/* gameplaySP * * Copyright (C) 2006 Exophase * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ extern "C" { #include "common.h" } u16* gba_screen_pixels = NULL; #define get_screen_pixels() gba_screen_pixels #define get_screen_pitch() GBA_SCREEN_PITCH typedef struct { u16 attr0, attr1, attr2, attr3; } t_oam; typedef struct { u16 pad0[3]; u16 dx; u16 pad1[3]; u16 dmx; u16 pad2[3]; u16 dy; u16 pad3[3]; u16 dmy; } t_affp; typedef void (* tile_render_function)(u32 layer_number, u32 start, u32 end, void *dest_ptr); typedef void (* bitmap_render_function)(u32 start, u32 end, void *dest_ptr); typedef void (*conditional_render_function)( u32 start, u32 end, u16 *scanline, u32 enable_flags); typedef struct { tile_render_function base[4]; tile_render_function trans[4]; } tile_layer_render_struct; typedef struct { bitmap_render_function blit_render; bitmap_render_function scale_render; bitmap_render_function affine_render; } bitmap_layer_render_struct; static void render_scanline_conditional_tile( u32 start, u32 end, u16 *scanline, u32 enable_flags); static void render_scanline_conditional_bitmap( u32 start, u32 end, u16 *scanline, u32 enable_flags); #define OBJ_MOD_NORMAL 0 #define OBJ_MOD_SEMITRAN 1 #define OBJ_MOD_WINDOW 2 #define OBJ_MOD_INVALID 3 // Byte lengths of complete tiles and tile rows in 4bpp and 8bpp. #define tile_width_4bpp 4 #define tile_size_4bpp 32 #define tile_width_8bpp 8 #define tile_size_8bpp 64 #define color_combine_mask_a(layer) \ ((read_ioreg(REG_BLDCNT) >> layer) & 0x01) \ // For color blending operations, will create a mask that has in bit // 10 if the layer is target B, and bit 9 if the layer is target A. #define color_combine_mask(layer) \ (color_combine_mask_a(layer) | \ ((read_ioreg(REG_BLDCNT) >> (layer + 7)) & 0x02)) << 9 \ static const u32 map_widths[] = { 256, 512, 256, 512 }; typedef enum { FULLCOLOR, // Regular rendering, output a 16 bit color INDXCOLOR, // Rendering to indexed color, so we can later apply dark/bright STCKCOLOR, // Stacks two indexed pixels (+flags) to apply blending STCKCOLORF, // Same as above, but forces 1st target bits for objects PIXCOPY // Special mode used for sprites, to allow for obj-window drawing } rendtype; // Renders non-affine tiled background layer. // Will process a full or partial tile (start and end within 0..8) and draw // it in either 8 or 4 bpp mode. Honors vertical and horizontal flip. template static inline void render_tile_Nbpp(u32 layer, dsttype *dest_ptr, bool is8bpp, u32 start, u32 end, u16 tile, const u8 *tile_base, int vertical_pixel_flip ) { // tile contains the tile info (contains tile index, flip bits, pal info) // hflip causes the tile pixels lookup to be reversed (from MSB to LSB // If transparent is set, color 0 is honoured (no write). Otherwise we assume // that we are drawing the base layer, so palette[0] is used (backdrop). // Seek to the specified tile, using the tile number and size. // tile_base already points to the right tile-line vertical offset const u8 *tile_ptr = &tile_base[(tile & 0x3FF) * (is8bpp ? 64 : 32)]; // Calculate combine masks. These store 2 bits of info: 1st and 2nd target. // If set, the current pixel belongs to a layer that is 1st or 2nd target. u32 bg_comb = color_combine_mask(5); u32 px_comb = color_combine_mask(layer); // On vertical flip, apply the mirror offset if (tile & 0x800) tile_ptr += vertical_pixel_flip; if (is8bpp) { // Each byte is a color, mapped to a palete. 8 bytes can be read as 64bit u64 tilepix = eswap64(*(u64*)tile_ptr); for (u32 i = start; i < end; i++, dest_ptr++) { // Honor hflip by selecting bytes in the correct order u32 sel = hflip ? (7-i) : i; u8 pval = (tilepix >> (sel*8)) & 0xFF; // Combine mask is different if we are rendering the backdrop color u16 combflg = pval ? px_comb : bg_comb; // Alhpa mode stacks previous value (unless rendering the first layer) if (!transparent || pval) { if (rdtype == FULLCOLOR) *dest_ptr = palette_ram_converted[pval]; else if (rdtype == INDXCOLOR) *dest_ptr = pval | combflg; // Add combine flags else if (rdtype == STCKCOLOR) // Stack pixels on top of the pixel value and combine flags *dest_ptr = pval | combflg | ((transparent ? *dest_ptr : bg_comb) << 16); } } } else { // In 4bpp mode, the tile[15..12] bits contain the sub-palette number. u16 tilepal = (tile >> 12) << 4; // Only 32 bits (8 pixels * 4 bits) u32 tilepix = eswap32(*(u32*)tile_ptr); for (u32 i = start; i < end; i++, dest_ptr++) { u32 sel = hflip ? (7-i) : i; u8 pval = (tilepix >> (sel*4)) & 0xF; u16 combflg = pval ? px_comb : bg_comb; if (!transparent || pval) { u8 colidx = pval ? (pval | tilepal) : 0; if (rdtype == FULLCOLOR) *dest_ptr = palette_ram_converted[colidx]; else if (rdtype == INDXCOLOR) *dest_ptr = colidx | combflg; else if (rdtype == STCKCOLOR) *dest_ptr = colidx | combflg | ((transparent ? *dest_ptr : bg_comb) << 16); // Stack pixels } } } } template static void render_scanline_text(u32 layer, u32 start, u32 end, void *scanline) { // TODO: Move this to the caller since it makes more sense // If the layer is *NOT* first target, we will not combine with previous layer anyway // so we can "drop" the mixing bit if (rdtype == STCKCOLOR && transparent) { bool first_target = (read_ioreg(REG_BLDCNT) >> layer) & 1; if (!first_target) { render_scanline_text(layer, start, end, scanline); return; } } u32 bg_control = read_ioreg(REG_BGxCNT(layer)); u16 vcount = read_ioreg(REG_VCOUNT); u32 map_size = (bg_control >> 14) & 0x03; u32 map_width = map_widths[map_size]; u32 hoffset = (start + read_ioreg(REG_BGxHOFS(layer))) % 512; u32 voffset = (vcount + read_ioreg(REG_BGxVOFS(layer))) % 512; stype *dest_ptr = ((stype*)scanline) + start; u32 i; // Background map data is in vram, at an offset specified in 2K blocks. // (each map data block is 32x32 tiles, at 16bpp, so 2KB) u32 base_block = (bg_control >> 8) & 0x1F; u16 *map_base = (u16 *)&vram[base_block * 2048]; u16 *map_ptr, *second_ptr; end -= start; // Skip the top one/two block(s) if using the bottom half if ((map_size & 0x02) && (voffset >= 256)) map_base += ((map_width / 8) * 32); // Skip the top tiles within the block map_base += (((voffset % 256) / 8) * 32); // we might need to render from two charblocks, store a second pointer. second_ptr = map_ptr = map_base; if(map_size & 0x01) // If background is 512 pixels wide { if(hoffset >= 256) { // If we are rendering the right block, skip a whole charblock hoffset -= 256; map_ptr += (32 * 32); } else { // If