data_proc(bic, imm, no_flags); \
break; \
\
case 0x3D: \
printf("BICS rd, rn, imm\n"); \
arm_data_proc(bics, imm_flags, flags); \
break; \
\
case 0x3E: \
printf("MVN rd, imm\n"); \
arm_data_proc_unary(mvn, imm, no_flags); \
break; \
\
case 0x3F: \
printf("MVNS rd, imm\n"); \
arm_data_proc_unary(mvns, imm_flags, flags); \
break; \
\
case 0x40: \
printf("STR rd, [rn], -imm\n"); \
arm_access_memory(store, down, post, u32, imm); \
break; \
\
case 0x41: \
printf("LDR rd, [rn], -imm\n"); \
arm_access_memory(load, down, post, u32, imm); \
break; \
\
case 0x42: \
printf("STRT rd, [rn], -imm\n"); \
arm_access_memory(store, down, post, u32, imm); \
break; \
\
case 0x43: \
printf("LDRT rd, [rn], -imm\n"); \
arm_access_memory(load, down, post, u32, imm); \
break; \
\
case 0x44: \
printf("STRB rd, [rn], -imm\n"); \
arm_access_memory(store, down, post, u8, imm); \
break; \
\
case 0x45: \
printf("LDRB rd, [rn], -imm\n"); \
arm_access_memory(load, down, post, u8, imm); \
break; \
\
case 0x46: \
printf("STRBT rd, [rn], -imm\n"); \
arm_access_memory(store, down, post, u8, imm); \
break; \
\
case 0x47: \
printf("LDRBT rd, [rn], -imm\n"); \
arm_access_memory(load, down, post, u8, imm); \
break; \
\
case 0x48: \
printf("STR rd, [rn], +imm\n"); \
arm_access_memory(store, up, post, u32, imm); \
break; \
\
case 0x49: \
printf("LDR rd, [rn], +imm\n"); \
arm_access_memory(load, up, post, u32, imm); \
break; \
\
case 0x4A: \
printf("STRT rd, [rn], +imm\n"); \
arm_access_memory(store, up, post, u32, imm); \
break; \
\
case 0x4B: \
printf("LDRT rd, [rn], +imm\n"); \
arm_access_memory(load, up, post, u32, imm); \
break; \
\
case 0x4C: \
printf("STRB rd, [rn], +imm\n"); \
arm_access_memory(store, up, post, u8, imm); \
break; \
\
case 0x4D: \
printf("LDRB rd, [rn], +imm\n"); \
arm_access_memory(load, up, post, u8, imm); \
break; \
\
case 0x4E: \
printf("STRBT rd, [rn], +imm\n"); \
arm_access_memory(store, up, post, u8, imm); \
break; \
\
case 0x4F: \
printf("LDRBT rd, [rn], +imm\n"); \
arm_access_memory(load, up, post, u8, imm); \
break; \
\
case 0x50: \
printf("STR rd, [rn - imm]\n"); \
arm_access_memory(store, down, pre, u32, imm); \
break; \
\
case 0x51: \
printf("LDR rd, [rn - imm]\n"); \
arm_access_memory(load, down, pre, u32, imm); \
break; \
\
case 0x52: \
printf("STR rd, [rn - imm]!\n"); \
arm_access_memory(store, down, pre_wb, u32, imm); \
break; \
\
case 0x53: \
printf("LDR rd, [rn - imm]!\n"); \
arm_access_memory(load, down, pre_wb, u32, imm); \
break; \
\
case 0x54: \
printf("STRB rd, [rn - imm]\n"); \
arm_access_memory(store, down, pre, u8, imm); \
break; \
\
case 0x55: \
printf("LDRB rd, [rn - imm]\n"); \
arm_access_memory(load, down, pre, u8, imm); \
break; \
\
case 0x56: \
printf("STRB rd, [rn - imm]!\n"); \
arm_access_memory(store, down, pre_wb, u8, imm); \
break; \
\
case 0x57: \
printf("LDRB rd, [rn - imm]!\n"); \
arm_access_memory(load, down, pre_wb, u8, imm); \
break; \
\
case 0x58: \
printf("STR rd, [rn + imm]\n"); \
arm_access_memory(store, up, pre, u32, imm); \
break; \
\
case 0x59: \
printf("LDR rd, [rn + imm]\n"); \
arm_access_memory(load, up, pre, u32, imm); \
break; \
\
case 0x5A: \
printf("STR rd, [rn + imm]!\n"); \
arm_access_memory(store, up, pre_wb, u32, imm); \
break; \
\
case 0x5B: \
printf("LDR rd, [rn + imm]!\n"); \
arm_access_memory(load, up, pre_wb, u32, imm); \
break; \
\
case 0x5C: \
printf("STRB rd, [rn + imm]\n"); \
arm_access_memory(store, up, pre, u8, imm); \
break; \
\
case 0x5D: \
printf("LDRB rd, [rn + imm]\n"); \
arm_access_memory(load, up, pre, u8, imm); \
break; \
\
case 0x5E: \
printf("STRB rd, [rn + imm]!\n"); \
arm_access_memory(store, up, pre_wb, u8, imm); \
break; \
\
case 0x5F: \
printf("LDRBT rd, [rn + imm]!\n"); \
arm_access_memory(load, up, pre_wb, u8, imm); \
break; \
\
case 0x60: \
printf("STR rd, [rn], -rm\n"); \
arm_access_memory(store, down, post, u32, reg); \
break; \
\
case 0x61: \
printf("LDR rd, [rn], -rm\n"); \
arm_access_memory(load, down, post, u32, reg); \
break; \
\
case 0x62: \
printf("STRT rd, [rn], -rm\n"); \
arm_access_memory(store, down, post, u32, reg); \
break; \
\
case 0x63: \
printf("LDRT rd, [rn], -rm\n"); \
arm_access_memory(load, down, post, u32, reg); \
break; \
\
case 0x64: \
printf("STRB rd, [rn], -rm\n"); \
arm_access_memory(store, down, post, u8, reg); \
break; \
\
case 0x65: \
printf("LDRB rd, [rn], -rm\n"); \
arm_access_memory(load, down, post, u8, reg); \
break; \
\
case 0x66: \
printf("STRBT rd, [rn], -rm\n"); \
arm_access_memory(store, down, post, u8, reg); \
break; \
\
case 0x67: \
printf("LDRBT rd, [rn], -rm\n"); \
arm_access_memory(load, down, post, u8, reg); \
break; \
\
case 0x68: \
printf("STR rd, [rn], +rm\n"); \
arm_access_memory(store, up, post, u32, reg); \
break; \
\
case 0x69: \
printf("LDR rd, [rn], +rm\n"); \
arm_access_memory(load, up, post, u32, reg); \
break; \
\
case 0x6A: \
printf("STRT rd, [rn], +rm\n"); \
arm_access_memory(store, up, post, u32, reg); \
break; \
\
case 0x6B: \
printf("LDRT rd, [rn], +rm\n"); \
arm_access_memory(load, up, post, u32, reg); \
break; \
\
case 0x6C: \
printf("STRB rd, [rn], +rm\n"); \
arm_access_memory(store, up, post, u8, reg); \
break; \
\
case 0x6D: \
printf("LDRB rd, [rn], +rm\n"); \
arm_access_memory(load, up, post, u8, reg); \
break; \
\
case 0x6E: \
printf("STRBT rd, [rn], +rm\n"); \
arm_access_memory(store, up, post, u8, reg); \
break; \
\
case 0x6F: \
printf("LDRBT rd, [rn], +rm\n"); \
arm_access_memory(load, up, post, u8, reg); \
break; \
\
case 0x70: \
printf("STR rd, [rn - rm]\n"); \
arm_access_memory(store, down, pre, u32, reg); \
break; \
\
case 0x71: \
printf("LDR rd, [rn - rm]\n"); \
arm_access_memory(load, down, pre, u32, reg); \
break; \
\
case 0x72: \
printf("STR rd, [rn - rm]!\n"); \
arm_access_memory(store, down, pre_wb, u32, reg); \
break; \
\
case 0x73: \
printf("LDR rd, [rn - rm]!\n"); \
arm_access_memory(load, down, pre_wb, u32, reg); \
