gpsp/arm/arm_emit.h

1968 lines
105 KiB
C
Raw Normal View History

/* gameplaySP
*
* Copyright (C) 2006 Exophase <exophase@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef ARM_EMIT_H
#define ARM_EMIT_H
#include "arm_codegen.h"
u32 arm_update_gba_arm(u32 pc);
u32 arm_update_gba_thumb(u32 pc);
u32 arm_update_gba_idle_arm(u32 pc);
u32 arm_update_gba_idle_thumb(u32 pc);
// Although these are defined as a function, don't call them as
// such (jump to it instead)
void arm_indirect_branch_arm(u32 address);
void arm_indirect_branch_thumb(u32 address);
void arm_indirect_branch_dual_arm(u32 address);
void arm_indirect_branch_dual_thumb(u32 address);
void execute_store_cpsr(u32 new_cpsr, u32 store_mask, u32 address);
u32 execute_store_cpsr_body(u32 _cpsr, u32 store_mask, u32 address);
void execute_store_spsr(u32 new_cpsr, u32 store_mask);
u32 execute_read_spsr();
u32 execute_spsr_restore(u32 address);
void execute_swi_arm(u32 pc);
void execute_swi_thumb(u32 pc);
void function_cc execute_store_u32_safe(u32 address, u32 source);
void step_debug_arm(u32 pc);
#define write32(value) \
*((u32 *)translation_ptr) = value; \
translation_ptr += 4 \
#define arm_relative_offset(source, offset) \
(((((u32)offset - (u32)source) - 8) >> 2) & 0xFFFFFF) \
// reg_base_offset is the amount of bytes after reg_base where the registers
// actually begin.
#define reg_base_offset 1024
#define reg_a0 ARMREG_R0
#define reg_a1 ARMREG_R1
#define reg_a2 ARMREG_R2
#define reg_s0 ARMREG_R9
#define reg_base ARMREG_SP
#define reg_flags ARMREG_R11
#define reg_cycles ARMREG_R12
#define reg_rv ARMREG_R0
#define reg_rm ARMREG_R0
#define reg_rn ARMREG_R1
#define reg_rs ARMREG_R14
#define reg_rd ARMREG_R0
// Register allocation layout for ARM and Thumb:
// Map from a GBA register to a host ARM register. -1 means load it
// from memory into one of the temp registers.
// The following registers are chosen based on statistical analysis
// of a few games (see below), but might not be the best ones. Results
// vary tremendously between ARM and Thumb (for obvious reasons), so
// two sets are used. Take care to not call any function which can
// overwrite any of these registers from the dynarec - only call
// trusted functions in arm_stub.S which know how to save/restore
// them and know how to transfer them to the C functions it calls
// if necessary.
// The following define the actual registers available for allocation.
// As registers are freed up add them to this list.
// Note that r15 is linked to the a0 temp reg - this register will
// be preloaded with a constant upon read, and used to link to
// indirect branch functions upon write.
#define reg_x0 ARMREG_R3
#define reg_x1 ARMREG_R4
#define reg_x2 ARMREG_R5
#define reg_x3 ARMREG_R6
#define reg_x4 ARMREG_R7
#define reg_x5 ARMREG_R8
#define mem_reg -1
/*
ARM register usage (38.775138% ARM instructions):
r00: 18.263814% (-- 18.263814%)
r12: 11.531477% (-- 29.795291%)
r09: 11.500162% (-- 41.295453%)
r14: 9.063440% (-- 50.358893%)
r06: 7.837682% (-- 58.196574%)
r01: 7.401049% (-- 65.597623%)
r07: 6.778340% (-- 72.375963%)
r05: 5.445009% (-- 77.820973%)
r02: 5.427288% (-- 83.248260%)
r03: 5.293743% (-- 88.542003%)
r04: 3.601103% (-- 92.143106%)
r11: 3.207311% (-- 95.350417%)
r10: 2.334864% (-- 97.685281%)
r08: 1.708207% (-- 99.393488%)
r15: 0.311270% (-- 99.704757%)
r13: 0.295243% (-- 100.000000%)
Thumb register usage (61.224862% Thumb instructions):
r00: 34.788858% (-- 34.788858%)
r01: 26.564083% (-- 61.352941%)
r03: 10.983500% (-- 72.336441%)
r02: 8.303127% (-- 80.639567%)
r04: 4.900381% (-- 85.539948%)
r05: 3.941292% (-- 89.481240%)
r06: 3.257582% (-- 92.738822%)
r07: 2.644851% (-- 95.383673%)
r13: 1.408824% (-- 96.792497%)
r08: 0.906433% (-- 97.698930%)
r09: 0.679693% (-- 98.378623%)
r10: 0.656446% (-- 99.035069%)
r12: 0.453668% (-- 99.488737%)
r14: 0.248909% (-- 99.737646%)
r11: 0.171066% (-- 99.908713%)
r15: 0.091287% (-- 100.000000%)
*/
s32 arm_register_allocation[] =
{
reg_x0, // GBA r0
reg_x1, // GBA r1
mem_reg, // GBA r2
mem_reg, // GBA r3
mem_reg, // GBA r4
mem_reg, // GBA r5
reg_x2, // GBA r6
mem_reg, // GBA r7
mem_reg, // GBA r8
reg_x3, // GBA r9
mem_reg, // GBA r10
mem_reg, // GBA r11
reg_x4, // GBA r12
mem_reg, // GBA r13
reg_x5, // GBA r14
reg_a0 // GBA r15
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
};
s32 thumb_register_allocation[] =
{
reg_x0, // GBA r0
reg_x1, // GBA r1
reg_x2, // GBA r2
reg_x3, // GBA r3
reg_x4, // GBA r4
reg_x5, // GBA r5
mem_reg, // GBA r6
mem_reg, // GBA r7
mem_reg, // GBA r8
mem_reg, // GBA r9
mem_reg, // GBA r10
mem_reg, // GBA r11
mem_reg, // GBA r12
mem_reg, // GBA r13
mem_reg, // GBA r14
reg_a0 // GBA r15
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
mem_reg,
};
#define arm_imm_lsl_to_rot(value) \
(32 - value) \
u32 arm_disect_imm_32bit(u32 imm, u32 *stores, u32 *rotations)
{
u32 store_count = 0;
u32 left_shift = 0;
// Otherwise it'll return 0 things to store because it'll never
// find anything.
if(imm == 0)
{
rotations[0] = 0;
stores[0] = 0;
return 1;
}
// Find chunks of non-zero data at 2 bit alignments.
while(1)
{
for(; left_shift < 32; left_shift += 2)
{
if((imm >> left_shift) & 0x03)
break;
}
if(left_shift == 32)
{
// We've hit the end of the useful data.
return store_count;
}
// Hit the end, it might wrap back around to the beginning.
if(left_shift >= 24)
{
// Make a mask for the residual bits. IE, if we have
// 5 bits of data at the end we can wrap around to 3
// bits of data in the beginning. Thus the first
// thing, after being shifted left, has to be less
// than 111b, 0x7, or (1 << 3) - 1.
u32 top_bits = 32 - left_shift;
u32 residual_bits = 8 - top_bits;
u32 residual_mask = (1 << residual_bits) - 1;
if((store_count > 1) && (left_shift > 24) &&
((stores[0] << ((32 - rotations[0]) & 0x1F)) < residual_mask))
{
// Then we can throw out the last bit and tack it on
// to the first bit.