we are rendering the left block, we might overrun into the right second_ptr += (32 * 32); } } else { hoffset %= 256; // Background is 256 pixels wide } // Skip the left blocks within the block map_ptr += hoffset / 8; { bool mode8bpp = (bg_control & 0x80); // Color depth 8bpp when set // Render a single scanline of text tiles u32 tilewidth = mode8bpp ? tile_width_8bpp : tile_width_4bpp; u32 vert_pix_offset = (voffset % 8) * tilewidth; // Calculate the pixel offset between a line and its "flipped" mirror. // The values can be {56, 40, 24, 8, -8, -24, -40, -56} s32 vflip_off = mode8bpp ? tile_size_8bpp - 2*vert_pix_offset - tile_width_8bpp : tile_size_4bpp - 2*vert_pix_offset - tile_width_4bpp; // The tilemap base is selected via bgcnt (16KiB chunks) u32 tilecntrl = (bg_control >> 2) & 0x03; // Account for the base offset plus the tile vertical offset u8 *tile_base = &vram[tilecntrl * 16*1024 + vert_pix_offset]; // Number of pixels available until the end of the tile block u32 pixel_run = 256 - hoffset; u32 tile_hoff = hoffset % 8; u32 partial_hcnt = 8 - tile_hoff; if (tile_hoff) { // First partial tile, only right side is visible. u32 todraw = MIN(end, partial_hcnt); // [1..7] u32 stop = tile_hoff + todraw; // Usually 8, unless short run. u16 tile = eswap16(*map_ptr++); if (tile & 0x400) // Tile horizontal flip render_tile_Nbpp(layer, dest_ptr, mode8bpp, tile_hoff, stop, tile, tile_base, vflip_off); else render_tile_Nbpp(layer, dest_ptr, mode8bpp, tile_hoff, stop, tile, tile_base, vflip_off); dest_ptr += todraw; end -= todraw; pixel_run -= todraw; } if (!end) return; // Now render full tiles u32 todraw = MIN(end, pixel_run) / 8; for (i = 0; i < todraw; i++) { u16 tile = eswap16(*map_ptr++); if (tile & 0x400) // Tile horizontal flip render_tile_Nbpp(layer, &dest_ptr[i * 8], mode8bpp, 0, 8, tile, tile_base, vflip_off); else render_tile_Nbpp(layer, &dest_ptr[i * 8], mode8bpp, 0, 8, tile, tile_base, vflip_off); } end -= todraw * 8; pixel_run -= todraw * 8; dest_ptr += todraw * 8; if (!end) return; // Switch to the next char block if we ran out of tiles if (!pixel_run) map_ptr = second_ptr; todraw = end / 8; if (todraw) { for (i = 0; i < todraw; i++) { u16 tile = eswap16(*map_ptr++); if (tile & 0x400) // Tile horizontal flip render_tile_Nbpp(layer, &dest_ptr[i * 8], mode8bpp, 0, 8, tile, tile_base, vflip_off); else render_tile_Nbpp(layer, &dest_ptr[i * 8], mode8bpp, 0, 8, tile, tile_base, vflip_off); } end -= todraw * 8; dest_ptr += todraw * 8; } // Finalize the tile rendering the left side of it (from 0 up to "end"). if (end) { u16 tile = eswap16(*map_ptr++); if (tile & 0x400) // Tile horizontal flip render_tile_Nbpp(layer, dest_ptr, mode8bpp, 0, end, tile, tile_base, vflip_off); else render_tile_Nbpp(layer, dest_ptr, mode8bpp, 0, end, tile, tile_base, vflip_off); } } } s32 affine_reference_x[2]; s32 affine_reference_y[2]; static inline s32 signext28(u32 value) { s32 ret = (s32)(value << 4); return ret >> 4; } void video_reload_counters() { /* This happens every Vblank */ affine_reference_x[0] = signext28(read_ioreg32(REG_BG2X_L)); affine_reference_y[0] = signext28(read_ioreg32(REG_BG2Y_L)); affine_reference_x[1] = signext28(read_ioreg32(REG_BG3X_L)); affine_reference_y[1] = signext28(read_ioreg32(REG_BG3Y_L)); } template static inline void render_pixel_8bpp(u32 layer, dsttype *dest_ptr, u32 px, u32 py, const u8 *tile_base, const u8 *map_base, u32 map_size ) { // Pitch represents the log2(number of tiles per row) (from 16 to 128) u32 map_pitch = map_size + 4; // Given coords (px,py) in the background space, find the tile. u32 mapoff = (px / 8) + ((py / 8) << map_pitch); // Each tile is 8x8, so 64 bytes each. const u8 *tile_ptr = &tile_base[map_base[mapoff] * tile_size_8bpp]; // Read the 8bit color within the tile. u8 pval = tile_ptr[(px % 8) + ((py % 8) * 8)]; // Calculate combine masks. These store 2 bits of info: 1st and 2nd target. // If set, the current pixel belongs to a layer that is 1st or 2nd target. u32 bg_comb = color_combine_mask(5); u32 px_comb = color_combine_mask(layer); // Combine mask is different if we are rendering the backdrop color u16 combflg = pval ? px_comb : bg_comb; // Alhpa mode stacks previous value (unless rendering the first layer) if (!transparent || pval) { if (rdtype == FULLCOLOR) *dest_ptr = palette_ram_converted[pval]; else if (rdtype == INDXCOLOR) *dest_ptr = pval | combflg; // Add combine flags else if (rdtype == STCKCOLOR) // Stack pixels on top of the pixel value and combine flags *dest_ptr = pval | combflg | ((transparent ? *dest_ptr : bg_comb) << 16); } } template static inline void render_bdrop_pixel_8bpp(dsttype *dest_ptr) { // Calculate combine masks. These store 2 bits of info: 1st and 2nd target. // If set, the current pixel belongs to a layer that is 1st or 2nd target. u32 bg_comb = color_combine_mask(5); u32 pval = 0; // Alhpa mode stacks previous value (unless rendering the first layer) if (rdtype == FULLCOLOR) *dest_ptr = palette_ram_converted[pval]; else if (rdtype == INDXCOLOR) *dest_ptr = pval | bg_comb; // Add combine flags else if (rdtype == STCKCOLOR) // Stack pixels on top of the pixel value and combine flags *dest_ptr = pval | bg_comb | (bg_comb << 16); // FIXME: Do we need double bg_comb? I do not think so! } // Affine background rendering logic. // wrap extends the background infinitely, otherwise transparent/backdrop fill // rotate indicates if there's any rotation (optimized version for no-rotation) template static inline void render_affine_background( u32 layer, u32 start, u32 cnt, const u8 *map_base, u32 map_size, const u8 *tile_base, dsttype *dst_ptr) { s32 dx = (s16)read_ioreg(REG_BGxPA(layer)); s32 dy = (s16)read_ioreg(REG_BGxPC(layer)); s32 source_x = affine_reference_x[layer - 2] + (start * dx); s32 source_y = affine_reference_y[layer - 2] + (start * dy); // Maps are squared, four sizes available (128x128 to 1024x1024) u32 width_height = 128 << map_size; if (wrap) { // In wrap mode the entire space is covered, since it "wraps" at the edges while (cnt--) { u32 pixel_x = (u32)(source_x >> 8) & (width_height-1); u32 pixel_y = (u32)(source_y >> 8) & (width_height-1); // Lookup pixel and draw it. render_pixel_8bpp( layer, dst_ptr++, pixel_x, pixel_y, tile_base, map_base, map_size); // Move to the next pixel, update coords accordingly source_x += dx; if (rotate) source_y += dy; } } else { // Early optimization if Y-coord is out completely for this line. // (if there's no rotation