break; \
\
case 0x74: \
printf("STRB rd, [rn - rm]\n"); \
arm_access_memory(store, down, pre, u8, reg); \
break; \
\
case 0x75: \
printf("LDRB rd, [rn - rm]\n"); \
arm_access_memory(load, down, pre, u8, reg); \
break; \
\
case 0x76: \
printf("STRB rd, [rn - rm]!\n"); \
arm_access_memory(store, down, pre_wb, u8, reg); \
break; \
\
case 0x77: \
printf("LDRB rd, [rn - rm]!\n"); \
arm_access_memory(load, down, pre_wb, u8, reg); \
break; \
\
case 0x78: \
printf("STR rd, [rn + rm]\n"); \
arm_access_memory(store, up, pre, u32, reg); \
break; \
\
case 0x79: \
printf("LDR rd, [rn + rm]\n"); \
arm_access_memory(load, up, pre, u32, reg); \
break; \
\
case 0x7A: \
printf("STR rd, [rn + rm]!\n"); \
arm_access_memory(store, up, pre_wb, u32, reg); \
break; \
\
case 0x7B: \
printf("LDR rd, [rn + rm]!\n"); \
arm_access_memory(load, up, pre_wb, u32, reg); \
break; \
\
case 0x7C: \
printf("STRB rd, [rn + rm]\n"); \
arm_access_memory(store, up, pre, u8, reg); \
break; \
\
case 0x7D: \
printf("LDRB rd, [rn + rm]\n"); \
arm_access_memory(load, up, pre, u8, reg); \
break; \
\
case 0x7E: \
printf("STRB rd, [rn + rm]!\n"); \
arm_access_memory(store, up, pre_wb, u8, reg); \
break; \
\
case 0x7F: \
printf("LDRBT rd, [rn + rm]!\n"); \
arm_access_memory(load, up, pre_wb, u8, reg); \
break; \
\
case 0x80: \
printf("STMDA rn, rlist\n"); \
arm_block_memory(store, down_a, no, no); \
break; \
\
case 0x81: \
printf("LDMDA rn, rlist\n"); \
arm_block_memory(load, down_a, no, no); \
break; \
\
case 0x82: \
printf("STMDA rn!, rlist\n"); \
arm_block_memory(store, down_a, down, no); \
break; \
\
case 0x83: \
printf("LDMDA rn!, rlist\n"); \
arm_block_memory(load, down_a, down, no); \
break; \
\
case 0x84: \
printf("STMDA rn, rlist^\n"); \
arm_block_memory(store, down_a, no, yes); \
break; \
\
case 0x85: \
printf("LDMDA rn, rlist^\n"); \
arm_block_memory(load, down_a, no, yes); \
break; \
\
case 0x86: \
printf("STMDA rn!, rlist^\n"); \
arm_block_memory(store, down_a, down, yes); \
break; \
\
case 0x87: \
printf("LDMDA rn!, rlist^\n"); \
arm_block_memory(load, down_a, down, yes); \
break; \
\
case 0x88: \
printf("STMIA rn, rlist\n"); \
arm_block_memory(store, no, no, no); \
break; \
\
case 0x89: \
printf("LDMIA rn, rlist\n"); \
arm_block_memory(load, no, no, no); \
break; \
\
case 0x8A: \
printf("STMIA rn!, rlist\n"); \
arm_block_memory(store, no, up, no); \
break; \
\
case 0x8B: \
printf("LDMIA rn!, rlist\n"); \
arm_block_memory(load, no, up, no); \
break; \
\
case 0x8C: \
printf("STMIA rn, rlist^\n"); \
arm_block_memory(store, no, no, yes); \
break; \
\
case 0x8D: \
printf("LDMIA rn, rlist^\n"); \
arm_block_memory(load, no, no, yes); \
break; \
\
case 0x8E: \
printf("STMIA rn!, rlist^\n"); \
arm_block_memory(store, no, up, yes); \
break; \
\
case 0x8F: \
printf("LDMIA rn!, rlist^\n"); \
arm_block_memory(load, no, up, yes); \
break; \
\
case 0x90: \
printf("STMDB rn, rlist\n"); \
arm_block_memory(store, down_b, no, no); \
break; \
\
case 0x91: \
printf("LDMDB rn, rlist\n"); \
arm_block_memory(load, down_b, no, no); \
break; \
\
case 0x92: \
printf("STMDB rn!, rlist\n"); \
arm_block_memory(store, down_b, down, no); \
break; \
\
case 0x93: \
printf("LDMDB rn!, rlist\n"); \
arm_block_memory(load, down_b, down, no); \
break; \
\
case 0x94: \
printf("STMDB rn, rlist^\n"); \
arm_block_memory(store, down_b, no, yes); \
break; \
\
case 0x95: \
printf("LDMDB rn, rlist^\n"); \
arm_block_memory(load, down_b, no, yes); \
break; \
\
case 0x96: \
printf("STMDB rn!, rlist^\n"); \
arm_block_memory(store, down_b, down, yes); \
break; \
\
case 0x97: \
printf("LDMDB rn!, rlist^\n"); \
arm_block_memory(load, down_b, down, yes); \
break; \
\
case 0x98: \
printf("STMIB rn, rlist\n"); \
arm_block_memory(store, up, no, no); \
break; \
\
case 0x99: \
printf("LDMIB rn, rlist\n"); \
arm_block_memory(load, up, no, no); \
break; \
\
case 0x9A: \
printf("STMIB rn!, rlist\n"); \
arm_block_memory(store, up, up, no); \
break; \
\
case 0x9B: \
printf("LDMIB rn!, rlist\n"); \
arm_block_memory(load, up, up, no); \
break; \
\
case 0x9C: \
printf("STMIB rn, rlist^\n"); \
arm_block_memory(store, up, no, yes); \
break; \
\
case 0x9D: \
printf("LDMIB rn, rlist^\n"); \
arm_block_memory(load, up, no, yes); \
break; \
\
case 0x9E: \
printf("STMIB rn!, rlist^\n"); \
arm_block_memory(store, up, up, yes); \
break; \
\
case 0x9F: \
printf("LDMIB rn!, rlist^\n"); \
arm_block_memory(load, up, up, yes); \
break; \
\
case 0xA0 ... 0xAF: \
{ \
printf("B offset\n"); \
arm_b(); \
break; \
} \
\
case 0xB0 ... 0xBF: \
{ \
printf("BL offset\n"); \
arm_bl(); \
break; \
} \
\
case 0xF0 ... 0xFF: \
{ \
u32 swinum = (opcode >> 16) & 0xFF; \
if (swinum == 6) { \
cycle_count += 64; printf("Big under-estimation here\n"); \
arm_hle_div(arm); \
} \
else if (swinum == 7) { \
cycle_count += 64; printf("Big under-estimation here\n"); \
arm_hle_div_arm(arm); \
} \
else { \
arm_swi(); \
} \
break; \
} \
} \
\
pc += 4 \
#define arm_flag_status() \
#define translate_thumb_instruction() \
flag_status = block_data[block_data_position].flag_data; \
check_pc_region(pc); \
last_opcode = opcode; \
opcode = readaddress16(pc_address_block, (pc & 0x7FFF)); \
emit_trace_thumb_instruction(pc); \
u8 hiop = opcode >> 8; \
printf("%x: %04x ", pc, opcode); \
switch(hiop) \
{ \
case 0x00 ... 0x07: \
printf("LSL rd, rs, imm\n"); \
thumb_shift(shift, lsl, imm); \
break; \
\
case 0x08 ... 0x0F: \
printf("LSR rd, rs, imm\n"); \
thumb_shift(shift, lsr, imm); \
break; \
\
case 0x10 ... 0x17: \
printf("ASR rd, rs, imm\n"); \
thumb_shift(shift, asr, imm); \
break; \
\
case 0x18 ... 0x19: \
printf("ADD rd, rs, rn\n"); \
thumb_data_proc(add_sub, adds, reg, rd, rs, rn); \
break; \
\
case 0x1A ... 0x1B: \
printf("SUB rd, rs, rn\n"); \
thumb_data_proc(add_sub, subs, reg, rd, rs, rn); \
break; \
\
case 0x1C ... 0x1D: \
printf("ADD rd, rs, imm\n"); \