stores[0] =
(stores[0] << ((top_bits + (32 - rotations[0])) & 0x1F)) |
((imm >> left_shift) & 0xFF);
rotations[0] = top_bits;
return store_count;
}
else
{
// There's nothing to wrap over to in the beginning
stores[store_count] = (imm >> left_shift) & 0xFF;
rotations[store_count] = (32 - left_shift) & 0x1F;
return store_count + 1;
}
break;
}
stores[store_count] = (imm >> left_shift) & 0xFF;
rotations[store_count] = (32 - left_shift) & 0x1F;
store_count++;
left_shift += 8;
}
}
#define arm_load_imm_32bit(ireg, imm) \
{ \
u32 stores[4]; \
u32 rotations[4]; \
u32 store_count = arm_disect_imm_32bit(imm, stores, rotations); \
u32 i; \
\
ARM_MOV_REG_IMM(0, ireg, stores[0], rotations[0]); \
\
for(i = 1; i < store_count; i++) \
{ \
ARM_ORR_REG_IMM(0, ireg, ireg, stores[i], rotations[i]); \
} \
} \
#define generate_load_pc(ireg, new_pc) \
arm_load_imm_32bit(ireg, new_pc) \
#define generate_load_imm(ireg, imm, imm_ror) \
ARM_MOV_REG_IMM(0, ireg, imm, imm_ror) \
#define generate_shift_left(ireg, imm) \
ARM_MOV_REG_IMMSHIFT(0, ireg, ireg, ARMSHIFT_LSL, imm) \
#define generate_shift_right(ireg, imm) \
ARM_MOV_REG_IMMSHIFT(0, ireg, ireg, ARMSHIFT_LSR, imm) \
#define generate_shift_right_arithmetic(ireg, imm) \
ARM_MOV_REG_IMMSHIFT(0, ireg, ireg, ARMSHIFT_ASR, imm) \
#define generate_rotate_right(ireg, imm) \
ARM_MOV_REG_IMMSHIFT(0, ireg, ireg, ARMSHIFT_ROR, imm) \
#define generate_add(ireg_dest, ireg_src) \
ARM_ADD_REG_REG(0, ireg_dest, ireg_dest, ireg_src) \
#define generate_sub(ireg_dest, ireg_src) \
ARM_SUB_REG_REG(0, ireg_dest, ireg_dest, ireg_src) \
#define generate_or(ireg_dest, ireg_src) \
ARM_ORR_REG_REG(0, ireg_dest, ireg_dest, ireg_src) \
#define generate_xor(ireg_dest, ireg_src) \
ARM_EOR_REG_REG(0, ireg_dest, ireg_dest, ireg_src) \
#define generate_add_imm(ireg, imm, imm_ror) \
ARM_ADD_REG_IMM(0, ireg, ireg, imm, imm_ror) \
#define generate_sub_imm(ireg, imm, imm_ror) \
ARM_SUB_REG_IMM(0, ireg, ireg, imm, imm_ror) \
#define generate_xor_imm(ireg, imm, imm_ror) \
ARM_EOR_REG_IMM(0, ireg, ireg, imm, imm_ror) \
#define generate_add_reg_reg_imm(ireg_dest, ireg_src, imm, imm_ror) \
ARM_ADD_REG_IMM(0, ireg_dest, ireg_src, imm, imm_ror) \
#define generate_and_imm(ireg, imm, imm_ror) \
ARM_AND_REG_IMM(0, ireg, ireg, imm, imm_ror) \
#define generate_mov(ireg_dest, ireg_src) \
if(ireg_dest != ireg_src) \
{ \
ARM_MOV_REG_REG(0, ireg_dest, ireg_src); \
} \
#define generate_function_call(function_location) \
ARM_BL(0, arm_relative_offset(translation_ptr, function_location)) \
#define generate_exit_block() \
ARM_BX(0, ARMREG_LR) \
// The branch target is to be filled in later (thus a 0 for now)
#define generate_branch_filler(condition_code, writeback_location) \
(writeback_location) = translation_ptr; \
ARM_B_COND(0, condition_code, 0) \
#define generate_update_pc(new_pc) \
generate_load_pc(reg_a0, new_pc) \
#define generate_cycle_update() \
if(cycle_count) \
{ \
if(cycle_count >> 8) \
{ \
ARM_ADD_REG_IMM(0, reg_cycles, reg_cycles, (cycle_count >> 8) & 0xFF, \
arm_imm_lsl_to_rot(8)); \
} \
ARM_ADD_REG_IMM(0, reg_cycles, reg_cycles, (cycle_count & 0xFF), 0); \
cycle_count = 0; \
} \
#define generate_cycle_update_flag_set() \
if(cycle_count >> 8) \
{ \
ARM_ADD_REG_IMM(0, reg_cycles, reg_cycles, (cycle_count >> 8) & 0xFF, \
arm_imm_lsl_to_rot(8)); \
} \
generate_save_flags(); \
ARM_ADDS_REG_IMM(0, reg_cycles, reg_cycles, (cycle_count & 0xFF), 0); \
cycle_count = 0 \
#define generate_branch_patch_conditional(dest, offset) \
*((u32 *)(dest)) = (*((u32 *)dest) & 0xFF000000) | \
arm_relative_offset(dest, offset) \
#define generate_branch_patch_unconditional(dest, offset) \
*((u32 *)(dest)) = (*((u32 *)dest) & 0xFF000000) | \
arm_relative_offset(dest, offset) \
// A different function is called for idle updates because of the relative
// location of the embedded PC. The idle version could be optimized to put
// the CPU into halt mode too, however.
#define generate_branch_idle_eliminate(writeback_location, new_pc, mode) \
generate_function_call(arm_update_gba_idle_##mode); \
write32(new_pc); \
generate_branch_filler(ARMCOND_AL, writeback_location) \
#define generate_branch_update(writeback_location, new_pc, mode) \
ARM_MOV_REG_IMMSHIFT(0, reg_a0, reg_cycles, ARMSHIFT_LSR, 31); \
ARM_ADD_REG_IMMSHIFT(0, ARMREG_PC, ARMREG_PC, reg_a0, ARMSHIFT_LSL, 2); \
write32(new_pc); \
generate_function_call(arm_update_gba_##mode); \
generate_branch_filler(ARMCOND_AL, writeback_location) \
#define generate_branch_no_cycle_update(writeback_location, new_pc, mode) \
if(pc == idle_loop_target_pc) \
{ \
generate_branch_idle_eliminate(writeback_location, new_pc, mode); \
} \
else \
{ \
generate_branch_update(writeback_location, new_pc, mode); \
} \
#define generate_branch_cycle_update(writeback_location, new_pc, mode) \
generate_cycle_update(); \
generate_branch_no_cycle_update(writeback_location, new_pc, mode) \
// a0 holds the destination
#define generate_indirect_branch_no_cycle_update(type) \
ARM_B(0, arm_relative_offset(translation_ptr, arm_indirect_branch_##type)) \
#define generate_indirect_branch_cycle_update(type) \
generate_cycle_update(); \
generate_indirect_branch_no_cycle_update(type) \
#define generate_block_prologue() \
#define generate_block_extra_vars_arm() \
void generate_indirect_branch_arm() \
{ \
if(condition == 0x0E) \
{ \
generate_cycle_update(); \
} \
generate_indirect_branch_no_cycle_update(arm); \
} \
\
void generate_indirect_branch_dual() \
{ \
if(condition == 0x0E) \
{ \
generate_cycle_update(); \
} \
generate_indirect_branch_no_cycle_update(dual_arm); \
} \
\
u32 prepare_load_reg(u32 scratch_reg, u32 reg_index) \
{ \
u32 reg_use = arm_register_allocation[reg_index]; \
if(reg_use == mem_reg) \
{ \
ARM_LDR_IMM(0, scratch_reg, reg_base, \
(reg_base_offset + (reg_index * 4))); \
return scratch_reg; \
} \
\
return reg_use; \
} \
\
u32 prepare_load_reg_pc(u32 scratch_reg, u32 reg_index, u32 pc_offset) \
{ \
if(reg_index == 15) \
{ \
generate_load_pc(scratch_reg, pc + pc_offset); \
return scratch_reg; \
} \
return prepare_load_reg(scratch_reg, reg_index); \
} \
\
u32 prepare_store_reg(u32 scratch_reg, u32 reg_index) \
{ \
u32 reg_use = arm_register_allocation[reg_index]; \
if(reg_use == mem_reg) \
return scratch_reg; \
\
return reg_use; \
} \
\
void complete_store_reg(u32 scratch_reg, u32 reg_index) \
{ \
if(arm_register_allocation[reg_index] == mem_reg) \
{ \
ARM_STR_IMM(0, scratch_reg, reg_base, \
(reg_base_offset + (reg_index * 4))); \
} \
} \
\
void complete_store_reg_pc_no_flags(u32 scratch_reg, u32 reg_index) \
{ \
if(reg_index == 15) \
{ \
generate_indirect_branch_arm(); \
} \
else \
{ \
complete_store_reg(scratch_reg, reg_index); \
} \
} \
\
void complete_store_reg_pc_flags(u32 scratch_reg, u32 reg_index) \
{ \
if(reg_index == 15) \
{ \
if(condition == 0x0E) \
{ \
generate_cycle_update(); \
} \
generate_function_call(execute_spsr_restore); \
} \
else \
{ \
complete_store_reg(scratch_reg, reg_index); \
} \
} \
\
void generate_load_reg(u32 ireg, u32 reg_index) \
{ \
s32 load_src = arm_register_allocation[reg_index]; \
if(load_src != mem_reg) \
{ \
ARM_MOV_REG_REG(0, ireg, load_src); \
} \
else \
{ \
ARM_LDR_IMM(0, ireg, reg_base, (reg_base_offset + (reg_index * 4))); \
} \
} \
\
void generate_store_reg(u32 ireg, u32 reg_index) \
{ \
s32 store_dest = arm_register_allocation[reg_index]; \
if(store_dest != mem_reg) \
{ \
ARM_MOV_REG_REG(0, store_dest, ireg); \
} \
else \
{ \
ARM_STR_IMM(0, ireg, reg_base, (reg_base_offset + (reg_index * 4))); \
} \
} \
#define generate_block_extra_vars_thumb() \
u32 prepare_load_reg(u32 scratch_reg, u32 reg_index) \
{ \
u32 reg_use = thumb_register_allocation[reg_index]; \
if(reg_use == mem_reg) \
{ \
ARM_LDR_IMM(0, scratch_reg, reg_base, \
(reg_base_offset + (reg_index * 4))); \
return scratch_reg; \
} \
\
return reg_use; \
} \
\
u32 prepare_load_reg_pc(u32 scratch_reg, u32 reg_index, u32 pc_offset) \
{ \
if(reg_index == 15) \
{ \
generate_load_pc(scratch_reg, pc + pc_offset); \
return scratch_reg; \
} \
return prepare_load_reg(scratch_reg, reg_index); \
} \
\
u32 prepare_store_reg(u32 scratch_reg, u32 reg_index) \
{ \
u32 reg_use = thumb_register_allocation[reg_index]; \
if(reg_use == mem_reg) \
return scratch_reg; \
\
return reg_use; \
} \
\
void complete_store_reg(u32 scratch_reg, u32 reg_index) \
{ \
if(thumb_register_allocation[reg_index] == mem_reg) \
{ \
ARM_STR_IMM(0, scratch_reg, reg_base, \
(reg_base_offset + (reg_index * 4))); \