Y coord remains identical throughout the line). bool is_y_out = !rotate && ((u32)(source_y >> 8)) >= width_height; if (!is_y_out) { // Draw backdrop pixels if necessary until we reach the background edge. // TODO: on non-base cases this could perhaps be calculated in O(1)? while (cnt) { // Draw backdrop pixels if they lie outside of the background. u32 pixel_x = (u32)(source_x >> 8), pixel_y = (u32)(source_y >> 8); // Stop once we find a pixel that is actually *inside* the map. if (pixel_x < width_height && pixel_y < width_height) break; // Draw a "transparent" pixel if we are the base layer. if (!transparent) render_bdrop_pixel_8bpp(dst_ptr); dst_ptr++; source_x += dx; if (rotate) source_y += dy; cnt--; } // Draw background pixels by looking them up in the map while (cnt) { u32 pixel_x = (u32)(source_x >> 8), pixel_y = (u32)(source_y >> 8); // Check if we run out of background pixels, stop drawing. if (pixel_x >= width_height || pixel_y >= width_height) break; // Lookup pixel and draw it. render_pixel_8bpp( layer, dst_ptr++, pixel_x, pixel_y, tile_base, map_base, map_size); // Move to the next pixel, update coords accordingly cnt--; source_x += dx; if (rotate) source_y += dy; } } // Complete the line on the right, if we ran out over the bg edge. // Only necessary for the base layer, otherwise we can safely finish. if (!transparent) while (cnt--) render_bdrop_pixel_8bpp(dst_ptr++); } } // Renders affine backgrounds. These differ substantially from non-affine // ones. Tile maps are byte arrays (instead of 16 bit), limiting the map to // 256 different tiles (with no flip bits and just one single 256 color pal). template static void render_scanline_affine(u32 layer, u32 start, u32 end, void *scanline) { u32 bg_control = read_ioreg(REG_BGxCNT(layer)); u32 map_size = (bg_control >> 14) & 0x03; // Char block base pointer u32 base_block = (bg_control >> 8) & 0x1F; u8 *map_base = &vram[base_block * 2048]; // The tilemap base is selected via bgcnt (16KiB chunks) u32 tilecntrl = (bg_control >> 2) & 0x03; u8 *tile_base = &vram[tilecntrl * 16*1024]; dsttype *dest_ptr = ((dsttype*)scanline) + start; bool has_rotation = read_ioreg(REG_BGxPC(layer)) != 0; bool has_wrap = (bg_control >> 13) & 1; // Four specialized versions for faster rendering on specific cases like // scaling only or non-wrapped backgrounds. if (has_wrap) { if (has_rotation) render_affine_background( layer, start, end - start, map_base, map_size, tile_base, dest_ptr); else render_affine_background( layer, start, end - start, map_base, map_size, tile_base, dest_ptr); } else { if (has_rotation) render_affine_background( layer, start, end - start, map_base, map_size, tile_base, dest_ptr); else render_affine_background( layer, start, end - start, map_base, map_size, tile_base, dest_ptr); } } // Renders a bitmap honoring the pixel mode and any affine transformations. // There's optimized versions for bitmaps without scaling / rotation. template static inline void render_scanline_bitmap(u32 start, u32 end, void *scanline) { // Modes 4 and 5 feature double buffering. bool second_frame = (mode >= 4) && (read_ioreg(REG_DISPCNT) & 0x10); pixfmt *src_ptr = (pixfmt*)&vram[second_frame ? 0xA000 : 0x0000]; u16 *dst_ptr = ((u16*)scanline) + start; s32 dx = (s16)read_ioreg(REG_BG2PA); s32 dy = (s16)read_ioreg(REG_BG2PC); s32 source_x = affine_reference_x[0] + (start * dx); // Always BG2 s32 source_y = affine_reference_y[0] + (start * dy); // Premature abort render optimization if bitmap out of Y coordinate. bool is_y_out = !rotate && ((u32)(source_y >> 8)) >= height; if (is_y_out) return; if (!scale) { // Pretty much a blit onto the output buffer. // Skip to the X pixel (dest) and start copying (drawing really) if (source_x < 0) { // TODO: Not sure if the math is OK for non-integer offsets u32 delta = (-source_x + 255) >> 8; dst_ptr += delta; start += delta; source_x += delta << 8; } u32 pixel_y = (u32)(source_y >> 8); u32 pixel_x = (u32)(source_x >> 8); while (start < end && pixel_x < width) { // Pretty much pixel copier pixfmt *valptr = &src_ptr[pixel_x + (pixel_y * width)]; pixfmt val = sizeof(pixfmt) == 2 ? eswap16(*valptr) : *valptr; if (mode != 4) *dst_ptr = convert_palette(val); // Direct color else if (val) *dst_ptr = palette_ram_converted[val]; // Indexed color // Move to the next pixel, update coords accordingly start++; dst_ptr++; pixel_x++; } } else { // Look for the first pixel to be drawn. // TODO This can be calculated in O(1), at least for non-rotation while (start < end) { u32 pixel_x = (u32)(source_x >> 8), pixel_y = (u32)(source_y >> 8); // Stop once we find a pixel that is actually *inside* if (pixel_x < width && pixel_y < height) break; dst_ptr++; source_x += dx; if (rotate) source_y += dy; start++; } // Draw background pixels by looking them up in the map while (start < end) { u32 pixel_x = (u32)(source_x >> 8), pixel_y = (u32)(source_y >> 8); // Check if we run out of background pixels, stop drawing. if (pixel_x >= width || pixel_y >= height) break; // Lookup pixel and draw it. pixfmt *valptr = &src_ptr[pixel_x + (pixel_y * width)]; pixfmt val = sizeof(pixfmt) == 2 ? eswap16(*valptr) : *valptr; if (mode != 4) *dst_ptr = convert_palette(val); // Direct color else if (val) *dst_ptr = palette_ram_converted[val]; // Indexed color // Move to the next pixel, update coords accordingly start++; dst_ptr++; source_x += dx; if (rotate) source_y += dy; } } } // Fill in the renderers for a layer based on the mode type, #define tile_layer_render_functions(type) \ { \ { \ render_scanline_##type, \ render_scanline_##type, /* former color16 */ \ render_scanline_##type, /* former color32 */ \ render_scanline_##type, /* for alpha blending */ \ },{ \ render_scanline_##type, \ render_scanline_##type, \ render_scanline_##type, \ render_scanline_##type, \ } \ } \ #define bitmap_layer_render_functions(mode, ttype, w, h) \ { \ render_scanline_bitmap, \ render_scanline_bitmap, \ render_scanline_bitmap, \ } \ // Structs containing functions to render the layers for each mode, for // each render type. static const tile_layer_render_struct tile_mode_renderers[3][4] = { { tile_layer_render_functions(text), tile_layer_render_functions(text), tile_layer_render_functions(text), tile_layer_render_functions(text) }, { tile_layer_render_functions(text), tile_layer_render_functions(text), tile_layer_render_functions(affine), tile_layer_render_functions(text) }, { tile_layer_render_functions(text), tile_layer_render_functions(text), tile_layer_render_functions(affine), tile_layer_render_functions(affine) } }; static