thumb_data_proc(add_sub_imm, adds, imm, rd, rs, imm); \
break; \
\
case 0x1E ... 0x1F: \
printf("SUB rd, rs, imm\n"); \
thumb_data_proc(add_sub_imm, subs, imm, rd, rs, imm); \
break; \
\
printf("MOV r0..7, imm\n"); \
case 0x20: thumb_data_proc_unary(imm, movs, imm, 0, imm); break; \
case 0x21: thumb_data_proc_unary(imm, movs, imm, 1, imm); break; \
case 0x22: thumb_data_proc_unary(imm, movs, imm, 2, imm); break; \
case 0x23: thumb_data_proc_unary(imm, movs, imm, 3, imm); break; \
case 0x24: thumb_data_proc_unary(imm, movs, imm, 4, imm); break; \
case 0x25: thumb_data_proc_unary(imm, movs, imm, 5, imm); break; \
case 0x26: thumb_data_proc_unary(imm, movs, imm, 6, imm); break; \
case 0x27: thumb_data_proc_unary(imm, movs, imm, 7, imm); break; \
\
printf("CMP r0, imm\n"); \
case 0x28: thumb_data_proc_test(imm, cmp, imm, 0, imm); break; \
case 0x29: thumb_data_proc_test(imm, cmp, imm, 1, imm); break; \
case 0x2A: thumb_data_proc_test(imm, cmp, imm, 2, imm); break; \
case 0x2B: thumb_data_proc_test(imm, cmp, imm, 3, imm); break; \
case 0x2C: thumb_data_proc_test(imm, cmp, imm, 4, imm); break; \
case 0x2D: thumb_data_proc_test(imm, cmp, imm, 5, imm); break; \
case 0x2E: thumb_data_proc_test(imm, cmp, imm, 6, imm); break; \
case 0x2F: thumb_data_proc_test(imm, cmp, imm, 7, imm); break; \
\
printf("ADD r0..7, imm\n"); \
case 0x30: thumb_data_proc(imm, adds, imm, 0, 0, imm); break; \
case 0x31: thumb_data_proc(imm, adds, imm, 1, 1, imm); break; \
case 0x32: thumb_data_proc(imm, adds, imm, 2, 2, imm); break; \
case 0x33: thumb_data_proc(imm, adds, imm, 3, 3, imm); break; \
case 0x34: thumb_data_proc(imm, adds, imm, 4, 4, imm); break; \
case 0x35: thumb_data_proc(imm, adds, imm, 5, 5, imm); break; \
case 0x36: thumb_data_proc(imm, adds, imm, 6, 6, imm); break; \
case 0x37: thumb_data_proc(imm, adds, imm, 7, 7, imm); break; \
\
printf("SUB r0..7, imm\n"); \
case 0x38: thumb_data_proc(imm, subs, imm, 0, 0, imm); break; \
case 0x39: thumb_data_proc(imm, subs, imm, 1, 1, imm); break; \
case 0x3A: thumb_data_proc(imm, subs, imm, 2, 2, imm); break; \
case 0x3B: thumb_data_proc(imm, subs, imm, 3, 3, imm); break; \
case 0x3C: thumb_data_proc(imm, subs, imm, 4, 4, imm); break; \
case 0x3D: thumb_data_proc(imm, subs, imm, 5, 5, imm); break; \
case 0x3E: thumb_data_proc(imm, subs, imm, 6, 6, imm); break; \
case 0x3F: thumb_data_proc(imm, subs, imm, 7, 7, imm); break; \
\
case 0x40: \
switch((opcode >> 6) & 0x03) \
{ \
case 0x00: \
printf("AND rd, rs\n"); \
thumb_data_proc(alu_op, ands, reg, rd, rd, rs); \
break; \
\
case 0x01: \
printf("EOR rd, rs\n"); \
thumb_data_proc(alu_op, eors, reg, rd, rd, rs); \
break; \
\
case 0x02: \
printf("LSL rd, rs\n"); \
thumb_shift(alu_op, lsl, reg); \
break; \
\
case 0x03: \
printf("LSR rd, rs\n"); \
thumb_shift(alu_op, lsr, reg); \
break; \
} \
break; \
\
case 0x41: \
switch((opcode >> 6) & 0x03) \
{ \
case 0x00: \
printf("ASR rd, rs\n"); \
thumb_shift(alu_op, asr, reg); \
break; \
\
case 0x01: \
printf("ADC rd, rs\n"); \
thumb_data_proc(alu_op, adcs, reg, rd, rd, rs); \
break; \
\
case 0x02: \
printf("SBC rd, rs\n"); \
thumb_data_proc(alu_op, sbcs, reg, rd, rd, rs); \
break; \
\
case 0x03: \
printf("ROR rd, rs\n"); \
thumb_shift(alu_op, ror, reg); \
break; \
} \
break; \
\
case 0x42: \
switch((opcode >> 6) & 0x03) \
{ \
case 0x00: \
printf("TST rd, rs\n"); \
thumb_data_proc_test(alu_op, tst, reg, rd, rs); \
break; \
\
case 0x01: \
printf("NEG rd, rs\n"); \
thumb_data_proc_unary(alu_op, neg, reg, rd, rs); \
break; \
\
case 0x02: \
printf("CMP rd, rs\n"); \
thumb_data_proc_test(alu_op, cmp, reg, rd, rs); \
break; \
\
case 0x03: \
printf("CMN rd, rs\n"); \
thumb_data_proc_test(alu_op, cmn, reg, rd, rs); \
break; \
} \
break; \
\
case 0x43: \
switch((opcode >> 6) & 0x03) \
{ \
case 0x00: \
printf("ORR rd, rs\n"); \
thumb_data_proc(alu_op, orrs, reg, rd, rd, rs); \
break; \
\
case 0x01: \
printf("MUL rd, rs\n"); \
thumb_data_proc(alu_op, muls, reg, rd, rs, rd); \
cycle_count += 2; /* Between 1 and 4 extra cycles */ \
break; \
\
case 0x02: \
printf("BIC rd, rs\n"); \
thumb_data_proc(alu_op, bics, reg, rd, rd, rs); \
break; \
\
case 0x03: \
printf("MVN rd, rs\n"); \
thumb_data_proc_unary(alu_op, mvns, reg, rd, rs); \
break; \
} \
break; \
\
case 0x44: \
printf("ADD rd, rs\n"); \
thumb_data_proc_hi(add); \
break; \
\
case 0x45: \
printf("CMP rd, rs\n"); \
thumb_data_proc_test_hi(cmp); \
break; \
\
case 0x46: \
printf("MOV rd, rs\n"); \
thumb_data_proc_mov_hi(); \
break; \
\
case 0x47: \
printf("BX rs\n"); \
thumb_bx(); \
break; \
\
case 0x48 ... 0x4F: \
printf("LDR r0..7, [pc + imm]\n"); \
{ \
thumb_decode_imm(); \
u32 rdreg = (hiop & 7); \
u32 aoff = (pc & ~2) + (imm*4) + 4; \
/* ROM + same page -> optimize as const load */ \
if (!ram_region && (((aoff + 4) >> 15) == (pc >> 15))) { \
u32 value = readaddress32(pc_address_block, (aoff & 0x7FFF)); \
thumb_load_pc_pool_const(rdreg, value); \
} else { \
thumb_access_memory(load, imm, rdreg, 0, 0, pc_relative, aoff, u32);\
} \
} \
break; \
\
case 0x50 ... 0x51: \
printf("STR rd, [rb + ro]\n"); \
thumb_access_memory(store, mem_reg, rd, rb, ro, reg_reg, 0, u32); \
break; \
\
case 0x52 ... 0x53: \
printf("STRH rd, [rb + ro]\n"); \
thumb_access_memory(store, mem_reg, rd, rb, ro, reg_reg, 0, u16); \
break; \
\
case 0x54 ... 0x55: \
printf("STRB rd, [rb + ro]\n"); \
thumb_access_memory(store, mem_reg, rd, rb, ro, reg_reg, 0, u8); \
break; \
\
case 0x56 ... 0x57: \
printf("LDSB rd, [rb + ro]\n"); \
thumb_access_memory(load, mem_reg, rd, rb, ro, reg_reg, 0, s8); \
break; \
\
case 0x58 ... 0x59: \
printf("LDR rd, [rb + ro]\n"); \
thumb_access_memory(load, mem_reg, rd, rb, ro, reg_reg, 0, u32); \
break; \
\
case 0x5A ... 0x5B: \
printf("LDRH rd, [rb + ro]\n"); \
thumb_access_memory(load, mem_reg, rd, rb, ro, reg_reg, 0, u16); \
break; \
\
case 0x5C ... 0x5D: \
printf("LDRB rd, [rb + ro]\n"); \