} \
} \
\
void generate_load_reg(u32 ireg, u32 reg_index) \
{ \
s32 load_src = thumb_register_allocation[reg_index]; \
if(load_src != mem_reg) \
{ \
ARM_MOV_REG_REG(0, ireg, load_src); \
} \
else \
{ \
ARM_LDR_IMM(0, ireg, reg_base, (reg_base_offset + (reg_index * 4))); \
} \
} \
\
void generate_store_reg(u32 ireg, u32 reg_index) \
{ \
s32 store_dest = thumb_register_allocation[reg_index]; \
if(store_dest != mem_reg) \
{ \
ARM_MOV_REG_REG(0, store_dest, ireg); \
} \
else \
{ \
ARM_STR_IMM(0, ireg, reg_base, (reg_base_offset + (reg_index * 4))); \
} \
} \
u8 *last_rom_translation_ptr = rom_translation_cache;
u8 *last_ram_translation_ptr = ram_translation_cache;
u8 *last_bios_translation_ptr = bios_translation_cache;
#define translate_invalidate_dcache_one(which) \
if (which##_translation_ptr > last_##which##_translation_ptr) \
{ \
2009-06-21 20:16:51 +02:00
warm_cache_op_range(WOP_D_CLEAN, last_##which##_translation_ptr, \
which##_translation_ptr - last_##which##_translation_ptr); \
warm_cache_op_range(WOP_I_INVALIDATE, last_##which##_translation_ptr, 32);\
last_##which##_translation_ptr = which##_translation_ptr; \
}
#define translate_invalidate_dcache() \
{ \
translate_invalidate_dcache_one(rom) \
translate_invalidate_dcache_one(ram) \
translate_invalidate_dcache_one(bios) \
}
#define invalidate_icache_region(addr, size) \
warm_cache_op_range(WOP_I_INVALIDATE, addr, size)
#define block_prologue_size 0
// It should be okay to still generate result flags, spsr will overwrite them.
// This is pretty infrequent (returning from interrupt handlers, et al) so
// probably not worth optimizing for.
#define check_for_interrupts() \
if((io_registers[REG_IE] & io_registers[REG_IF]) && \
io_registers[REG_IME] && ((reg[REG_CPSR] & 0x80) == 0)) \
{ \
reg_mode[MODE_IRQ][6] = pc + 4; \
spsr[MODE_IRQ] = reg[REG_CPSR]; \
reg[REG_CPSR] = 0xD2; \
pc = 0x00000018; \
set_cpu_mode(MODE_IRQ); \
} \
#define generate_load_reg_pc(ireg, reg_index, pc_offset) \
if(reg_index == 15) \
{ \
generate_load_pc(ireg, pc + pc_offset); \
} \
else \
{ \
generate_load_reg(ireg, reg_index); \
} \
#define generate_store_reg_pc_no_flags(ireg, reg_index) \
generate_store_reg(ireg, reg_index); \
if(reg_index == 15) \
{ \
generate_indirect_branch_arm(); \
} \
u32 function_cc execute_spsr_restore_body(u32 pc)
{
set_cpu_mode(cpu_modes[reg[REG_CPSR] & 0x1F]);
check_for_interrupts();
return pc;
}
#define generate_store_reg_pc_flags(ireg, reg_index) \
generate_store_reg(ireg, reg_index); \
if(reg_index == 15) \
{ \
if(condition == 0x0E) \
{ \
generate_cycle_update(); \
} \
generate_function_call(execute_spsr_restore); \
} \
#define generate_load_flags() \
/* ARM_MSR_REG(0, ARM_PSR_F, reg_flags, ARM_CPSR) */ \
#define generate_store_flags() \
/* ARM_MRS_CPSR(0, reg_flags) */ \
#define generate_save_flags() \
ARM_MRS_CPSR(0, reg_flags) \
#define generate_restore_flags() \
ARM_MSR_REG(0, ARM_PSR_F, reg_flags, ARM_CPSR) \
#define condition_opposite_eq ARMCOND_NE
#define condition_opposite_ne ARMCOND_EQ
#define condition_opposite_cs ARMCOND_CC
#define condition_opposite_cc ARMCOND_CS
#define condition_opposite_mi ARMCOND_PL
#define condition_opposite_pl ARMCOND_MI
#define condition_opposite_vs ARMCOND_VC
#define condition_opposite_vc ARMCOND_VS
#define condition_opposite_hi ARMCOND_LS
#define condition_opposite_ls ARMCOND_HI
#define condition_opposite_ge ARMCOND_LT
#define condition_opposite_lt ARMCOND_GE
#define condition_opposite_gt ARMCOND_LE
#define condition_opposite_le ARMCOND_GT
#define condition_opposite_al ARMCOND_NV
#define condition_opposite_nv ARMCOND_AL
#define generate_branch(mode) \
{ \
generate_branch_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target, mode); \
block_exit_position++; \
} \
#define generate_op_and_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
ARM_AND_REG_IMMSHIFT(0, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_orr_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
ARM_ORR_REG_IMMSHIFT(0, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_eor_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
ARM_EOR_REG_IMMSHIFT(0, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_bic_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
ARM_BIC_REG_IMMSHIFT(0, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_sub_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
ARM_SUB_REG_IMMSHIFT(0, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_rsb_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
ARM_RSB_REG_IMMSHIFT(0, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_sbc_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
ARM_SBC_REG_IMMSHIFT(0, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_rsc_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
ARM_RSC_REG_IMMSHIFT(0, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_add_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
ARM_ADD_REG_IMMSHIFT(0, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_adc_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
ARM_ADC_REG_IMMSHIFT(0, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_mov_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
ARM_MOV_REG_IMMSHIFT(0, _rd, _rm, shift_type, shift) \
#define generate_op_mvn_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
ARM_MVN_REG_IMMSHIFT(0, _rd, _rm, shift_type, shift) \
#define generate_op_and_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
ARM_AND_REG_REGSHIFT(0, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_orr_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
ARM_ORR_REG_REGSHIFT(0, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_eor_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
ARM_EOR_REG_REGSHIFT(0, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_bic_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
ARM_BIC_REG_REGSHIFT(0, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_sub_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
ARM_SUB_REG_REGSHIFT(0, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_rsb_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
ARM_RSB_REG_REGSHIFT(0, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_sbc_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
ARM_SBC_REG_REGSHIFT(0, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_rsc_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
ARM_RSC_REG_REGSHIFT(0, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_add_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
ARM_ADD_REG_REGSHIFT(0, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_adc_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
ARM_ADC_REG_REGSHIFT(0, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_mov_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
ARM_MOV_REG_REGSHIFT(0, _rd, _rm, shift_type, _rs) \
#define generate_op_mvn_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
ARM_MVN_REG_REGSHIFT(0, _rd, _rm, shift_type, _rs) \
#define generate_op_and_imm(_rd, _rn) \
ARM_AND_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_orr_imm(_rd, _rn) \
ARM_ORR_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_eor_imm(_rd, _rn) \
ARM_EOR_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_bic_imm(_rd, _rn) \
ARM_BIC_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_sub_imm(_rd, _rn) \
ARM_SUB_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_rsb_imm(_rd, _rn) \
ARM_RSB_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_sbc_imm(_rd, _rn) \
ARM_SBC_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_rsc_imm(_rd, _rn) \
ARM_RSC_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_add_imm(_rd, _rn) \
ARM_ADD_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_adc_imm(_rd, _rn) \
ARM_ADC_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_mov_imm(_rd, _rn) \
ARM_MOV_REG_IMM(0, _rd, imm, imm_ror) \
#define generate_op_mvn_imm(_rd, _rn) \
ARM_MVN_REG_IMM(0, _rd, imm, imm_ror) \
#define generate_op_reg_immshift_lflags(name, _rd, _rn, _rm, st, shift) \
ARM_##name##_REG_IMMSHIFT(0, _rd, _rn, _rm, st, shift) \
#define generate_op_reg_immshift_aflags(name, _rd, _rn, _rm, st, shift) \
ARM_##name##_REG_IMMSHIFT(0, _rd, _rn, _rm, st, shift) \
#define generate_op_reg_immshift_aflags_load_c(name, _rd, _rn, _rm, st, sh) \
ARM_##name##_REG_IMMSHIFT(0, _rd, _rn, _rm, st, sh) \
#define generate_op_reg_immshift_uflags(name, _rd, _rm, shift_type, shift) \