const bitmap_layer_render_struct bitmap_mode_renderers[3] = { bitmap_layer_render_functions(3, u16, 240, 160), bitmap_layer_render_functions(4, u8, 240, 160), bitmap_layer_render_functions(5, u16, 160, 128) }; // Object/Sprite rendering logic static const u32 obj_width_table[] = { 8, 16, 32, 64, 16, 32, 32, 64, 8, 8, 16, 32 }; static const u32 obj_height_table[] = { 8, 16, 32, 64, 8, 8, 16, 32, 16, 32, 32, 64 }; static const u8 obj_dim_table[3][4][2] = { { {8, 8}, {16, 16}, {32, 32}, {64, 64} }, { {16, 8}, {32, 8}, {32, 16}, {64, 32} }, { {8, 16}, {8, 32}, {16, 32}, {32, 64} } }; static u8 obj_priority_list[5][160][128]; static u8 obj_priority_count[5][160]; static u8 obj_alpha_count[160]; typedef struct { s32 obj_x, obj_y; s32 obj_w, obj_h; } t_sprite; // Renders a tile row (8 pixels) for a regular (non-affine) object/sprite. template static inline void render_obj_tile_Nbpp( dsttype *dest_ptr, u32 start, u32 end, const u8 *tile_ptr, u16 palette ) { // tile_ptr points to the tile row (32 or 64 bits depending on bpp). // renders the tile honoring hflip and start/end constraints // Calculate combine masks. These store 2 bits of info: 1st and 2nd target. // If set, the current pixel belongs to a layer that is 1st or 2nd target. u32 px_comb = (rdtype == STCKCOLORF ? 0x200 : color_combine_mask(4)); if (is8bpp) { // Each byte is a color, mapped to a palete. 8 bytes can be read as 64bit u64 tilepix = eswap64(*(u64*)tile_ptr); for (u32 i = start; i < end; i++, dest_ptr++) { // Honor hflip by selecting bytes in the correct order u32 sel = hflip ? (7-i) : i; u8 pval = (tilepix >> (sel*8)) & 0xFF; // Alhpa mode stacks previous value if (pval) { if (rdtype == FULLCOLOR) *dest_ptr = palette_ram_converted[pval | 0x100]; else if (rdtype == INDXCOLOR) *dest_ptr = pval | px_comb | 0x100; // Add combine flags else if (rdtype == STCKCOLOR || rdtype == STCKCOLORF) { // Stack pixels on top of the pixel value and combine flags // We do not stack OBJ on OBJ, rather overwrite the previous object if (*dest_ptr & 0x100) *dest_ptr = pval | px_comb | 0x100 | ((*dest_ptr) & 0xFFFF0000); else *dest_ptr = pval | px_comb | 0x100 | ((*dest_ptr) << 16); } else if (rdtype == PIXCOPY) *dest_ptr = dest_ptr[240]; // TODO implement partial alpha blending } } } else { // Only 32 bits (8 pixels * 4 bits) u32 tilepix = eswap32(*(u32*)tile_ptr); for (u32 i = start; i < end; i++, dest_ptr++) { u32 sel = hflip ? (7-i) : i; u8 pval = (tilepix >> (sel*4)) & 0xF; if (pval) { u8 colidx = pval | palette; if (rdtype == FULLCOLOR) *dest_ptr = palette_ram_converted[colidx | 0x100]; else if (rdtype == INDXCOLOR) *dest_ptr = colidx | px_comb | 0x100; else if (rdtype == STCKCOLOR || rdtype == STCKCOLORF) { if (*dest_ptr & 0x100) *dest_ptr = colidx | px_comb | 0x100 | ((*dest_ptr) & 0xFFFF0000); else *dest_ptr = colidx | px_comb | 0x100 | ((*dest_ptr) << 16); // Stack pixels } else if (rdtype == PIXCOPY) *dest_ptr = dest_ptr[240]; } } } } // Renders a regular sprite (non-affine) row to screen. // delta_x is the object X coordinate referenced from the window start. // cnt is the maximum number of pixels to draw, honoring window, obj width, etc. template static void render_object( s32 delta_x, u32 cnt, stype *dst_ptr, const u8* tile_ptr, u16 palette ) { // Tile size in bytes for each mode u32 tile_bsize = is8bpp ? tile_size_8bpp : tile_size_4bpp; // Number of bytes to advance (or rewind) on the tile map s32 tile_size_off = hflip ? -tile_bsize : tile_bsize; if (delta_x < 0) { // Left part is outside of the screen/window. u32 offx = -delta_x; // How many pixels did we skip from the object? s32 block_off = offx / 8; u32 tile_off = offx % 8; // Skip the first object tiles (skips in the flip direction) tile_ptr += block_off * tile_size_off; // Render a partial tile to the left if (tile_off) { u32 residual = 8 - tile_off; // Pixel count to complete the first tile u32 maxpix = MIN(residual, cnt); render_obj_tile_Nbpp(dst_ptr, tile_off, tile_off + maxpix, tile_ptr, palette); // Move to the next tile tile_ptr += tile_size_off; // Account for drawn pixels cnt -= maxpix; dst_ptr += maxpix; } } else { // Render object completely from the left. Skip the empty space to the left dst_ptr += delta_x; } // Render full tiles to the scan line. s32 num_tiles = cnt / 8; while (num_tiles--) { // Render full tiles render_obj_tile_Nbpp(dst_ptr, 0, 8, tile_ptr, palette); tile_ptr += tile_size_off; dst_ptr += 8; } // Render any partial tile on the end cnt = cnt % 8; if (cnt) render_obj_tile_Nbpp(dst_ptr, 0, cnt, tile_ptr, palette); } // Renders an affine sprite row to screen. template static void render_affine_object( const t_sprite *obji, const t_affp *affp, bool is_double, u32 start, u32 end, stype *dst_ptr, const u8 *base_tile, u16 palette ) { // Tile size in bytes for each mode const u32 tile_bsize = is8bpp ? tile_size_8bpp : tile_size_4bpp; const u32 tile_bwidth = is8bpp ? tile_width_8bpp : tile_width_4bpp; // Affine params s32 dx = (s16)eswap16(affp->dx); s32 dy = (s16)eswap16(affp->dy); s32 dmx = (s16)eswap16(affp->dmx); s32 dmy = (s16)eswap16(affp->dmy); // Object dimensions and boundaries u32 obj_dimw = obji->obj_w; u32 obj_dimh = obji->obj_h; s32 middle_x = is_double ? obji->obj_w : (obji->obj_w / 2); s32 middle_y = is_double ? obji->obj_h : (obji->obj_h / 2); s32 obj_width = is_double ? obji->obj_w * 2 : obji->obj_w; s32 obj_height = is_double ? obji->obj_h * 2 : obji->obj_h; s32 vcount = read_ioreg(REG_VCOUNT); s32 y_delta = vcount - (obji->obj_y + middle_y); if (obji->obj_x < (signed)start) middle_x -= (start - obji->obj_x); s32 source_x = (obj_dimw << 7) + (y_delta * dmx) - (middle_x * dx); s32 source_y = (obj_dimh << 7) + (y_delta * dmy) - (middle_x * dy); // Early optimization if Y-coord is out completely for this line. // (if there's no rotation Y coord remains identical throughout the line). if (!rotate && ((u32)(source_y >> 8)) >= (u32)obj_height) return; u32 d_start = MAX((signed)start, obji->obj_x); u32 d_end = MIN((signed)end, obji->obj_x + obj_width); u32 cnt = d_end - d_start; dst_ptr += d_start; bool obj1dmap = read_ioreg(REG_DISPCNT) & 0x40; const u32 tile_pitch = obj1dmap ? (obj_dimw / 8) * tile_bsize : 1024; // Skip pixels outside of the sprite area, until we reach the sprite "inside" while (cnt) { u32 pixel_x = (u32)(source_x >> 8), pixel_y = (u32)(source_y >> 8); // Stop once we find a