thumb_access_memory(load, mem_reg, rd, rb, ro, reg_reg, 0, u8); \
break; \
\
case 0x5E ... 0x5F: \
printf("LDSH rd, [rb + ro]\n"); \
thumb_access_memory(load, mem_reg, rd, rb, ro, reg_reg, 0, s16); \
break; \
\
case 0x60 ... 0x67: \
printf("STR rd, [rb + imm]\n"); \
thumb_access_memory(store, mem_imm, rd, rb, 0, reg_imm, (imm * 4), \
u32); \
break; \
\
case 0x68 ... 0x6F: \
printf("LDR rd, [rb + imm]\n"); \
thumb_access_memory(load, mem_imm, rd, rb, 0, reg_imm, (imm * 4), u32); \
break; \
\
case 0x70 ... 0x77: \
printf("STRB rd, [rb + imm]\n"); \
thumb_access_memory(store, mem_imm, rd, rb, 0, reg_imm, imm, u8); \
break; \
\
case 0x78 ... 0x7F: \
printf("LDRB rd, [rb + imm]\n"); \
thumb_access_memory(load, mem_imm, rd, rb, 0, reg_imm, imm, u8); \
break; \
\
case 0x80 ... 0x87: \
printf("STRH rd, [rb + imm]\n"); \
thumb_access_memory(store, mem_imm, rd, rb, 0, reg_imm, \
(imm * 2), u16); \
break; \
\
case 0x88 ... 0x8F: \
printf("LDRH rd, [rb + imm]\n"); \
thumb_access_memory(load, mem_imm, rd, rb, 0, reg_imm, (imm * 2), u16); \
break; \
\
printf("STR r0..7, [sp + imm]\n"); \
case 0x90: \
thumb_access_memory(store, imm, 0, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x91: \
thumb_access_memory(store, imm, 1, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x92: \
thumb_access_memory(store, imm, 2, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x93: \
thumb_access_memory(store, imm, 3, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x94: \
thumb_access_memory(store, imm, 4, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x95: \
thumb_access_memory(store, imm, 5, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x96: \
thumb_access_memory(store, imm, 6, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x97: \
thumb_access_memory(store, imm, 7, 13, 0, reg_imm_sp, imm, u32); \
break; \
\
printf("LDR r0..7, [sp + imm]\n"); \
case 0x98: \
thumb_access_memory(load, imm, 0, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x99: \
thumb_access_memory(load, imm, 1, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x9A: \
thumb_access_memory(load, imm, 2, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x9B: \
thumb_access_memory(load, imm, 3, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x9C: \
thumb_access_memory(load, imm, 4, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x9D: \
thumb_access_memory(load, imm, 5, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x9E: \
thumb_access_memory(load, imm, 6, 13, 0, reg_imm_sp, imm, u32); \
break; \
case 0x9F: \
thumb_access_memory(load, imm, 7, 13, 0, reg_imm_sp, imm, u32); \
break; \
\
printf("ADD r0..7, pc, +imm\n"); \
case 0xA0: thumb_load_pc(0); break; \
case 0xA1: thumb_load_pc(1); break; \
case 0xA2: thumb_load_pc(2); break; \
case 0xA3: thumb_load_pc(3); break; \
case 0xA4: thumb_load_pc(4); break; \
case 0xA5: thumb_load_pc(5); break; \
case 0xA6: thumb_load_pc(6); break; \
case 0xA7: thumb_load_pc(7); break; \
\
printf("ADD r0..7, sp, +imm\n"); \
case 0xA8: thumb_load_sp(0); break; \
case 0xA9: thumb_load_sp(1); break; \
case 0xAA: thumb_load_sp(2); break; \
case 0xAB: thumb_load_sp(3); break; \
case 0xAC: thumb_load_sp(4); break; \
case 0xAD: thumb_load_sp(5); break; \
case 0xAE: thumb_load_sp(6); break; \
case 0xAF: thumb_load_sp(7); break; \
\
case 0xB0 ... 0xB3: \
if((opcode >> 7) & 0x01) \
{ \
printf("ADD sp, -imm\n"); \
thumb_adjust_sp(down); \
} \
else \
{ \
printf("ADD sp, +imm\n"); \
thumb_adjust_sp(up); \
} \
break; \
\
case 0xB4: \
printf("PUSH rlist\n"); \
thumb_block_memory(store, down, no, 13); \
break; \
\
case 0xB5: \
printf("PUSH rlist, lr\n"); \
thumb_block_memory(store, push_lr, push_lr, 13); \
break; \
\
case 0xBC: \
printf("POP rlist\n"); \
thumb_block_memory(load, no, up, 13); \
break; \
\
case 0xBD: \
printf("POP rlist, pc\n"); \
thumb_block_memory(load, no, pop_pc, 13); \
break; \
\
case 0xC0: \
printf("STMIA r0!, rlist\n"); \
thumb_block_memory(store, no, up, 0); \
break; \
\
case 0xC1: \
printf("STMIA r1!, rlist\n"); \
thumb_block_memory(store, no, up, 1); \
break; \
\
case 0xC2: \
printf("STMIA r2!, rlist\n"); \
thumb_block_memory(store, no, up, 2); \
break; \
\
case 0xC3: \
printf("STMIA r3!, rlist\n"); \
thumb_block_memory(store, no, up, 3); \
break; \
\
case 0xC4: \
printf("STMIA r4!, rlist\n"); \
thumb_block_memory(store, no, up, 4); \
break; \
\
case 0xC5: \
printf("STMIA r5!, rlist\n"); \
thumb_block_memory(store, no, up, 5); \
break; \
\
case 0xC6: \
printf("STMIA r6!, rlist\n"); \
thumb_block_memory(store, no, up, 6); \
break; \
\
case 0xC7: \
printf("STMIA r7!, rlist\n"); \
thumb_block_memory(store, no, up, 7); \
break; \
\
case 0xC8: \
printf("LDMIA r0!, rlist\n"); \
thumb_block_memory(load, no, up, 0); \
break; \
\
case 0xC9: \
printf("LDMIA r1!, rlist\n"); \
thumb_block_memory(load, no, up, 1); \
break; \
\
case 0xCA: \
printf("LDMIA r2!, rlist\n"); \
thumb_block_memory(load, no, up, 2); \
break; \
\
case 0xCB: \
printf("LDMIA r3!, rlist\n"); \
thumb_block_memory(load, no, up, 3); \
break; \
\
case 0xCC: \
printf("LDMIA r4!, rlist\n"); \
thumb_block_memory(load, no, up, 4); \
break; \
\
case 0xCD: \
printf("LDMIA r5!, rlist\n"); \
thumb_block_memory(load, no, up, 5); \
break; \
\
case 0xCE: \
printf("LDMIA r6!, rlist\n"); \
thumb_block_memory(load, no, up, 6); \
break; \
\
case 0xCF: \
printf("LDMIA r7!, rlist\n"); \
thumb_block_memory(load, no, up, 7); \
break; \
\
case 0xD0: \
printf("BEQ label\n"); \
thumb_conditional_branch(eq); \
break; \
\
case 0xD1: \
printf("BNE label\n"); \
thumb_conditional_branch(ne); \
break; \
\
case 0xD2: \
printf("BCS label\n"); \
thumb_conditional_branch(cs); \
break; \
\
case 0xD3: \
printf("BCC label\n"); \
thumb_conditional_branch(cc); \
break; \
\
case 0xD4: \
printf("BMI label\n"); \
thumb_conditional_branch(mi); \
break; \
\
case 0xD5: \
printf("BPL label\n"); \
thumb_conditional_branch(pl); \
break; \
\