ARM_##name##_REG_IMMSHIFT(0, _rd, _rm, shift_type, shift) \
#define generate_op_reg_immshift_tflags(name, _rn, _rm, shift_type, shift) \
ARM_##name##_REG_IMMSHIFT(0, _rn, _rm, shift_type, shift) \
#define generate_op_reg_regshift_lflags(name, _rd, _rn, _rm, shift_type, _rs) \
ARM_##name##_REG_REGSHIFT(0, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_reg_regshift_aflags(name, _rd, _rn, _rm, st, _rs) \
ARM_##name##_REG_REGSHIFT(0, _rd, _rn, _rm, st, _rs) \
#define generate_op_reg_regshift_aflags_load_c(name, _rd, _rn, _rm, st, _rs) \
ARM_##name##_REG_REGSHIFT(0, _rd, _rn, _rm, st, _rs) \
#define generate_op_reg_regshift_uflags(name, _rd, _rm, shift_type, _rs) \
ARM_##name##_REG_REGSHIFT(0, _rd, _rm, shift_type, _rs) \
#define generate_op_reg_regshift_tflags(name, _rn, _rm, shift_type, _rs) \
ARM_##name##_REG_REGSHIFT(0, _rn, _rm, shift_type, _rs) \
#define generate_op_imm_lflags(name, _rd, _rn) \
ARM_##name##_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_imm_aflags(name, _rd, _rn) \
ARM_##name##_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_imm_aflags_load_c(name, _rd, _rn) \
ARM_##name##_REG_IMM(0, _rd, _rn, imm, imm_ror) \
#define generate_op_imm_uflags(name, _rd) \
ARM_##name##_REG_IMM(0, _rd, imm, imm_ror) \
#define generate_op_imm_tflags(name, _rn) \
ARM_##name##_REG_IMM(0, _rn, imm, imm_ror) \
#define generate_op_ands_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_lflags(ANDS, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_orrs_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_lflags(ORRS, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_eors_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_lflags(EORS, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_bics_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_lflags(BICS, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_subs_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_aflags(SUBS, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_rsbs_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_aflags(RSBS, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_sbcs_reg_immshift(_rd, _rn, _rm, st, shift) \
generate_op_reg_immshift_aflags_load_c(SBCS, _rd, _rn, _rm, st, shift) \
#define generate_op_rscs_reg_immshift(_rd, _rn, _rm, st, shift) \
generate_op_reg_immshift_aflags_load_c(RSCS, _rd, _rn, _rm, st, shift) \
#define generate_op_adds_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_aflags(ADDS, _rd, _rn, _rm, shift_type, shift) \
#define generate_op_adcs_reg_immshift(_rd, _rn, _rm, st, shift) \
generate_op_reg_immshift_aflags_load_c(ADCS, _rd, _rn, _rm, st, shift) \
#define generate_op_movs_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_uflags(MOVS, _rd, _rm, shift_type, shift) \
#define generate_op_mvns_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_uflags(MVNS, _rd, _rm, shift_type, shift) \
// The reg operand is in reg_rm, not reg_rn like expected, so rsbs isn't
// being used here. When rsbs is fully inlined it can be used with the
// apropriate operands.
#define generate_op_neg_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
{ \
generate_load_imm(reg_rn, 0, 0); \
generate_op_subs_reg_immshift(_rd, reg_rn, _rm, ARMSHIFT_LSL, 0); \
} \
#define generate_op_muls_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_load_flags(); \
ARM_MULS(0, _rd, _rn, _rm); \
generate_store_flags() \
#define generate_op_cmp_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_tflags(CMP, _rn, _rm, shift_type, shift) \
#define generate_op_cmn_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_tflags(CMN, _rn, _rm, shift_type, shift) \
#define generate_op_tst_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_tflags(TST, _rn, _rm, shift_type, shift) \
#define generate_op_teq_reg_immshift(_rd, _rn, _rm, shift_type, shift) \
generate_op_reg_immshift_tflags(TEQ, _rn, _rm, shift_type, shift) \
#define generate_op_ands_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_lflags(ANDS, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_orrs_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_lflags(ORRS, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_eors_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_lflags(EORS, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_bics_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_lflags(BICS, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_subs_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_aflags(SUBS, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_rsbs_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_aflags(RSBS, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_sbcs_reg_regshift(_rd, _rn, _rm, st, _rs) \
generate_op_reg_regshift_aflags_load_c(SBCS, _rd, _rn, _rm, st, _rs) \
#define generate_op_rscs_reg_regshift(_rd, _rn, _rm, st, _rs) \
generate_op_reg_regshift_aflags_load_c(RSCS, _rd, _rn, _rm, st, _rs) \
#define generate_op_adds_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_aflags(ADDS, _rd, _rn, _rm, shift_type, _rs) \
#define generate_op_adcs_reg_regshift(_rd, _rn, _rm, st, _rs) \
generate_op_reg_regshift_aflags_load_c(ADCS, _rd, _rn, _rm, st, _rs) \
#define generate_op_movs_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_uflags(MOVS, _rd, _rm, shift_type, _rs) \
#define generate_op_mvns_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_uflags(MVNS, _rd, _rm, shift_type, _rs) \
#define generate_op_cmp_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_tflags(CMP, _rn, _rm, shift_type, _rs) \
#define generate_op_cmn_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_tflags(CMN, _rn, _rm, shift_type, _rs) \
#define generate_op_tst_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_tflags(TST, _rn, _rm, shift_type, _rs) \
#define generate_op_teq_reg_regshift(_rd, _rn, _rm, shift_type, _rs) \
generate_op_reg_regshift_tflags(TEQ, _rn, _rm, shift_type, _rs) \
#define generate_op_ands_imm(_rd, _rn) \
generate_op_imm_lflags(ANDS, _rd, _rn) \
#define generate_op_orrs_imm(_rd, _rn) \
generate_op_imm_lflags(ORRS, _rd, _rn) \
#define generate_op_eors_imm(_rd, _rn) \
generate_op_imm_lflags(EORS, _rd, _rn) \
#define generate_op_bics_imm(_rd, _rn) \
generate_op_imm_lflags(BICS, _rd, _rn) \
#define generate_op_subs_imm(_rd, _rn) \
generate_op_imm_aflags(SUBS, _rd, _rn) \
#define generate_op_rsbs_imm(_rd, _rn) \
generate_op_imm_aflags(RSBS, _rd, _rn) \
#define generate_op_sbcs_imm(_rd, _rn) \
generate_op_imm_aflags_load_c(SBCS, _rd, _rn) \
#define generate_op_rscs_imm(_rd, _rn) \
generate_op_imm_aflags_load_c(RSCS, _rd, _rn) \
#define generate_op_adds_imm(_rd, _rn) \
generate_op_imm_aflags(ADDS, _rd, _rn) \
#define generate_op_adcs_imm(_rd, _rn) \
generate_op_imm_aflags_load_c(ADCS, _rd, _rn) \
#define generate_op_movs_imm(_rd, _rn) \
generate_op_imm_uflags(MOVS, _rd) \
#define generate_op_mvns_imm(_rd, _rn) \
generate_op_imm_uflags(MVNS, _rd) \
#define generate_op_cmp_imm(_rd, _rn) \
generate_op_imm_tflags(CMP, _rn) \
#define generate_op_cmn_imm(_rd, _rn) \
generate_op_imm_tflags(CMN, _rn) \
#define generate_op_tst_imm(_rd, _rn) \
generate_op_imm_tflags(TST, _rn) \
#define generate_op_teq_imm(_rd, _rn) \
generate_op_imm_tflags(TEQ, _rn) \
#define prepare_load_rn_yes() \
u32 _rn = prepare_load_reg_pc(reg_rn, rn, 8) \
#define prepare_load_rn_no() \
#define prepare_store_rd_yes() \
u32 _rd = prepare_store_reg(reg_rd, rd) \
#define prepare_store_rd_no() \
#define complete_store_rd_yes(flags_op) \
complete_store_reg_pc_##flags_op(_rd, rd) \
#define complete_store_rd_no(flags_op) \
#define arm_generate_op_reg(name, load_op, store_op, flags_op) \
u32 shift_type = (opcode >> 5) & 0x03; \
arm_decode_data_proc_reg(); \
prepare_load_rn_##load_op(); \
prepare_store_rd_##store_op(); \
\
if((opcode >> 4) & 0x01) \
{ \
u32 rs = ((opcode >> 8) & 0x0F); \
u32 _rs = prepare_load_reg(reg_rs, rs); \
u32 _rm = prepare_load_reg_pc(reg_rm, rm, 12); \
generate_op_##name##_reg_regshift(_rd, _rn, _rm, shift_type, _rs); \
} \
else \
{ \
u32 shift_imm = ((opcode >> 7) & 0x1F); \
u32 _rm = prepare_load_reg_pc(reg_rm, rm, 8); \
generate_op_##name##_reg_immshift(_rd, _rn, _rm, shift_type, shift_imm); \
} \
complete_store_rd_##store_op(flags_op) \
#define arm_generate_op_reg_flags(name, load_op, store_op, flags_op) \
arm_generate_op_reg(name, load_op, store_op, flags_op) \
// imm will be loaded by the called function if necessary.