pixel that is actually *inside* the map. if (pixel_x < obj_dimw && pixel_y < obj_dimh) break; dst_ptr++; source_x += dx; if (rotate) source_y += dy; cnt--; } // Draw sprite pixels by looking them up first. Lookup address is tricky! while (cnt) { u32 pixel_x = (u32)(source_x >> 8), pixel_y = (u32)(source_y >> 8); // Check if we run out of the sprite, then we can safely abort. if (pixel_x >= obj_dimw || pixel_y >= obj_dimh) return; // Lookup pixel and draw it. //render_pixel_8bpp( // layer, dst_ptr++, pixel_x, pixel_y, tile_base, map_base, map_size); u8 pixval; if (is8bpp) { // We lookup the byte directly and render it. const u32 tile_off = ((pixel_y >> 3) * tile_pitch) + // Skip vertical blocks ((pixel_x >> 3) * tile_bsize) + // Skip horizontal blocks ((pixel_y & 0x7) * tile_bwidth) + // Skip vertical rows to the pixel (pixel_x & 0x7); // Skip the horizontal offset pixval = base_tile[tile_off]; // Read pixel value! } else { const u32 tile_off = ((pixel_y >> 3) * tile_pitch) + // Skip vertical blocks ((pixel_x >> 3) * tile_bsize) + // Skip horizontal blocks ((pixel_y & 0x7) * tile_bwidth) + // Skip vertical rows to the pixel ((pixel_x >> 1) & 0x3); // Skip the horizontal offset u8 pixpair = base_tile[tile_off]; // Read two pixels (4bit each) pixval = ((pixel_x & 1) ? pixpair >> 4 : pixpair & 0xF); } // Render the pixel value u32 comb = (rdtype == STCKCOLORF ? 0x200 : color_combine_mask(4)); if (pixval) { if (rdtype == FULLCOLOR) *dst_ptr = palette_ram_converted[pixval | palette | 0x100]; else if (rdtype == INDXCOLOR) *dst_ptr = pixval | palette | 0x100 | comb; // Add combine flags else if (rdtype == STCKCOLOR || rdtype == STCKCOLORF) { // Stack pixels on top of the pixel value and combine flags if (*dst_ptr & 0x100) *dst_ptr = pixval | palette | 0x100 | comb | ((*dst_ptr) & 0xFFFF0000); else *dst_ptr = pixval | palette | 0x100 | comb | ((*dst_ptr) << 16); // Stack pixels // TODO partial alpha } else if (rdtype == PIXCOPY) *dst_ptr = dst_ptr[240]; } // Move to the next pixel, update coords accordingly cnt--; dst_ptr++; source_x += dx; if (rotate) source_y += dy; } } // Renders objects on a scanline for a given priority. template static void render_scanline_objects( u32 start, u32 end, stype *scanline, u32 priority ) { // TODO move this to another place? // Skip alpha pass if you can do a regular color32 pass if (rdtype == STCKCOLOR && ((read_ioreg(REG_BLDCNT) >> 4) & 1) == 0) { // We cannot skip if there's some object being rendered TODO TODO render_scanline_objects(start, end, scanline, priority); return; } s32 vcount = read_ioreg(REG_VCOUNT); bool obj1dmap = read_ioreg(REG_DISPCNT) & 0x40; u32 objn; u32 objcnt = obj_priority_count[priority][vcount]; u8 *objlist = obj_priority_list[priority][vcount]; // Render all the visible objects for this priority. for (objn = 0; objn < objcnt; objn++) { // Objects in the list are pre-filtered and sorted in the appropriate order u32 objoff = objlist[objn]; const t_oam *oamentry = &((t_oam*)oam_ram)[objoff]; u16 obj_attr0 = eswap16(oamentry->attr0); u16 obj_attr1 = eswap16(oamentry->attr1); u16 obj_attr2 = eswap16(oamentry->attr2); u16 obj_shape = obj_attr0 >> 14; u16 obj_size = (obj_attr1 >> 14); bool is_affine = obj_attr0 & 0x100; bool is_8bpp = obj_attr0 & 0x2000; bool is_double = obj_attr0 & 0x200; bool is_trans = ((obj_attr0 >> 10) & 0x3) == OBJ_MOD_SEMITRAN; t_sprite obji = { .obj_x = (s32)(obj_attr1 << 23) >> 23, .obj_y = obj_attr0 & 0xFF, .obj_w = obj_dim_table[obj_shape][obj_size][0], .obj_h = obj_dim_table[obj_shape][obj_size][1] }; s32 obj_maxw = (is_affine && is_double) ? obji.obj_w * 2 : obji.obj_w; // The object could be out of the window, check and skip. if (obji.obj_x >= (signed)end || obji.obj_x + obj_maxw <= (signed)start) continue; const u8 *base_tile = &vram[ 0x10000 + // VRAM base for OBJ tile data (obj_attr2 & 0x3FF) * 32]; // Selected character block if (obji.obj_y > 160) obji.obj_y -= 256; // In PIXCOPY mode, we have already some stuff rendered (winout) and now // we render the "win-in" area for this object. The PIXCOPY function will // copy (merge) the two pixels depending on the result of the sprite render // The temporary buffer is rendered on the next scanline area. if (copyfn) { u32 sec_start = MAX((signed)start, obji.obj_x); u32 sec_end = MIN((signed)end, obji.obj_x + obj_maxw); u32 obj_enable = read_ioreg(REG_WINOUT) >> 8; u16 *tmp_ptr = (u16*)&scanline[GBA_SCREEN_PITCH]; copyfn(sec_start, sec_end, tmp_ptr, obj_enable); } if (is_affine) { u32 pnum = (obj_attr1 >> 9) & 0x1f; const t_affp *affp_base = (t_affp*)oam_ram; const t_affp *affp = &affp_base[pnum]; u16 palette = (obj_attr2 >> 8) & 0xF0; // TODO Cannot do blending effects if the underlying buffer is u16 (bitmap) if (is_trans && sizeof(stype) > 2) { if (affp->dy == 0) { // No rotation happening (just scale) if (is_8bpp) render_affine_object(&obji, affp, is_double, start, end, scanline, base_tile, 0); else render_affine_object(&obji, affp, is_double, start, end, scanline, base_tile, palette); } else { // Full rotation and scaling if (is_8bpp) render_affine_object(&obji, affp, is_double, start, end, scanline, base_tile, 0); else render_affine_object(&obji, affp, is_double, start, end, scanline, base_tile, palette); } } else { if (affp->dy == 0) { // No rotation happening (just scale) if (is_8bpp) render_affine_object(&obji, affp, is_double, start, end, scanline, base_tile, 0); else render_affine_object(&obji, affp, is_double, start, end, scanline, base_tile, palette); } else { // Full rotation and scaling if (is_8bpp) render_affine_object(&obji, affp, is_double, start, end, scanline, base_tile, 0); else render_affine_object(&obji, affp, is_double, start, end, scanline, base_tile, palette); } } } else { // The object could be out of the window, check and skip. if (obji.obj_x >= (signed)end || obji.obj_x + obji.obj_w <= (signed)start) continue; // Non-affine objects can be flipped on both edges. bool hflip = obj_attr1 & 0x1000; bool vflip = obj_attr1 & 0x2000; // Calulate the vertical offset (row) to be displayed. Account for vflip. u32 voffset = vflip ? obji.obj_y + obji.obj_h - vcount - 1 : vcount - obji.obj_y; // Calculate base tile for the object (points to the row to be drawn). u32 tile_bsize = is_8bpp ? tile_size_8bpp : tile_size_4bpp; u32 tile_bwidth = is_8bpp ? tile_width_8bpp : tile_width_4bpp; u32 obj_pitch = obj1dmap ? (obji.obj_w / 8) * tile_bsize : 1024; u32 hflip_off = hflip ? ((obji.obj_w / 8) - 1) * tile_bsize : 0; // Calculate the pointer to the tile. const u8 *tile_ptr = &base_tile[ (voffset / 8) * obj_pitch + // Select tile row offset (voffset % 8) * tile_bwidth + // Skip tile rows hflip_off]; // Account for horizontal flip // Make everything relative to start s32 obj_x_offset = obji.obj_x - start; u32 clipped_width = obj_x_offset >= 0 ? obji.obj_w : obji.obj_w + obj_x_offset; u32 max_range = obj_x_offset >= 0 ? end - obji.obj_x : end - start; u32 max_draw = MIN(max_range, clipped_width); // Render the object scanline using the correct mode. if (is_trans && sizeof(stype) > 2) { if (is_8bpp) { if (hflip) render_object(obj_x_offset, max_draw, &scanline[start], tile_ptr, 0); else render_object(obj_x_offset, max_draw, &scanline[start], tile_ptr, 0); } else { // In 4bpp mode calculate the palette number u16 palette = (obj_attr2 >> 8) & 0xF0; if (hflip) render_object(obj_x_offset, max_draw, &scanline[start], tile_ptr, palette); else render_object(obj_x_offset, max_draw, &scanline[start], tile_ptr, palette); } } else { if (is_8bpp) { if (hflip) render_object(obj_x_offset, max_draw, &scanline[start], tile_ptr, 0); else render_object(obj_x_offset, max_draw, &scanline[start], tile_ptr, 0); } else { // In 4bpp mode calculate the palette number u16 palette = (obj_attr2 >> 8) & 0xF0; if (hflip) render_object(obj_x_offset, max_draw, &scanline[start], tile_ptr, palette); else render_object(obj_x_offset, max_draw, &scanline[start], tile_ptr, palette); } } } } } // There are actually used to render sprites to the scanline // WIP: Remove these once we merge things with partial alpha and copy mode. void render_scanline_obj_normal_1D(u32 priority, u32 start, u32 end, void *raw_dst) { render_scanline_objects(start, end, (u16*)raw_dst, priority); } void render_scanline_obj_normal_2D(u32 priority, u32 start, u32 end, void *raw_dst) { render_scanline_objects(start, end, (u16*)raw_dst, priority); } void render_scanline_obj_color16_1D(u32 priority, u32 start, u32 end, void *raw_dst) { render_scanline_objects(start, end, (u16*)raw_dst, priority); } void render_scanline_obj_color16_2D(u32 priority, u32 start, u32 end, void *raw_dst) { render_scanline_objects(start, end, (u16*)raw_dst, priority); } void render_scanline_obj_color32_1D(u32 priority, u32 start, u32 end, void *raw_dst) { render_scanline_objects(start, end, (u32*)raw_dst, priority); } void render_scanline_obj_color32_2D(u32 priority, u32 start, u32 end, void *raw_dst) { render_scanline_objects(start, end, (u32*)raw_dst, priority); } void render_scanline_obj_alpha_obj_1D(u32 priority, u32 start, u32 end, void *raw_dst) { render_scanline_objects(start, end, (u32*)raw_dst, priority); } void render_scanline_obj_alpha_obj_2D(u32 priority, u32 start, u32 end, void *raw_dst) { render_scanline_objects(start, end, (u32*)raw_dst, priority); } static const tile_render_function obj_mode_renderers[4][2] = { { render_scanline_obj_normal_2D, render_scanline_obj_normal_1D }, { render_scanline_obj_color16_2D, render_scanline_obj_color16_1D }, { render_scanline_obj_color32_2D, render_scanline_obj_color32_1D }, { render_scanline_obj_alpha_obj_2D, render_scanline_obj_alpha_obj_1D }, }; // Goes through the object list in the OAM (from #127 to #0) and adds objects // into a sorted list by priority for the current row. // Invisible objects are discarded. static void order_obj(u32 video_mode) { s32 obj_num; u32 row; t_oam *oam_base = (t_oam*)oam_ram; memset(obj_priority_count, 0, sizeof(obj_priority_count)); memset(obj_alpha_count, 0, sizeof(obj_alpha_count)); for(obj_num = 127; obj_num >= 0; obj_num--) { t_oam *oam_ptr = &oam_base[obj_num]; u16 obj_attr0 = eswap16(oam_ptr->attr0); // Bit 9 disables regular sprites. Used as double bit for affine ones. bool visible = (obj_attr0 & 0x0300) != 0x0200; if (visible) { u16 obj_shape = obj_attr0 >> 14; u32 obj_mode = (obj_attr0 >> 10) & 0x03; // Prohibited shape and mode bool invalid = (obj_shape == 0x3) || (obj_mode == OBJ_MOD_INVALID); if (!invalid) { u16 obj_attr1 = eswap16(oam_ptr->attr1); u16 obj_attr2 = eswap16(oam_ptr->attr2); u32 obj_priority = (obj_attr2 >> 10) & 0x03; if (((video_mode < 3) || ((obj_attr2 & 0x3FF) >= 512))) { // Calculate object size (from size and shape attr bits) u16 obj_size = (obj_attr1 >> 14); s32 obj_height = obj_dim_table[obj_shape][obj_size][1]; s32 obj_width = obj_dim_table[obj_shape][obj_size][0]; s32 obj_y = obj_attr0 & 0xFF; if(obj_y > 160) obj_y -= 256; // Double size for affine sprites with double bit set if(obj_attr0 & 0x200) { obj_height *= 2; obj_width *= 2; } if(((obj_y + obj_height) > 0) && (obj_y < 160)) { s32 obj_x = (s32)(obj_attr1 << 23) >> 23; if(((obj_x + obj_width) > 0) && (obj_x < 240)) { // Clip Y coord and height to the 0..159 interval u32 starty = MAX(obj_y, 0); u32 endy = MIN(obj_y + obj_height, 160); switch (obj_mode) { case OBJ_MOD_SEMITRAN: for(row = starty; row < endy; row++) { u32 cur_cnt = obj_priority_count[obj_priority][row]; obj_priority_list[obj_priority][row][cur_cnt] = obj_num; obj_priority_count[obj_priority][row] = cur_cnt + 1; // Mark the row as having semi-transparent objects obj_alpha_count[row] = 1; } break; case OBJ_MOD_WINDOW: obj_priority = 4; /* fallthrough */ case OBJ_MOD_NORMAL: // Add the object to the list. for(row = starty; row < endy; row++) { u32 cur_cnt = obj_priority_count[obj_priority][row]; obj_priority_list[obj_priority][row][cur_cnt] = obj_num; obj_priority_count[obj_priority][row] = cur_cnt + 1; } break; }; } } } } } } } u32 layer_order[16]; u32 layer_count; // Sorts active BG/OBJ layers and generates an ordered list of layers. // Things are drawn back to front, so lowest priority goes first. static void order_layers(u32 layer_flags, u32 vcnt) { bool obj_enabled = (layer_flags & 0x10); s32 priority; layer_count = 0; for(priority = 3; priority >= 0; priority--) { bool anyobj = obj_priority_count[priority][vcnt] > 0; s32 lnum; for(lnum = 3; lnum >= 0; lnum--) { if(((layer_flags >> lnum) & 1) && ((read_ioreg(REG_BGxCNT(lnum)) & 0x03) == priority)) { layer_order[layer_count++] = lnum; } } if(obj_enabled && anyobj) layer_order[layer_count++] = priority | 0x04; } } // Blending is performed by separating an RGB value into 0G0R0B (32 bit) // Since blending factors are at most 16, mult/add operations do not overflow // to the neighbouring color and can be performed much faster than separatedly // Here follow the mask value to separate/expand the color to 32 bit, // the mask to detect overflows in