case 0xD6: \
printf("BVS label\n"); \
thumb_conditional_branch(vs); \
break; \
\
case 0xD7: \
printf("BVC label\n"); \
thumb_conditional_branch(vc); \
break; \
\
case 0xD8: \
printf("BHI label\n"); \
thumb_conditional_branch(hi); \
break; \
\
case 0xD9: \
printf("BLS label\n"); \
thumb_conditional_branch(ls); \
break; \
\
case 0xDA: \
printf("BGE label\n"); \
thumb_conditional_branch(ge); \
break; \
\
case 0xDB: \
printf("BLT label\n"); \
thumb_conditional_branch(lt); \
break; \
\
case 0xDC: \
printf("BGT label\n"); \
thumb_conditional_branch(gt); \
break; \
\
case 0xDD: \
printf("BLE label\n"); \
thumb_conditional_branch(le); \
break; \
\
case 0xDF: \
{ \
u32 swinum = opcode & 0xFF; \
if (swinum == 6) { \
cycle_count += 64; /* Big under-estimation here */ \
arm_hle_div(thumb); \
} \
else if (swinum == 7) { \
cycle_count += 64; /* Big under-estimation here */ \
arm_hle_div_arm(thumb); \
} \
else { \
thumb_swi(); \
} \
break; \
} \
\
case 0xE0 ... 0xE7: \
{ \
printf("B label\n"); \
thumb_b(); \
break; \
} \
\
case 0xF0 ... 0xF7: \
{ \
printf("(low word) BL label\n"); \
/* This should possibly generate code if not in conjunction with a BLH \
next, but I don't think anyone will do that. */ \
break; \
} \
\
case 0xF8 ... 0xFF: \
{ \
printf("(high word) BL label\n"); \
/* This might not be preceeding a BL low word (Golden Sun 2), if so \
it must be handled like an indirect branch. */ \
if((last_opcode >= 0xF000) && (last_opcode < 0xF800)) \
{ \
thumb_bl(); \
} \
else \
{ \
thumb_blh(); \
} \
break; \
} \
} \
\
pc += 2 \
#define thumb_flag_modifies_all() \
flag_status |= 0xFF \
#define thumb_flag_modifies_zn() \
flag_status |= 0xCC \
#define thumb_flag_modifies_znc() \
flag_status |= 0xEE \
#define thumb_flag_modifies_zn_maybe_c() \
flag_status |= 0xCE \
#define thumb_flag_modifies_c() \
flag_status |= 0x22 \
#define thumb_flag_requires_c() \
flag_status |= 0x200 \
#define thumb_flag_requires_all() \
flag_status |= 0xF00 \
#define thumb_flag_status() \
{ \
u16 flag_status = 0; \
switch((opcode >> 8) & 0xFF) \
{ \
/* left shift by imm */ \
case 0x00 ... 0x07: \
thumb_flag_modifies_zn(); \
if(((opcode >> 6) & 0x1F) != 0) \
{ \
thumb_flag_modifies_c(); \
} \
break; \
\
/* right shift by imm */ \
case 0x08 ... 0x17: \
thumb_flag_modifies_znc(); \
break; \
\
/* add, subtract */ \
case 0x18 ... 0x1F: \
thumb_flag_modifies_all(); \
break; \
\
/* mov reg, imm */ \
case 0x20 ... 0x27: \
thumb_flag_modifies_zn(); \
break; \
\
/* cmp reg, imm; add, subtract */ \
case 0x28 ... 0x3F: \
thumb_flag_modifies_all(); \
break; \
\
case 0x40: \
switch((opcode >> 6) & 0x03) \
{ \
case 0x00: \
printf("AND rd, rs\n"); \
thumb_flag_modifies_zn(); \
break; \
\
case 0x01: \
printf("EOR rd, rs\n"); \
thumb_flag_modifies_zn(); \
break; \
\
case 0x02: \
printf("LSL rd, rs\n"); \
thumb_flag_modifies_zn_maybe_c(); \
break; \
\
case 0x03: \
printf("LSR rd, rs\n"); \
thumb_flag_modifies_zn_maybe_c(); \
break; \
} \
break; \
\
case 0x41: \
switch((opcode >> 6) & 0x03) \
{ \
case 0x00: \
printf("ASR rd, rs\n"); \
thumb_flag_modifies_zn_maybe_c(); \
break; \
\
case 0x01: \
printf("ADC rd, rs\n"); \
thumb_flag_modifies_all(); \
thumb_flag_requires_c(); \
break; \
\
case 0x02: \
printf("SBC rd, rs\n"); \
thumb_flag_modifies_all(); \
thumb_flag_requires_c(); \
break; \
\
case 0x03: \
printf("ROR rd, rs\n"); \
thumb_flag_modifies_zn_maybe_c(); \
break; \
} \
break; \
\
printf("TST, NEG, CMP, CMN\n"); \
case 0x42: \
thumb_flag_modifies_all(); \
break; \
\
printf("ORR, MUL, BIC, MVN\n"); \
case 0x43: \
thumb_flag_modifies_zn(); \
break; \
\
case 0x45: \
printf("CMP rd, rs\n"); \
thumb_flag_modifies_all(); \
break; \
\
/* mov might change PC (fall through if so) */ \
case 0x46: \
if((opcode & 0xFF87) != 0x4687) \
break; \
\
/* branches (can change PC) */ \
case 0x47: \
case 0xBD: \
case 0xD0 ... 0xE7: \
case 0xF0 ... 0xFF: \
thumb_flag_requires_all(); \
break; \
} \
block_data[block_data_position].flag_data = flag_status; \
} \
// I/EWRAM memory tagging
// Code emitted in the RAM cache has tags (16 bit values) in the mirror tag ram
// that indicate that the address contains code. The following values are used:
// 0x0000 : this is just data (never translated)
// 0x00XX : not used (since first byte is zero)
// 0x0101 : this is code that is not the start of a translated block
// 0xXXXX : this is the start of a translated block, starting from 0xFFFF downwards
// LSB is always set (we decrement by two) to ensure both bytes != 0
//
// The tag value is an index to a `ramtag_type` structure that sits at the end
// of the RAM CACHE (grows like a stack). For simplicity we start tags at 0xFFFF
// and grow like a stack.
#define LAST_TAG_NUM 0x0101
#define INITIAL_TOP_TAG 0xFFFF
#define CODE_TAG_BLOCK16 0x0101
#define CODE_TAG_BLOCK32 0x01010101
#define VALID_TAG(tagn) (tagn > LAST_TAG_NUM)
#define allocate_tag_arm(location) { \
location[0] = ram_block_tag; \
/* Could be another thumb inst */ \
if (!location[1]) \
location[1] = CODE_TAG_BLOCK16; \
ram_block_tag -= 2; \
}
#define allocate_tag_thumb(location) { \
location[0] = ram_block_tag; \
ram_block_tag -= 2; \
}
typedef struct
{
u32 offset_arm; // Cache offset to the ARM-mode compiled block
u32 offset_thumb; // Cache offset to the Thumb-mode compiled block
} ramtag_type;
static u32 ram_block_tag = INITIAL_TOP_TAG;
inline static ramtag_type* get_ram_tag(u16 tagval) {
ramtag_type *tbl = (ramtag_type*)&ram_translation_cache[RAM_TRANSLATION_CACHE_SIZE];
s16 tgidx = (s16)(tagval);
return &tbl[tgidx >> 1]; /* Since LSB is always 1 and thus unused */
}
// This function will return a pointer to a translated block of code. If it
// doesn't exist it will translate it, if it does it will pass it back.
// type should be "arm", "thumb", or "dual." For arm or thumb the PC should
// be a real PC, for dual the least significant bit will determine if it's
// ARM or Thumb mode.