#define arm_generate_op_imm(name, load_op, store_op, flags_op) \
arm_decode_data_proc_imm(); \
prepare_load_rn_##load_op(); \
prepare_store_rd_##store_op(); \
generate_op_##name##_imm(_rd, _rn); \
complete_store_rd_##store_op(flags_op) \
#define arm_generate_op_imm_flags(name, load_op, store_op, flags_op) \
arm_generate_op_imm(name, load_op, store_op, flags_op) \
#define arm_data_proc(name, type, flags_op) \
{ \
arm_generate_op_##type(name, yes, yes, flags_op); \
} \
#define arm_data_proc_test(name, type) \
{ \
arm_generate_op_##type(name, yes, no, no); \
} \
#define arm_data_proc_unary(name, type, flags_op) \
{ \
arm_generate_op_##type(name, no, yes, flags_op); \
} \
#define arm_multiply_add_no_flags_no() \
ARM_MUL(0, _rd, _rm, _rs) \
#define arm_multiply_add_yes_flags_no() \
u32 _rn = prepare_load_reg(reg_a2, rn); \
ARM_MLA(0, _rd, _rm, _rs, _rn) \
#define arm_multiply_add_no_flags_yes() \
generate_load_flags(); \
ARM_MULS(0, reg_a0, reg_a0, reg_a1) \
generate_store_flags() \
#define arm_multiply_add_yes_flags_yes() \
u32 _rn = prepare_load_reg(reg_a2, rn); \
generate_load_flags(); \
ARM_MLAS(0, _rd, _rm, _rs, _rn); \
generate_store_flags()
#define arm_multiply(add_op, flags) \
{ \
arm_decode_multiply(); \
u32 _rm = prepare_load_reg(reg_a0, rm); \
u32 _rs = prepare_load_reg(reg_a1, rs); \
u32 _rd = prepare_store_reg(reg_a0, rd); \
arm_multiply_add_##add_op##_flags_##flags(); \
complete_store_reg(_rd, rd); \
} \
#define arm_multiply_long_name_s64 SMULL
#define arm_multiply_long_name_u64 UMULL
#define arm_multiply_long_name_s64_add SMLAL
#define arm_multiply_long_name_u64_add UMLAL
#define arm_multiply_long_flags_no(name) \
ARM_##name(0, _rdlo, _rdhi, _rm, _rs) \
#define arm_multiply_long_flags_yes(name) \
generate_load_flags(); \
ARM_##name##S(0, _rdlo, _rdhi, _rm, _rs); \
generate_store_flags() \
#define arm_multiply_long_add_no(name) \
#define arm_multiply_long_add_yes(name) \
prepare_load_reg(reg_a0, rdlo); \
prepare_load_reg(reg_a1, rdhi) \
#define arm_multiply_long_op(flags, name) \
arm_multiply_long_flags_##flags(name) \
#define arm_multiply_long(name, add_op, flags) \
{ \
arm_decode_multiply_long(); \
u32 _rm = prepare_load_reg(reg_a2, rm); \
u32 _rs = prepare_load_reg(reg_rs, rs); \
u32 _rdlo = prepare_store_reg(reg_a0, rdlo); \
u32 _rdhi = prepare_store_reg(reg_a1, rdhi); \
arm_multiply_long_add_##add_op(name); \
arm_multiply_long_op(flags, arm_multiply_long_name_##name); \
complete_store_reg(_rdlo, rdlo); \
complete_store_reg(_rdhi, rdhi); \
} \
#define arm_psr_read_cpsr() \
u32 _rd = prepare_store_reg(reg_a0, rd); \
generate_load_reg(_rd, REG_CPSR); \
ARM_BIC_REG_IMM(0, _rd, _rd, 0xF0, arm_imm_lsl_to_rot(24)); \
ARM_AND_REG_IMM(0, reg_flags, reg_flags, 0xF0, arm_imm_lsl_to_rot(24)); \
ARM_ORR_REG_REG(0, _rd, _rd, reg_flags); \
complete_store_reg(_rd, rd) \
#define arm_psr_read_spsr() \
generate_function_call(execute_read_spsr) \
generate_store_reg(reg_a0, rd) \
#define arm_psr_read(op_type, psr_reg) \
arm_psr_read_##psr_reg() \
// This function's okay because it's called from an ASM function that can
// wrap it correctly.