#define block_lookup_address_pc_arm() \
u32 thumb = 0; \
pc &= ~0x03
#define block_lookup_address_pc_thumb() \
u32 thumb = 1; \
pc &= ~0x01 \
#define block_lookup_translate_builder(type) \
u8 function_cc *block_lookup_translate_##type(u32 pc) \
{ \
u8 pcregion = (pc >> 24); \
u16 *location; \
u32 block_tag; \
\
block_lookup_address_pc_##type(); \
\
switch(pcregion) \
{ \
case 0x2: \
case 0x3: \
{ \
u16* tagp = (pcregion == 2) ? (u16 *)(ewram + (pc & 0x3FFFF) + 0x40000) \
: (u16 *)(iwram + (pc & 0x7FFF)); \
ramtag_type* trentry; \
/* Allocate a tag if not a valid one, and initialize header */ \
if (!VALID_TAG(*tagp)) { \
allocate_tag_##type(tagp); \
trentry = get_ram_tag(*tagp); \
trentry->offset_arm = 0; \
trentry->offset_thumb = 0; \
} else { \
trentry = get_ram_tag(*tagp); \
} \
\
if (!trentry->offset_##type) { \
bool result; \
u8 *blkptr = ram_translation_ptr + block_prologue_size; \
trentry->offset_##type = blkptr - ram_translation_cache; \
result = translate_block_##type(pc, true); \
\
if (result) \
return blkptr; \
} else { \
return &ram_translation_cache[trentry->offset_##type]; \
} \
return NULL; \
} \
\
case 0x0: \
case 0x8 ... 0xD: \
{ \
u32 key = pc | thumb; \
u32 hash_target = ((key * 2654435761U) >> (32 - ROM_BRANCH_HASH_BITS)) \
& (ROM_BRANCH_HASH_SIZE - 1); \
\
hashhdr_type *bhdr; \
u32 blk_offset = rom_branch_hash[hash_target]; \
u32 *blk_offset_addr = &rom_branch_hash[hash_target]; \
while(blk_offset) \
{ \
bhdr = (hashhdr_type*)&rom_translation_cache[blk_offset]; \
if(bhdr->pc_value == key) \
return &rom_translation_cache[ \
blk_offset + sizeof(hashhdr_type) + block_prologue_size]; \
\
blk_offset = bhdr->next_entry; \
blk_offset_addr = &bhdr->next_entry; \
} \
\
{ /* Not found, go ahead and translate, and backfill the hash table */ \
u8 *blkptr; \
bool result; \
bhdr = (hashhdr_type*)rom_translation_ptr; \
bhdr->pc_value = key; \
bhdr->next_entry = 0; \
*blk_offset_addr = (u32)(rom_translation_ptr - rom_translation_cache);\
rom_translation_ptr += sizeof(hashhdr_type); \
blkptr = rom_translation_ptr + block_prologue_size; \
result = translate_block_##type(pc, false); \
\
if (result) \
return blkptr; \
} \
return NULL; \
} \
} \
\
/* Do not return NULL since it could indeed happen that some branch \
points to some random place (perhaps due to being garbage). This can \
happen when especulatively compiling code in RAM. Perhaps the game \
patches these instructions later, which would trigger a flush */ \
return (u8*)(~0); \
} \
block_lookup_translate_builder(arm);
block_lookup_translate_builder(thumb);
u8 function_cc *block_lookup_address_dual(u32 pc)
{
u32 thumb = pc & 0x01;
if(thumb) {
pc &= ~1;
reg[REG_CPSR] |= 0x20;
return block_lookup_address_thumb(pc);
} else {
pc = (pc + 2) & ~0x03;
reg[REG_CPSR] &= ~0x20;
return block_lookup_address_arm(pc);
}
}
u8 function_cc *block_lookup_address_arm(u32 pc)
{
unsigned i;
for (i = 0; i < 4; i++) {
u8 *ret = block_lookup_translate_arm(pc);
if (ret) {
translate_icache_sync();
return ret;
}
}
printf("bad jump %x (%x)\n", pc, reg[REG_PC]);
fflush(stdout);
return NULL;
}
u8 function_cc *block_lookup_address_thumb(u32 pc)
{
unsigned i;
for (i = 0; i < 4; i++) {
u8 *ret = block_lookup_translate_thumb(pc);
if (ret) {
translate_icache_sync();
return ret;
}
}
printf("bad jump %x (%x)\n", pc, reg[REG_PC]);
fflush(stdout);
return NULL;
}
// Potential exit point: If the rd field is pc for instructions is 0x0F,
// the instruction is b/bl/bx, or the instruction is ldm with PC in the
// register list.
// All instructions with upper 3 bits less than 100b have an rd field
// except bx, where the bits must be 0xF there anyway, multiplies,
// which cannot have 0xF in the corresponding fields, and msr, which
// has 0x0F there but doesn't end things (therefore must be special
// checked against). Because MSR and BX overlap both are checked for.
#define arm_exit_point \
(((opcode < 0x8000000) && ((opcode & 0x000F000) == 0x000F000) && \
((opcode & 0xDB0F000) != 0x120F000)) || \
((opcode & 0x12FFF10) == 0x12FFF10) || \
((opcode & 0x8108000) == 0x8108000) || \
((opcode >= 0xA000000) && (opcode < 0xF000000)) || \
((opcode >= 0xF000000) && (!is_div_swi((opcode >> 16) & 0xFF)))) \
#define arm_opcode_branch \
((opcode & 0xE000000) == 0xA000000) \
#define arm_opcode_swi \
((opcode & 0xF000000) == 0xF000000) \
#define arm_opcode_unconditional_branch \
(condition == 0x0E) \
#define arm_load_opcode() \
opcode = readaddress32(pc_address_block, (block_end_pc & 0x7FFF)); \
condition = opcode >> 28; \
\
opcode &= 0xFFFFFFF; \
\
block_end_pc += 4 \
#define arm_branch_target() \
branch_target = (block_end_pc + 4 + (((s32)(opcode & 0xFFFFFF) << 8) >> 6)) \
// Contiguous conditional block flags modification - it will set 0x20 in the
// condition's bits if this instruction modifies flags. Taken from the CPU
// switch so it'd better be right this time.
#define arm_set_condition(_condition) \
block_data[block_data_position].condition = _condition; \
switch((opcode >> 20) & 0xFF) \
{ \
case 0x01: \
case 0x03: \
case 0x09: \
case 0x0B: \
case 0x0D: \
case 0x0F: \
if((((opcode >> 5) & 0x03) == 0) || ((opcode & 0x90) != 0x90)) \
block_data[block_data_position].condition |= 0x20; \
break; \
\
case 0x05: \
case 0x07: \
case 0x11: \
case 0x13: \
case 0x15 ... 0x17: \
case 0x19: \
case 0x1B: \
case 0x1D: \
case 0x1F: \
if((opcode & 0x90) != 0x90) \
block_data[block_data_position].condition |= 0x20; \
break; \
\
case 0x12: \
if(((opcode & 0x90) != 0x90) && !(opcode & 0x10)) \
block_data[block_data_position].condition |= 0x20; \
break; \
\
case 0x21: \
case 0x23: \
case 0x25: \
case 0x27: \
case 0x29: \
case 0x2B: \
case 0x2D: \
case 0x2F ... 0x37: \
case 0x39: \
case 0x3B: \
case 0x3D: \
case 0x3F: \
block_data[block_data_position].condition |= 0x20; \
break; \
} \
#define arm_instruction_width 4
#define arm_base_cycles() \
cycle_count += def_seq_cycles[pc >> 24][1] \
// For now this just sets a variable that says flags should always be
// computed.
#define arm_dead_flag_eliminate() \
flag_status = 0xF \
// The following Thumb instructions can exit:
// b, bl, bx, swi, pop {... pc}, and mov pc, ..., the latter being a hireg
// op only. Rather simpler to identify than the ARM set.
#define thumb_exit_point \
(((opcode >= 0xD000) && (opcode < 0xDF00)) || \
(((opcode & 0xFF00) == 0xDF00) && \
(!is_div_swi(opcode & 0xFF))) || \
((opcode >= 0xE000) && (opcode < 0xE800)) || \
((opcode & 0xFF00) == 0x4700) || \
((opcode & 0xFF00) == 0xBD00) || \
((opcode & 0xFF87) == 0x4687) || \
((opcode >= 0xF800))) \
#define thumb_opcode_branch \
(((opcode >= 0xD000) && (opcode < 0xDF00)) || \
((opcode >= 0xE000) && (opcode < 0xE800)) || \
(opcode >= 0xF800)) \
#define thumb_opcode_swi \
((opcode & 0xFF00) == 0xDF00) \
#define thumb_opcode_unconditional_branch \
((opcode < 0xD000) || (opcode >= 0xDF00)) \
#define thumb_load_opcode() \
last_opcode = opcode; \
opcode = readaddress16(pc_address_block, (block_end_pc & 0x7FFF)); \
\
block_end_pc += 2 \
#define thumb_branch_target() \
if(opcode < 0xE000) \
{ \
branch_target = block_end_pc + 2 + ((s8)(opcode & 0xFF) * 2); \
} \
else \
\
if(opcode < 0xF800) \
{ \
branch_target = block_end_pc + 2 + ((s32)((opcode & 0x7FF) << 21) >> 20); \
} \
else \
{ \
if((last_opcode >= 0xF000) && (last_opcode < 0xF800)) \
{ \
branch_target = \
(block_end_pc + ((s32)((last_opcode & 0x07FF) << 21) >> 9) + \
((opcode & 0x07FF) * 2)); \
} \
else \
{ \
goto no_direct_branch; \
} \
} \
#define thumb_set_condition(_condition) \
#define thumb_instruction_width 2
#define thumb_base_cycles() \
cycle_count += def_seq_cycles[pc >> 24][0] \
// Here's how this works: each instruction has three different sets of flag
// attributes, each consisiting of a 4bit mask describing how that instruction
// interacts with the 4 main flags (N/Z/C/V).
// The first set, in bits 0:3, is the set of flags the instruction may
// modify. After this pass this is changed to the set of flags the instruction
// should modify - if the bit for the corresponding flag is not set then code
// does not have to be generated to calculate the flag for that instruction.
// The second set, in bits 7:4, is the set of flags that the instruction must
// modify (ie, for shifts by the register values the instruction may not
// always modify the C flag, and thus the C bit won't be set here).
// The third set, in bits 11:8, is the set of flags that the instruction uses
// in its computation, or the set of flags that will be needed after the
// instruction is done. For any instructions that change the PC all of the
// bits should be set because it is (for now) unknown what flags will be
// needed after it arrives at its destination. Instructions that use the
// carry flag as input will have it set as well.
// The algorithm is a simple liveness analysis procedure: It starts at the
// bottom of the instruction stream and sets a "currently needed" mask to
// the flags needed mask of the current instruction. Then it moves down
// an instruction, ANDs that instructions "should generate" mask by the
// "currently needed" mask, then ANDs the "currently needed" mask by
// the 1's complement of the instruction's "must generate" mask, and ORs
// the "currently needed" mask by the instruction's "flags needed" mask.
#define thumb_dead_flag_eliminate() \
{ \
u32 needed_mask = 0xff; \
\
while(--block_data_position >= 0) \
{ \
flag_status = block_data[block_data_position].flag_data; \
block_data[block_data_position].flag_data = \
(flag_status & needed_mask); \
needed_mask &= ~((flag_status >> 4) & 0x0F); \
needed_mask |= flag_status >> 8; \
} \
} \
#define MAX_BLOCK_SIZE 8192
#define MAX_EXITS 256
block_data_type block_data[MAX_BLOCK_SIZE];
block_exit_type block_exits[MAX_EXITS];
#define smc_write_arm_yes() { \
intptr_t offset = (pc < 0x03000000) ? 0x40000 : -0x8000; \
if(address32(pc_address_block, (block_end_pc & 0x7FFF) + offset) == 0) \
{ \
address32(pc_address_block, (block_end_pc & 0x7FFF) + offset) = \
CODE_TAG_BLOCK32; \
} \
}
#define smc_write_thumb_yes() { \
intptr_t offset = (pc < 0x03000000) ? 0x40000 : -0x8000; \
if(address16(pc_address_block, (block_end_pc & 0x7FFF) + offset) == 0) \
{ \
address16(pc_address_block, (block_end_pc & 0x7FFF) + offset) = \
CODE_TAG_BLOCK16; \
} \
}
#define smc_write_arm_no() \
#define smc_write_thumb_no() \
#define scan_block(type, smc_write_op) \
{ \
__label__ block_end; \
/* Find the end of the block */ \
do \
{ \
check_pc_region(block_end_pc); \
smc_write_##type##_##smc_write_op(); \
type##_load_opcode(); \
type##_flag_status(); \
\
if(type##_exit_point) \
{ \
/* Branch/branch with link */ \
if(type##_opcode_branch) \
{ \
__label__ no_direct_branch; \
type##_branch_target(); \
block_exits[block_exit_position].branch_target = branch_target; \
block_exit_position++; \
\
/* Give the branch target macro somewhere to bail if it turns out to \
be an indirect branch (ala malformed Thumb bl) */ \
no_direct_branch:; \
} \
\
/* SWI branches to the BIOS, unless it's an HLE call, then it is \
not parsed as an exit_point but rather an "instruction" of sorts. */ \
if(type##_opcode_swi) \
{ \
block_exits[block_exit_position].branch_target = 0x00000008; \
block_exit_position++; \
} \
\
type##_set_condition(condition | 0x10); \
\
/* Only unconditional branches can end the block. */ \
if(type##_opcode_unconditional_branch) \
{ \
/* Check to see if any prior block exits branch after here, \
if so don't end the block. Starts from the top and works \
down because the most recent branch is most likely to \
join after the end (if/then form) */ \
for(i = block_exit_position - 2; i >= 0; i--) \
{ \
if(block_exits[i].branch_target == block_end_pc) \
break; \
} \
\
if(i < 0) \
break; \
} \
if(block_exit_position == MAX_EXITS) \
break; \
} \
else \
{ \
type##_set_condition(condition); \
} \
\
for(i = 0; i < translation_gate_targets; i++) \
{ \
if(block_end_pc == translation_gate_target_pc[i]) \
goto block_end; \
} \
\
block_data[block_data_position].update_cycles = 0; \
block_data_position++; \
if((block_data_position == MAX_BLOCK_SIZE) || \
(block_end_pc == 0x3007FF0) || (block_end_pc == 0x203FFFF0)) \
{ \
break; \
} \
} while(1); \
\
block_end:; \
} \
#define arm_fix_pc() \
pc &= ~0x03 \
#define thumb_fix_pc() \
pc &= ~0x01 \
#define update_pc_limits() \
if (ram_region) { \
if (pc >= 0x3000000) { \
iwram_code_min = MIN(pc & 0x7FFF, iwram_code_min); \
iwram_code_max = MAX(pc & 0x7FFF, iwram_code_max); \
} else { \
ewram_code_min = MIN(pc & 0x3FFFF, ewram_code_min); \
ewram_code_max = MAX(pc & 0x3FFFF, ewram_code_max); \
} \
} \
bool translate_block_arm(u32 pc, bool ram_region)
{
u32 opcode = 0;
u32 last_opcode;
u32 condition;
u32 last_condition;
u32 pc_region = (pc >> 15);
u32 new_pc_region;
u8 *pc_address_block = memory_map_read[pc_region];
u32 block_start_pc = pc;
u32 block_end_pc = pc;
u32 block_exit_position = 0;
s32 block_data_position = 0;
u32 external_block_exit_position = 0;
u32 branch_target;
u32 cycle_count = 0;
u8 *translation_target;
u8 *backpatch_address = NULL;
u8 *translation_ptr = NULL;
u8 *translation_cache_limit = NULL;
s32 i;
u32 flag_status;
block_exit_type external_block_exits[MAX_EXITS];
generate_block_extra_vars_arm();
arm_fix_pc();
if(!pc_address_block)
pc_address_block = load_gamepak_page(pc_region & 0x3FF);
if (ram_region) {
translation_ptr = ram_translation_ptr;
translation_cache_limit = &ram_translation_cache[
RAM_TRANSLATION_CACHE_SIZE - TRANSLATION_CACHE_LIMIT_THRESHOLD
- (0x10000 - ram_block_tag) / 2 * sizeof(ramtag_type)];
} else {
translation_ptr = rom_translation_ptr;
translation_cache_limit =
rom_translation_cache + ROM_TRANSLATION_CACHE_SIZE -
TRANSLATION_CACHE_LIMIT_THRESHOLD;
}
generate_block_prologue();
/* This is a function because it's used a lot more than it might seem (all
of the data processing functions can access it), and its expansion was
massacreing the compiler. */
if(ram_region)
{
scan_block(arm, yes);
}
else
{
scan_block(arm, no);
}
for(i = 0; i < block_exit_position; i++)
{
branch_target = block_exits[i].branch_target;
if((branch_target > block_start_pc) &&
(branch_target < block_end_pc))
{
block_data[(branch_target - block_start_pc) /
arm_instruction_width].update_cycles = 1;
}
}
arm_dead_flag_eliminate();
block_exit_position = 0;
block_data_position = 0;
last_condition = 0x0E;
while(pc != block_end_pc)
{
block_data[block_data_position].block_offset = translation_ptr;
arm_base_cycles();
if (pc == cheat_master_hook)
{
arm_process_cheats();
}
update_pc_limits();
translate_arm_instruction();
block_data_position++;
/* If it went too far the cache needs to be flushed and the process
restarted. Because we might already be nested several stages in
a simple recursive call here won't work, it has to pedal out to
the beginning. */
if(translation_ptr > translation_cache_limit) {
if (ram_region)
flush_translation_cache_ram();
else
flush_translation_cache_rom();
return false;
}
/* If the next instruction is a block entry point update the
cycle counter and update */
if (pc != block_end_pc &&
block_data[block_data_position].update_cycles)
{
generate_cycle_update();
}
}
/* This can happen if the last instruction is *not* inconditional */
if ((last_condition & 0x0F) != 0x0E) {
generate_branch_patch_conditional(backpatch_address, translation_ptr);
}
/* Unconditionally generate translation targets. In case we hit one or
in the unlikely case that block was too big (and not finalized) */