u32 execute_store_cpsr_body(u32 _cpsr, u32 store_mask, u32 address)
{
reg[REG_CPSR] = _cpsr;
if(store_mask & 0xFF)
{
set_cpu_mode(cpu_modes[_cpsr & 0x1F]);
if((io_registers[REG_IE] & io_registers[REG_IF]) &&
io_registers[REG_IME] && ((_cpsr & 0x80) == 0))
{
reg_mode[MODE_IRQ][6] = address + 4;
spsr[MODE_IRQ] = _cpsr;
reg[REG_CPSR] = 0xD2;
set_cpu_mode(MODE_IRQ);
return 0x00000018;
}
}
return 0;
}
#define arm_psr_load_new_reg() \
generate_load_reg(reg_a0, rm) \
#define arm_psr_load_new_imm() \
generate_load_imm(reg_a0, imm, imm_ror) \
#define arm_psr_store_cpsr() \
arm_load_imm_32bit(reg_a1, psr_masks[psr_field]); \
generate_function_call(execute_store_cpsr); \
write32(pc) \
#define arm_psr_store_spsr() \
generate_function_call(execute_store_spsr) \
#define arm_psr_store(op_type, psr_reg) \
arm_psr_load_new_##op_type(); \
arm_psr_store_##psr_reg() \
#define arm_psr(op_type, transfer_type, psr_reg) \
{ \
arm_decode_psr_##op_type(); \
arm_psr_##transfer_type(op_type, psr_reg); \
} \
// TODO: loads will need the PC passed as well for open address, however can
// eventually be rectified with a hash table on the memory accesses
// (same with the stores)
#define arm_access_memory_load(mem_type) \
cycle_count += 2; \
generate_function_call(execute_load_##mem_type); \
write32((pc + 8)); \
generate_store_reg_pc_no_flags(reg_rv, rd) \
#define arm_access_memory_store(mem_type) \
cycle_count++; \
generate_load_reg_pc(reg_a1, rd, 12); \
generate_function_call(execute_store_##mem_type); \
write32((pc + 4)) \
// Calculate the address into a0 from _rn, _rm
#define arm_access_memory_adjust_reg_sh_up(ireg) \
ARM_ADD_REG_IMMSHIFT(0, ireg, _rn, _rm, ((opcode >> 5) & 0x03), \
((opcode >> 7) & 0x1F)) \
#define arm_access_memory_adjust_reg_sh_down(ireg) \
ARM_SUB_REG_IMMSHIFT(0, ireg, _rn, _rm, ((opcode >> 5) & 0x03), \
((opcode >> 7) & 0x1F)) \
#define arm_access_memory_adjust_reg_up(ireg) \
ARM_ADD_REG_REG(0, ireg, _rn, _rm) \
#define arm_access_memory_adjust_reg_down(ireg) \
ARM_SUB_REG_REG(0, ireg, _rn, _rm) \
#define arm_access_memory_adjust_imm(op, ireg) \
{ \
u32 stores[4]; \
u32 rotations[4]; \
u32 store_count = arm_disect_imm_32bit(offset, stores, rotations); \
\
if(store_count > 1) \
{ \
ARM_##op##_REG_IMM(0, ireg, _rn, stores[0], rotations[0]); \
ARM_##op##_REG_IMM(0, ireg, ireg, stores[1], rotations[1]); \
} \
else \
{ \
ARM_##op##_REG_IMM(0, ireg, _rn, stores[0], rotations[0]); \
} \
} \
#define arm_access_memory_adjust_imm_up(ireg) \
arm_access_memory_adjust_imm(ADD, ireg) \
#define arm_access_memory_adjust_imm_down(ireg) \
arm_access_memory_adjust_imm(SUB, ireg) \
#define arm_access_memory_pre(type, direction) \
arm_access_memory_adjust_##type##_##direction(reg_a0) \
#define arm_access_memory_pre_wb(type, direction) \
arm_access_memory_adjust_##type##_##direction(reg_a0); \
generate_store_reg(reg_a0, rn) \
#define arm_access_memory_post(type, direction) \
u32 _rn_dest = prepare_store_reg(reg_a1, rn); \
if(_rn != reg_a0) \
{ \
generate_load_reg(reg_a0, rn); \
} \
arm_access_memory_adjust_##type##_##direction(_rn_dest); \
complete_store_reg(_rn_dest, rn) \
#define arm_data_trans_reg(adjust_op, direction) \
arm_decode_data_trans_reg(); \
u32 _rn = prepare_load_reg_pc(reg_a0, rn, 8); \
u32 _rm = prepare_load_reg(reg_a1, rm); \
arm_access_memory_##adjust_op(reg_sh, direction) \
#define arm_data_trans_imm(adjust_op, direction) \
arm_decode_data_trans_imm(); \
u32 _rn = prepare_load_reg_pc(reg_a0, rn, 8); \
arm_access_memory_##adjust_op(imm, direction) \
#define arm_data_trans_half_reg(adjust_op, direction) \
arm_decode_half_trans_r(); \
u32 _rn = prepare_load_reg_pc(reg_a0, rn, 8); \
u32 _rm = prepare_load_reg(reg_a1, rm); \
arm_access_memory_##adjust_op(reg, direction) \
#define arm_data_trans_half_imm(adjust_op, direction) \
arm_decode_half_trans_of(); \
u32 _rn = prepare_load_reg_pc(reg_a0, rn, 8); \
arm_access_memory_##adjust_op(imm, direction) \
#define arm_access_memory(access_type, direction, adjust_op, mem_type, \
offset_type) \
{ \
arm_data_trans_##offset_type(adjust_op, direction); \
arm_access_memory_##access_type(mem_type); \
} \
#define word_bit_count(word) \
(bit_count[word >> 8] + bit_count[word & 0xFF]) \
#define sprint_no(access_type, pre_op, post_op, wb) \
#define sprint_yes(access_type, pre_op, post_op, wb) \
printf("sbit on %s %s %s %s\n", #access_type, #pre_op, #post_op, #wb) \
// TODO: Make these use cached registers. Implement iwram_stack_optimize.
#define arm_block_memory_load() \
generate_function_call(execute_load_u32); \
write32((pc + 8)); \
generate_store_reg(reg_rv, i) \
#define arm_block_memory_store() \
generate_load_reg_pc(reg_a1, i, 8); \
generate_function_call(execute_store_u32_safe) \
#define arm_block_memory_final_load() \
arm_block_memory_load() \
#define arm_block_memory_final_store() \
generate_load_reg_pc(reg_a1, i, 12); \
generate_function_call(execute_store_u32); \
write32((pc + 4)) \
#define arm_block_memory_adjust_pc_store() \
#define arm_block_memory_adjust_pc_load() \
if(reg_list & 0x8000) \
{ \
generate_mov(reg_a0, reg_rv); \
generate_indirect_branch_arm(); \
} \
#define arm_block_memory_offset_down_a() \
generate_sub_imm(reg_s0, ((word_bit_count(reg_list) * 4) - 4), 0) \
#define arm_block_memory_offset_down_b() \
generate_sub_imm(reg_s0, (word_bit_count(reg_list) * 4), 0) \
#define arm_block_memory_offset_no() \
#define arm_block_memory_offset_up() \
generate_add_imm(reg_s0, 4, 0) \
#define arm_block_memory_writeback_down() \
generate_load_reg(reg_a0, rn); \
generate_sub_imm(reg_a0, (word_bit_count(reg_list) * 4), 0); \
generate_store_reg(reg_a0, rn) \
#define arm_block_memory_writeback_up() \
generate_load_reg(reg_a0, rn); \
generate_add_imm(reg_a0, (word_bit_count(reg_list) * 4), 0); \
generate_store_reg(reg_a0, rn) \
#define arm_block_memory_writeback_no()
// Only emit writeback if the register is not in the list
#define arm_block_memory_writeback_load(writeback_type) \
if(!((reg_list >> rn) & 0x01)) \
{ \
arm_block_memory_writeback_##writeback_type(); \
} \
#define arm_block_memory_writeback_store(writeback_type) \
arm_block_memory_writeback_##writeback_type() \
#define arm_block_memory(access_type, offset_type, writeback_type, s_bit) \
{ \
arm_decode_block_trans(); \
u32 offset = 0; \
u32 i; \
\
generate_load_reg(reg_s0, rn); \
arm_block_memory_offset_##offset_type(); \
arm_block_memory_writeback_##access_type(writeback_type); \
ARM_BIC_REG_IMM(0, reg_s0, reg_s0, 0x03, 0); \
\
for(i = 0; i < 16; i++) \
{ \
if((reg_list >> i) & 0x01) \
{ \
cycle_count++; \
generate_add_reg_reg_imm(reg_a0, reg_s0, offset, 0); \
if(reg_list & ~((2 << i) - 1)) \
{ \
arm_block_memory_##access_type(); \
offset += 4; \
} \
else \
{ \
arm_block_memory_final_##access_type(); \
break; \
} \
} \
} \
\
arm_block_memory_adjust_pc_##access_type(); \
} \
#define arm_swap(type) \
{ \
arm_decode_swap(); \
cycle_count += 3; \
generate_load_reg(reg_a0, rn); \
generate_function_call(execute_load_##type); \
write32((pc + 8)); \
generate_mov(reg_s0, reg_rv); \
generate_load_reg(reg_a0, rn); \
generate_load_reg(reg_a1, rm); \
generate_function_call(execute_store_##type); \
write32((pc + 4)); \
generate_store_reg(reg_s0, rd); \
} \
#define thumb_generate_op_reg(name, _rd, _rs, _rn) \
u32 __rm = prepare_load_reg(reg_rm, _rn); \
generate_op_##name##_reg_immshift(__rd, __rn, __rm, ARMSHIFT_LSL, 0) \
#define thumb_generate_op_imm(name, _rd, _rs, imm_) \
{ \
u32 imm_ror = 0; \
generate_op_##name##_imm(__rd, __rn); \
} \
#define thumb_data_proc(type, name, op_type, _rd, _rs, _rn) \
{ \
thumb_decode_##type(); \
u32 __rn = prepare_load_reg(reg_rn, _rs); \
u32 __rd = prepare_store_reg(reg_rd, _rd); \
generate_load_reg(reg_rn, _rs); \
thumb_generate_op_##op_type(name, _rd, _rs, _rn); \
complete_store_reg(__rd, _rd); \
} \
#define thumb_data_proc_test(type, name, op_type, _rd, _rs) \
{ \
thumb_decode_##type(); \
u32 __rn = prepare_load_reg(reg_rn, _rd); \
thumb_generate_op_##op_type(name, 0, _rd, _rs); \
} \
#define thumb_data_proc_unary(type, name, op_type, _rd, _rs) \
{ \
thumb_decode_##type(); \
u32 __rd = prepare_store_reg(reg_rd, _rd); \
thumb_generate_op_##op_type(name, _rd, 0, _rs); \
complete_store_reg(__rd, _rd); \
} \
#define complete_store_reg_pc_thumb() \
if(rd == 15) \
{ \
generate_indirect_branch_cycle_update(thumb); \
} \
else \
{ \
complete_store_reg(_rd, rd); \
} \
#define thumb_data_proc_hi(name) \
{ \
thumb_decode_hireg_op(); \
u32 _rd = prepare_load_reg_pc(reg_rd, rd, 4); \
u32 _rs = prepare_load_reg_pc(reg_rn, rs, 4); \
generate_op_##name##_reg_immshift(_rd, _rd, _rs, ARMSHIFT_LSL, 0); \
complete_store_reg_pc_thumb(); \
} \
#define thumb_data_proc_test_hi(name) \
{ \
thumb_decode_hireg_op(); \
u32 _rd = prepare_load_reg_pc(reg_rd, rd, 4); \
u32 _rs = prepare_load_reg_pc(reg_rn, rs, 4); \
generate_op_##name##_reg_immshift(0, _rd, _rs, ARMSHIFT_LSL, 0); \
} \
#define thumb_data_proc_mov_hi() \
{ \
thumb_decode_hireg_op(); \
u32 _rs = prepare_load_reg_pc(reg_rn, rs, 4); \
u32 _rd = prepare_store_reg(reg_rd, rd); \
ARM_MOV_REG_REG(0, _rd, _rs); \
complete_store_reg_pc_thumb(); \
} \
#define thumb_load_pc(_rd) \
{ \
thumb_decode_imm(); \
u32 __rd = prepare_store_reg(reg_rd, _rd); \
generate_load_pc(__rd, (((pc & ~2) + 4) + (imm * 4))); \
complete_store_reg(__rd, _rd); \
} \
#define thumb_load_sp(_rd) \
{ \
thumb_decode_imm(); \
u32 __sp = prepare_load_reg(reg_a0, REG_SP); \
u32 __rd = prepare_store_reg(reg_a0, _rd); \
ARM_ADD_REG_IMM(0, __rd, __sp, imm, arm_imm_lsl_to_rot(2)); \
complete_store_reg(__rd, _rd); \
} \
#define thumb_adjust_sp_up() \
ARM_ADD_REG_IMM(0, _sp, _sp, imm, arm_imm_lsl_to_rot(2)) \
#define thumb_adjust_sp_down() \
ARM_SUB_REG_IMM(0, _sp, _sp, imm, arm_imm_lsl_to_rot(2)) \
#define thumb_adjust_sp(direction) \
{ \
thumb_decode_add_sp(); \
u32 _sp = prepare_load_reg(reg_a0, REG_SP); \
thumb_adjust_sp_##direction(); \
complete_store_reg(_sp, REG_SP); \
} \
#define generate_op_lsl_reg(_rd, _rm, _rs) \
generate_op_movs_reg_regshift(_rd, 0, _rm, ARMSHIFT_LSL, _rs) \
#define generate_op_lsr_reg(_rd, _rm, _rs) \
generate_op_movs_reg_regshift(_rd, 0, _rm, ARMSHIFT_LSR, _rs) \
#define generate_op_asr_reg(_rd, _rm, _rs) \
generate_op_movs_reg_regshift(_rd, 0, _rm, ARMSHIFT_ASR, _rs) \
#define generate_op_ror_reg(_rd, _rm, _rs) \
generate_op_movs_reg_regshift(_rd, 0, _rm, ARMSHIFT_ROR, _rs) \
#define generate_op_lsl_imm(_rd, _rm) \
generate_op_movs_reg_immshift(_rd, 0, _rm, ARMSHIFT_LSL, imm) \
#define generate_op_lsr_imm(_rd, _rm) \
generate_op_movs_reg_immshift(_rd, 0, _rm, ARMSHIFT_LSR, imm) \
#define generate_op_asr_imm(_rd, _rm) \
generate_op_movs_reg_immshift(_rd, 0, _rm, ARMSHIFT_ASR, imm) \
#define generate_op_ror_imm(_rd, _rm) \
generate_op_movs_reg_immshift(_rd, 0, _rm, ARMSHIFT_ROR, imm) \
#define generate_shift_reg(op_type) \
u32 __rm = prepare_load_reg(reg_rd, rd); \
u32 __rs = prepare_load_reg(reg_rs, rs); \
generate_op_##op_type##_reg(__rd, __rm, __rs) \
#define generate_shift_imm(op_type) \
u32 __rs = prepare_load_reg(reg_rs, rs); \
generate_op_##op_type##_imm(__rd, __rs) \
#define thumb_shift(decode_type, op_type, value_type) \
{ \
thumb_decode_##decode_type(); \
u32 __rd = prepare_store_reg(reg_rd, rd); \
generate_shift_##value_type(op_type); \
complete_store_reg(__rd, rd); \
} \
// Operation types: imm, mem_reg, mem_imm
#define thumb_access_memory_load(mem_type, _rd) \
cycle_count += 2; \
generate_function_call(execute_load_##mem_type); \
write32((pc + 4)); \
generate_store_reg(reg_rv, _rd) \
#define thumb_access_memory_store(mem_type, _rd) \
cycle_count++; \
generate_load_reg(reg_a1, _rd); \
generate_function_call(execute_store_##mem_type); \
write32((pc + 2)) \
#define thumb_access_memory_generate_address_pc_relative(offset, _rb, _ro) \
generate_load_pc(reg_a0, (offset)) \
#define thumb_access_memory_generate_address_reg_imm(offset, _rb, _ro) \
u32 __rb = prepare_load_reg(reg_a0, _rb); \
ARM_ADD_REG_IMM(0, reg_a0, __rb, offset, 0) \
#define thumb_access_memory_generate_address_reg_imm_sp(offset, _rb, _ro) \
u32 __rb = prepare_load_reg(reg_a0, _rb); \
ARM_ADD_REG_IMM(0, reg_a0, __rb, offset, arm_imm_lsl_to_rot(2)) \
#define thumb_access_memory_generate_address_reg_reg(offset, _rb, _ro) \
u32 __rb = prepare_load_reg(reg_a0, _rb); \
u32 __ro = prepare_load_reg(reg_a1, _ro); \
ARM_ADD_REG_REG(0, reg_a0, __rb, __ro) \
#define thumb_access_memory(access_type, op_type, _rd, _rb, _ro, \
address_type, offset, mem_type) \
{ \
thumb_decode_##op_type(); \
thumb_access_memory_generate_address_##address_type(offset, _rb, _ro); \
thumb_access_memory_##access_type(mem_type, _rd); \
} \
// TODO: Make these use cached registers. Implement iwram_stack_optimize.