generate_translation_gate(arm);
for(i = 0; i < block_exit_position; i++)
{
branch_target = block_exits[i].branch_target;
if((branch_target >= block_start_pc) && (branch_target < block_end_pc))
{
/* Internal branch, patch to recorded address */
translation_target =
block_data[(branch_target - block_start_pc) /
arm_instruction_width].block_offset;
generate_branch_patch_unconditional(block_exits[i].branch_source,
translation_target);
}
else
{
/* External branch, save for later */
external_block_exits[external_block_exit_position].branch_target =
branch_target;
external_block_exits[external_block_exit_position].branch_source =
block_exits[i].branch_source;
external_block_exit_position++;
}
}
if (ram_region)
ram_translation_ptr = translation_ptr;
else
rom_translation_ptr = translation_ptr;
for(i = 0; i < external_block_exit_position; i++)
{
branch_target = external_block_exits[i].branch_target;
if(branch_target == 0x00000008)
translation_target = bios_swi_entrypoint;
else
translation_target = block_lookup_translate_arm(branch_target);
if (!translation_target)
return false;
generate_branch_patch_unconditional(
external_block_exits[i].branch_source, translation_target);
}
return true;
}
bool translate_block_thumb(u32 pc, bool ram_region)
{
u32 opcode = 0;
u32 last_opcode;
u32 condition;
u32 pc_region = (pc >> 15);
u32 new_pc_region;
u8 *pc_address_block = memory_map_read[pc_region];
u32 block_start_pc = pc;
u32 block_end_pc = pc;
u32 block_exit_position = 0;
s32 block_data_position = 0;
u32 external_block_exit_position = 0;
u32 branch_target;
u32 cycle_count = 0;
u8 *translation_target;
u8 *backpatch_address = NULL;
u8 *translation_ptr = NULL;
u8 *translation_cache_limit = NULL;
s32 i;
u32 flag_status;
block_exit_type external_block_exits[MAX_EXITS];
generate_block_extra_vars_thumb();
thumb_fix_pc();
if(!pc_address_block)
pc_address_block = load_gamepak_page(pc_region & 0x3FF);
if (ram_region) {
translation_ptr = ram_translation_ptr;
translation_cache_limit = &ram_translation_cache[
RAM_TRANSLATION_CACHE_SIZE - TRANSLATION_CACHE_LIMIT_THRESHOLD
- (0x10000 - ram_block_tag) / 2 * sizeof(ramtag_type)];
} else {
translation_ptr = rom_translation_ptr;
translation_cache_limit = &rom_translation_cache[
ROM_TRANSLATION_CACHE_SIZE - TRANSLATION_CACHE_LIMIT_THRESHOLD];
}
generate_block_prologue();
/* This is a function because it's used a lot more than it might seem (all
of the data processing functions can access it), and its expansion was
massacreing the compiler. */
if(ram_region)
{
scan_block(thumb, yes);
}
else
{
scan_block(thumb, no);
}
for(i = 0; i < block_exit_position; i++)
{
branch_target = block_exits[i].branch_target;
if((branch_target > block_start_pc) &&
(branch_target < block_end_pc))
{
block_data[(branch_target - block_start_pc) /
thumb_instruction_width].update_cycles = 1;
}
}
thumb_dead_flag_eliminate();
block_exit_position = 0;
block_data_position = 0;
while(pc != block_end_pc)
{
block_data[block_data_position].block_offset = translation_ptr;
thumb_base_cycles();
if (pc == cheat_master_hook)
{
thumb_process_cheats();
}
update_pc_limits();
translate_thumb_instruction();
block_data_position++;
/* If it went too far the cache needs to be flushed and the process
restarted. Because we might already be nested several stages in
a simple recursive call here won't work, it has to pedal out to
the beginning. */
if(translation_ptr > translation_cache_limit)
{
if (ram_region)
flush_translation_cache_ram();
else
flush_translation_cache_rom();
return false;
}
/* If the next instruction is a block entry point update the
cycle counter and update */
if (pc != block_end_pc &&
block_data[block_data_position].update_cycles)
{
generate_cycle_update();
}
}
/* Unconditionally generate translation targets. In case we hit one or
in the unlikely case that block was too big (and not finalized) */
generate_translation_gate(thumb);
for(i = 0; i < block_exit_position; i++)
{
branch_target = block_exits[i].branch_target;
if((branch_target >= block_start_pc) && (branch_target < block_end_pc))
{
/* Internal branch, patch to recorded address */
translation_target =
block_data[(branch_target - block_start_pc) /
thumb_instruction_width].block_offset;
generate_branch_patch_unconditional(block_exits[i].branch_source,
translation_target);
}
else
{
/* External branch, save for later */
external_block_exits[external_block_exit_position].branch_target =
branch_target;
external_block_exits[external_block_exit_position].branch_source =
block_exits[i].branch_source;
external_block_exit_position++;
}
}
if (ram_region)
ram_translation_ptr = translation_ptr;
else
rom_translation_ptr = translation_ptr;
for(i = 0; i < external_block_exit_position; i++)
{
branch_target = external_block_exits[i].branch_target;
if(branch_target == 0x00000008)
translation_target = bios_swi_entrypoint;
else
translation_target = block_lookup_translate_thumb(branch_target);
if (!translation_target)
return false;
generate_branch_patch_unconditional(
external_block_exits[i].branch_source, translation_target);
}
return true;
}
void init_bios_hooks(void)
{
// Pre-generate this entry point so that we can safely invoke fast
// SWI calls from ROM and RAM regardless of cache flushes.
rom_translation_ptr = &rom_translation_cache[rom_cache_watermark];
last_rom_translation_ptr = rom_translation_ptr;
bios_swi_entrypoint = block_lookup_address_arm(0x8);
rom_cache_watermark = (u32)(rom_translation_ptr - rom_translation_cache);
}
void flush_translation_cache_ram(void)
{
/* Flushes RAM caches avoiding doing too much work (ie. wiping unused memory) */
flush_ram_count++;
/*printf("ram flush %d (pc %x), %x to %x, %x to %x\n",
flush_ram_count, reg[REG_PC], iwram_code_min, iwram_code_max,
ewram_code_min, ewram_code_max);*/
last_ram_translation_ptr = ram_translation_cache;
ram_translation_ptr = ram_translation_cache;
// Proceed to clean the SMC area if needed
// (also try to memset as little as possible for performance)
if (iwram_code_max) {
if(iwram_code_max > iwram_code_min) {
iwram_code_min &= ~15U;
iwram_code_max = MIN(iwram_code_max + 8, 0x8000);
memset(&iwram[iwram_code_min], 0, iwram_code_max - iwram_code_min);
} else
memset(iwram, 0, 0x8000);
}
if (ewram_code_max) {
if(ewram_code_max > ewram_code_min) {
ewram_code_min &= ~15U;
ewram_code_max = MIN(ewram_code_max + 8, 0x40000);
memset(&ewram[0x40000 + ewram_code_min], 0, ewram_code_max - ewram_code_min);
} else
memset(&ewram[0x40000], 0, 0x40000);
}
iwram_code_min = ~0U;
iwram_code_max = 0U;
ewram_code_min = ~0U;
ewram_code_max = 0U;
ram_block_tag = INITIAL_TOP_TAG;
}
void flush_translation_cache_rom(void)
{
/* We flush the generated code except for everything below the watermark. */
last_rom_translation_ptr = &rom_translation_cache[rom_cache_watermark];
rom_translation_ptr = &rom_translation_cache[rom_cache_watermark];
memset(rom_branch_hash, 0, sizeof(rom_branch_hash));
}
void init_dynarec_caches(void)
{
/* Initialize caches so that we can start initalizing the emitter. */
rom_translation_ptr = last_rom_translation_ptr = &rom_translation_cache[0];
memset(rom_branch_hash, 0, sizeof(rom_branch_hash));
ram_translation_ptr = last_ram_translation_ptr = &ram_translation_cache[0];
memset(iwram, 0, 0x8000);
memset(&ewram[0x40000], 0, 0x40000);
ewram_code_min = 0;
ewram_code_max = 0x40000;
iwram_code_min = 0;
iwram_code_max = 0x8000;
}
void flush_dynarec_caches(void)
{
/* Flush ROM and RAM caches. */
flush_translation_cache_rom();
ewram_code_min = 0;
ewram_code_max = 0x40000;
iwram_code_min = 0;
iwram_code_max = 0x8000;
flush_translation_cache_ram();
}