#define thumb_block_address_preadjust_up() \
generate_add_imm(reg_s0, (bit_count[reg_list] * 4), 0) \
#define thumb_block_address_preadjust_down() \
generate_sub_imm(reg_s0, (bit_count[reg_list] * 4), 0) \
#define thumb_block_address_preadjust_push_lr() \
generate_sub_imm(reg_s0, ((bit_count[reg_list] + 1) * 4), 0) \
#define thumb_block_address_preadjust_no() \
#define thumb_block_address_postadjust_no(base_reg) \
generate_store_reg(reg_s0, base_reg) \
#define thumb_block_address_postadjust_up(base_reg) \
generate_add_reg_reg_imm(reg_a0, reg_s0, (bit_count[reg_list] * 4), 0); \
generate_store_reg(reg_a0, base_reg) \
#define thumb_block_address_postadjust_down(base_reg) \
generate_mov(reg_a0, reg_s0); \
generate_sub_imm(reg_a0, (bit_count[reg_list] * 4), 0); \
generate_store_reg(reg_a0, base_reg) \
#define thumb_block_address_postadjust_pop_pc(base_reg) \
generate_add_reg_reg_imm(reg_a0, reg_s0, \
((bit_count[reg_list] + 1) * 4), 0); \
generate_store_reg(reg_a0, base_reg) \
#define thumb_block_address_postadjust_push_lr(base_reg) \
generate_store_reg(reg_s0, base_reg) \
#define thumb_block_memory_extra_no() \
#define thumb_block_memory_extra_up() \
#define thumb_block_memory_extra_down() \
#define thumb_block_memory_extra_pop_pc() \
generate_add_reg_reg_imm(reg_a0, reg_s0, (bit_count[reg_list] * 4), 0); \
generate_function_call(execute_load_u32); \
write32((pc + 4)); \
generate_mov(reg_a0, reg_rv); \
generate_indirect_branch_cycle_update(thumb) \
#define thumb_block_memory_extra_push_lr(base_reg) \
generate_add_reg_reg_imm(reg_a0, reg_s0, (bit_count[reg_list] * 4), 0); \
generate_load_reg(reg_a1, REG_LR); \
generate_function_call(execute_store_u32_safe) \
#define thumb_block_memory_load() \
generate_function_call(execute_load_u32); \
write32((pc + 4)); \
generate_store_reg(reg_rv, i) \
#define thumb_block_memory_store() \
generate_load_reg(reg_a1, i); \
generate_function_call(execute_store_u32_safe) \
#define thumb_block_memory_final_load() \
thumb_block_memory_load() \
#define thumb_block_memory_final_store() \
generate_load_reg(reg_a1, i); \
generate_function_call(execute_store_u32); \
write32((pc + 2)) \
#define thumb_block_memory_final_no(access_type) \
thumb_block_memory_final_##access_type() \
#define thumb_block_memory_final_up(access_type) \
thumb_block_memory_final_##access_type() \
#define thumb_block_memory_final_down(access_type) \
thumb_block_memory_final_##access_type() \
#define thumb_block_memory_final_push_lr(access_type) \
thumb_block_memory_##access_type() \
#define thumb_block_memory_final_pop_pc(access_type) \
thumb_block_memory_##access_type() \
#define thumb_block_memory(access_type, pre_op, post_op, base_reg) \
{ \
thumb_decode_rlist(); \
u32 i; \
u32 offset = 0; \
\
generate_load_reg(reg_s0, base_reg); \
ARM_BIC_REG_IMM(0, reg_s0, reg_s0, 0x03, 0); \
thumb_block_address_preadjust_##pre_op(); \
thumb_block_address_postadjust_##post_op(base_reg); \
\
for(i = 0; i < 8; i++) \
{ \
if((reg_list >> i) & 0x01) \
{ \
cycle_count++; \
generate_add_reg_reg_imm(reg_a0, reg_s0, offset, 0); \
if(reg_list & ~((2 << i) - 1)) \
{ \
thumb_block_memory_##access_type(); \
offset += 4; \
} \
else \
{ \
thumb_block_memory_final_##post_op(access_type); \
break; \
} \
} \
} \
\
thumb_block_memory_extra_##post_op(); \
} \
#define thumb_conditional_branch(condition) \
{ \
generate_cycle_update(); \
generate_load_flags(); \
generate_branch_filler(condition_opposite_##condition, backpatch_address); \
generate_branch_no_cycle_update( \
block_exits[block_exit_position].branch_source, \
block_exits[block_exit_position].branch_target, thumb); \
generate_branch_patch_conditional(backpatch_address, translation_ptr); \
block_exit_position++; \
} \
#define arm_conditional_block_header() \
generate_cycle_update(); \
generate_load_flags(); \
/* This will choose the opposite condition */ \
condition ^= 0x01; \
generate_branch_filler(condition, backpatch_address) \
#define arm_b() \
generate_branch(arm) \
#define arm_bl() \
generate_update_pc((pc + 4)); \
generate_store_reg(reg_a0, REG_LR); \
generate_branch(arm) \
#define arm_bx() \
arm_decode_branchx(); \
generate_load_reg(reg_a0, rn); \
generate_indirect_branch_dual(); \
#define arm_swi() \
generate_swi_hle_handler((opcode >> 16) & 0xFF, arm); \
generate_function_call(execute_swi_arm); \
write32((pc + 4)); \
generate_branch(arm) \
#define thumb_b() \
generate_branch(thumb) \
#define thumb_bl() \
generate_update_pc(((pc + 2) | 0x01)); \
generate_store_reg(reg_a0, REG_LR); \
generate_branch(thumb) \
#define thumb_blh() \
{ \
thumb_decode_branch(); \
generate_update_pc(((pc + 2) | 0x01)); \
generate_load_reg(reg_a1, REG_LR); \
generate_store_reg(reg_a0, REG_LR); \
generate_mov(reg_a0, reg_a1); \
generate_add_imm(reg_a0, (offset * 2), 0); \
generate_indirect_branch_cycle_update(thumb); \
} \
#define thumb_bx() \
{ \
thumb_decode_hireg_op(); \
generate_load_reg_pc(reg_a0, rs, 4); \
generate_indirect_branch_cycle_update(dual_thumb); \
} \
#define thumb_swi() \
generate_swi_hle_handler(opcode & 0xFF, thumb); \
generate_function_call(execute_swi_thumb); \
write32((pc + 2)); \
/* We're in ARM mode now */ \
generate_branch(arm) \
u8 swi_hle_handle[256] =
{
0x0, // SWI 0: SoftReset
0x0, // SWI 1: RegisterRAMReset
0x0, // SWI 2: Halt
0x0, // SWI 3: Stop/Sleep
0x0, // SWI 4: IntrWait
0x0, // SWI 5: VBlankIntrWait
0x1, // SWI 6: Div
0x0, // SWI 7: DivArm
0x0, // SWI 8: Sqrt
0x0, // SWI 9: ArcTan
0x0, // SWI A: ArcTan2
0x0, // SWI B: CpuSet
0x0, // SWI C: CpuFastSet
0x0, // SWI D: GetBIOSCheckSum
0x0, // SWI E: BgAffineSet
0x0, // SWI F: ObjAffineSet
0x0, // SWI 10: BitUnpack
0x0, // SWI 11: LZ77UnCompWram
0x0, // SWI 12: LZ77UnCompVram
0x0, // SWI 13: HuffUnComp
0x0, // SWI 14: RLUnCompWram
0x0, // SWI 15: RLUnCompVram
0x0, // SWI 16: Diff8bitUnFilterWram
0x0, // SWI 17: Diff8bitUnFilterVram
0x0, // SWI 18: Diff16bitUnFilter
0x0, // SWI 19: SoundBias
0x0, // SWI 1A: SoundDriverInit
0x0, // SWI 1B: SoundDriverMode
0x0, // SWI 1C: SoundDriverMain
0x0, // SWI 1D: SoundDriverVSync
0x0, // SWI 1E: SoundChannelClear
0x0, // SWI 1F: MidiKey2Freq
0x0, // SWI 20: SoundWhatever0
0x0, // SWI 21: SoundWhatever1
0x0, // SWI 22: SoundWhatever2
0x0, // SWI 23: SoundWhatever3
0x0, // SWI 24: SoundWhatever4
0x0, // SWI 25: MultiBoot
0x0, // SWI 26: HardReset
0x0, // SWI 27: CustomHalt
0x0, // SWI 28: SoundDriverVSyncOff
0x0, // SWI 29: SoundDriverVSyncOn
0x0 // SWI 2A: SoundGetJumpList
};
void execute_swi_hle_div_arm();
void execute_swi_hle_div_thumb();
void execute_swi_hle_div_c()
{
2011-09-08 00:39:47 +02:00
if (reg[1] == 0)
// real BIOS supposedly locks up, but game can recover on interrupt
return;
s32 result = (s32)reg[0] / (s32)reg[1];
reg[1] = (s32)reg[0] % (s32)reg[1];
reg[0] = result;
reg[3] = (result ^ (result >> 31)) - (result >> 31);
}
#define generate_swi_hle_handler(_swi_number, mode) \
{ \
u32 swi_number = _swi_number; \
if(swi_hle_handle[swi_number]) \
{ \
/* Div */ \
if(swi_number == 0x06) \
{ \
generate_function_call(execute_swi_hle_div_##mode); \
} \
break; \
} \
} \
#define generate_translation_gate(type) \
generate_update_pc(pc); \
generate_indirect_branch_no_cycle_update(type) \
#define generate_step_debug() \
generate_function_call(step_debug_arm); \
write32(pc) \
#endif