the blend operation and #define BLND_MSK (SATR_MSK | SATG_MSK | SATB_MSK) #ifdef USE_XBGR1555_FORMAT #define OVFG_MSK 0x04000000 #define OVFR_MSK 0x00008000 #define OVFB_MSK 0x00000020 #define SATG_MSK 0x03E00000 #define SATR_MSK 0x00007C00 #define SATB_MSK 0x0000001F #else #define OVFG_MSK 0x08000000 #define OVFR_MSK 0x00010000 #define OVFB_MSK 0x00000020 #define SATG_MSK 0x07E00000 #define SATR_MSK 0x0000F800 #define SATB_MSK 0x0000001F #endif typedef enum { BLEND_ONLY, // Just alpha blending (if the pixels are 1st and 2nd target) BLEND_BRIGHT, // Perform alpha blending if appropiate, and brighten otherwise BLEND_DARK, // Same but with darken effecg } blendtype; // Applies blending (and optional brighten/darken) effect to a bunch of // color-indexed pixel pairs. Depending on the mode and the pixel target // number, blending, darken/brighten or no effect will be applied. template static void merge_blend(u32 start, u32 end, u16 *dst, u32 *src) { u32 bldalpha = read_ioreg(REG_BLDALPHA); u32 brightf = MIN(16, read_ioreg(REG_BLDY) & 0x1F); u32 blend_a = MIN(16, (bldalpha >> 0) & 0x1F); u32 blend_b = MIN(16, (bldalpha >> 8) & 0x1F); bool can_saturate = blend_a + blend_b > 16; if (can_saturate) { // If blending can result in saturation, we need to clamp output values. while (start < end) { u32 pixpair = src[start]; if ((pixpair & 0x04000200) == 0x04000200) { // Top pixel is 1st target, pixel below is 2nd target. Blend! u16 p1 = palette_ram_converted[(pixpair >> 0) & 0x1FF]; u16 p2 = palette_ram_converted[(pixpair >> 16) & 0x1FF]; u32 p1e = (p1 | (p1 << 16)) & BLND_MSK; u32 p2e = (p2 | (p2 << 16)) & BLND_MSK; u32 pfe = (((p1e * blend_a) + (p2e * blend_b)) >> 4); // If the overflow bit is set, saturate (set) all bits to one. if (pfe & (OVFR_MSK | OVFG_MSK | OVFB_MSK)) { if (pfe & OVFG_MSK) pfe |= SATG_MSK; if (pfe & OVFR_MSK) pfe |= SATR_MSK; if (pfe & OVFB_MSK) pfe |= SATB_MSK; } pfe &= BLND_MSK; dst[start++] = (pfe >> 16) | pfe; } else if ((bldtype != BLEND_ONLY) && (pixpair & 0x200) == 0x200) { // Top pixel is 1st-target, can still apply bright/dark effect. u16 pidx = palette_ram_converted[pixpair & 0x1FF]; u32 epixel = (pidx | (pidx << 16)) & BLND_MSK; u32 pa = bldtype == BLEND_DARK ? 0 : ((BLND_MSK * brightf) >> 4) & BLND_MSK; u32 pb = ((epixel * (16 - brightf)) >> 4) & BLND_MSK; epixel = (pa + pb) & BLND_MSK; dst[start++] = (epixel >> 16) | epixel; } else { dst[start++] = palette_ram_converted[pixpair & 0x1FF]; // No effects } } } else { while (start < end) { u32 pixpair = src[start]; if ((pixpair & 0x04000200) == 0x04000200) { // Top pixel is 1st target, pixel below is 2nd target. Blend! u16 p1 = palette_ram_converted[(pixpair >> 0) & 0x1FF]; u16 p2 = palette_ram_converted[(pixpair >> 16) & 0x1FF]; u32 p1e = (p1 | (p1 << 16)) & BLND_MSK; u32 p2e = (p2 | (p2 << 16)) & BLND_MSK; u32 pfe = (((p1e * blend_a) + (p2e * blend_b)) >> 4) & BLND_MSK; dst[start++] = (pfe >> 16) | pfe; } else if ((bldtype != BLEND_ONLY) && (pixpair & 0x200) == 0x200) { // Top pixel is 1st-target, can still apply bright/dark effect. u16 pidx = palette_ram_converted[pixpair & 0x1FF]; u32 epixel = (pidx | (pidx << 16)) & BLND_MSK; u32 pa = bldtype == BLEND_DARK ? 0 : ((BLND_MSK * brightf) >> 4) & BLND_MSK; u32 pb = ((epixel * (16 - brightf)) >> 4) & BLND_MSK; epixel = (pa + pb) & BLND_MSK; dst[start++] = (epixel >> 16) | epixel; } else { dst[start++] = palette_ram_converted[pixpair & 0x1FF]; // No effects } } } } // Applies brighten/darken effect to a bunch of color-indexed pixels. template static void merge_brightness(u32 start, u32 end, u16 *srcdst) { u32 brightness = MIN(16, read_ioreg(REG_BLDY) & 0x1F); while (start < end) { u16 spix = srcdst[start]; u16 pixcol = palette_ram_converted[spix & 0x1FF]; if ((spix & 0x200) == 0x200) { // Pixel is 1st target, can apply color effect. u32 epixel = (pixcol | (pixcol << 16)) & BLND_MSK; u32 pa = bldtype == BLEND_DARK ? 0 : ((BLND_MSK * brightness) >> 4) & BLND_MSK; // B/W u32 pb = ((epixel * (16 - brightness)) >> 4) & BLND_MSK; // Pixel color epixel = (pa + pb) & BLND_MSK; pixcol = (epixel >> 16) | epixel; } srcdst[start++] = pixcol; } } // Render an OBJ layer from start to end, depending on the type (1D or 2D) // stored in dispcnt. #define render_obj_layer(type, dest, _start, _end) \ current_layer &= ~0x04; \ if(dispcnt & 0x40) \ render_scanline_obj_##type##_1D(current_layer, _start, _end, dest); \ else \ render_scanline_obj_##type##_2D(current_layer, _start, _end, dest) \ // Render a target all the way with the background color as taken from the // palette. template void fill_line_background(u32 start, u32 end, void *scanline) { dsttype *ptr = (dsttype*)scanline; while (start < end) if (indexed) ptr[start++] = 0; else ptr[start++] = palette_ram_converted[0]; } #define COL_EFFECT_NONE 0x0 #define COL_EFFECT_BLEND 0x1 #define COL_EFFECT_BRIGHT 0x2 #define COL_EFFECT_DARK 0x3 // Renders the backdrop color (ie. whenever no layer is active) applying // any effects that might still apply (usually darken/brighten). static void render_backdrop(u32 start, u32 end, u16 *scanline) { u16 bldcnt = read_ioreg(REG_BLDCNT); u16 pixcol = palette_ram_converted[0]; u32 effect = (bldcnt >> 6) & 0x03; u32 bd_1st_target = ((bldcnt >> 0x5) & 0x01); if (bd_1st_target && effect == COL_EFFECT_BRIGHT) { u32 brightness = MIN(16, read_ioreg(REG_BLDY) & 0x1F); // Unpack 16 bit pixel for fast blending operation u32 epixel = (pixcol | (pixcol << 16)) & BLND_MSK; u32 pa = ((BLND_MSK * brightness) >> 4) & BLND_MSK; // White color u32 pb = ((epixel * (16 - brightness)) >> 4) & BLND_MSK; // Pixel color epixel = (pa + pb) & BLND_MSK; pixcol = (epixel >> 16) | epixel; } else if (bd_1st_target && effect == COL_EFFECT_DARK) { u32 brightness = MIN(16, read_ioreg(REG_BLDY) & 0x1F); u32 epixel = (pixcol | (pixcol << 16)) & BLND_MSK; epixel = ((epixel * (16 - brightness)) >> 4) & BLND_MSK; // Pixel color pixcol = (epixel >> 16) | epixel; } // Fill the line with that color while (start < end) scanline[start++] = pixcol; } // Background render modes #define RENDER_NORMAL 0 #define RENDER_COL16 1 #define RENDER_COL32 2 #define RENDER_ALPHA 3 // Obj/Sprite render modes #define OBJ_NORMAL 0 #define OBJ_COL16 1 #define OBJ_COL32 2 #define OBJ_ALPHA 3 void render_layers(u32 start, u32 end, void *dst_ptr, u32 enabled_layers, u32 rend_mode, u32 obj_mode) { u32 lnum; u16 dispcnt = read_ioreg(REG_DISPCNT); bool obj_enabled = (enabled_layers & 0x10); // Objects are visible // Renderers for this mode (affine or text pointers) const tile_layer_render_struct * r = tile_mode_renderers[dispcnt & 0x07]; for (lnum = 0; lnum < layer_count; lnum++) { u32 layer = layer_order[lnum]; bool is_obj = layer & 0x4; if (is_obj && obj_enabled) { // Draw an object first-layer, we need to fill backdrop color first! if (rend_mode == RENDER_NORMAL) fill_line_background(start, end, dst_ptr); else if (rend_mode == OBJ_COL16) fill_line_background(start, end, dst_ptr); else fill_line_background(start, end, dst_ptr); obj_mode_renderers[obj_mode][(dispcnt >> 6) & 1](layer & 0x3, start, end, dst_ptr); break; } else if (!is_obj && ((1 << layer) & enabled_layers)) { // Draw base layer r[layer].base[rend_mode](layer, start, end, dst_ptr); break; } } if (lnum == layer_count) { // Render background, no layers are active! // TODO improve this code. if (rend_mode == RENDER_NORMAL) fill_line_background(start, end, dst_ptr); else if (rend_mode == OBJ_COL16) fill_line_background(start, end, dst_ptr); else fill_line_background(start, end, dst_ptr); return; } while (++lnum < layer_count) { u32 layer = layer_order[lnum]; bool is_obj = layer & 0x4; if (is_obj && obj_enabled) obj_mode_renderers[obj_mode][(dispcnt >> 6) & 1](layer & 0x3, start, end, dst_ptr); else if (!is_obj && ((1 << layer) & enabled_layers)) r[layer].trans[rend_mode](layer, start, end, dst_ptr); } } // Renders a partial scanline without using any coloring effects (with the // exception of OBJ blending). static void render_color_no_effect( u32 start, u32 end, u16* scanline, u32 enable_flags ) { bool obj_blend = obj_alpha_count[read_ioreg(REG_VCOUNT)] > 0; // Default rendering mode, without layer effects (except perhaps sprites). if (obj_blend) { u32 screen_buffer[240]; render_layers(start, end, screen_buffer, enable_flags, RENDER_COL32, OBJ_COL32); merge_blend(start, end, scanline, screen_buffer); } else { render_layers(start, end, scanline, enable_flags, RENDER_NORMAL, OBJ_NORMAL); } } // Renders all layers honoring color effects (blending, brighten/darken). // It uses different rendering routines depending on the coloring effect // requirements, speeding up common cases where no effects are used. // No effects use NORMAL mode (RBB565 color is written on the buffer). // For blending, we use BLEND mode to record the two top-most pixels. // For other effects we use COLOR16, which records an indexed color in the // buffer (used for darken/brighten effects at later passes) or COLOR32, // which similarly uses an indexed color for rendering but recording one // color for the background and another one for the object layer. static void render_color_effect( u32 start, u32 end, u16* scanline, u32 enable_flags = 0x1F /* all enabled */ ) { bool obj_blend = obj_alpha_count[read_ioreg(REG_VCOUNT)] > 0; u16 bldcnt = read_ioreg(REG_BLDCNT); switch((bldcnt >> 6) & 0x03) { case COL_EFFECT_BRIGHT: { // If no layers are 1st target, no effect will really happen. bool some_1st_tgt = (read_ioreg(REG_BLDCNT) & 0x3F) != 0; // If the factor is zero, it's the same as "regular" rendering. bool non_zero_blend = (read_ioreg(REG_BLDY) & 0x1F) != 0; if (some_1st_tgt && non_zero_blend) { if (obj_blend) { u32 screen_buffer[240]; render_layers(start, end, screen_buffer, enable_flags, RENDER_COL32, OBJ_COL32); merge_blend(start, end, scanline, screen_buffer); } else { render_layers(start, end, scanline, enable_flags, RENDER_COL16, OBJ_COL16); merge_brightness(start, end, scanline); } return; } } break; case COL_EFFECT_DARK: { // If no layers are 1st target, no effect will really happen. bool some_1st_tgt = (read_ioreg(REG_BLDCNT) & 0x3F) != 0; // If the factor is zero, it's the same as "regular" rendering. bool non_zero_blend = (read_ioreg(REG_BLDY) & 0x1F) != 0; if (some_1st_tgt && non_zero_blend) { if (obj_blend) { u32 screen_buffer[240]; render_layers(start, end, screen_buffer, enable_flags, RENDER_COL32, OBJ_COL32); merge_blend(start, end, scanline, screen_buffer); } else { render_layers(start, end, scanline, enable_flags, RENDER_COL16, OBJ_COL16); merge_brightness(start, end, scanline); } return; } } break; case COL_EFFECT_BLEND: { // If no layers are 1st or 2nd target, no effect will really happen. bool some_1st_tgt = (read_ioreg(REG_BLDCNT) & 0x003F) != 0; bool some_2nd_tgt = (read_ioreg(REG_BLDCNT) & 0x3F00) != 0; // If 1st target is 100% opacity and 2nd is 0%, just render regularly. bool non_trns_tgt = (read_ioreg(REG_BLDALPHA) & 0x1F1F) != 0x001F; if (some_1st_tgt && some_2nd_tgt && non_trns_tgt) { u32 screen_buffer[240]; render_layers(start, end, screen_buffer, enable_flags, RENDER_ALPHA, OBJ_ALPHA); merge_blend(start, end, scanline, screen_buffer); return; } } break; case COL_EFFECT_NONE: // Default case, see below. break; }; // Default case, just a regular no-effects render. render_color_no_effect(start, end, scanline, enable_flags); } // Renders an entire scanline from 0 to 240, based on current color mode. template static void render_scanline(u16 *scanline) { u32 current_layer; u32 layer_order_pos; if (tiled) { if (layer_count) render_color_effect(0, 240, scanline); else render_backdrop(0, 240, scanline); } else { u16 dispcnt = read_ioreg(REG_DISPCNT); const bitmap_layer_render_struct *lrend = &bitmap_mode_renderers[(dispcnt & 0x07) - 3]; fill_line_background(0, 240, scanline); for(layer_order_pos = 0; layer_order_pos < layer_count; layer_order_pos++) { current_layer = layer_order[layer_order_pos]; if(current_layer & 0x04) { render_obj_layer(normal, scanline, 0, 240); } else { s32 dx = (s16)read_ioreg(REG_BG2PA); s32 dy = (s16)read_ioreg(REG_BG2PC); if (dy) lrend->affine_render(0, 240, scanline); else if (dx == 256) lrend->blit_render(0, 240, scanline); else lrend->scale_render(0, 240, scanline); } } } } // Render all of the BG and OBJ in a tiled scanline from start to end ONLY if // enable_flag allows that layer/OBJ. Also conditionally render color effects. static void render_scanline_conditional_tile(u32 start, u32 end, u16 *scanline, u32 enable_flags) { if (layer_count && (enable_flags & 0x1F)) { bool effects_enabled = enable_flags & 0x20; // Window bit for effects. if (effects_enabled) render_color_effect(start, end, scanline, enable_flags); else render_color_no_effect(start, end, scanline, enable_flags); } else render_backdrop(start, end, scanline); } // Render the BG and OBJ in a bitmap scanline from start to end ONLY if // enable_flag allows that layer/OBJ. Also conditionally render color effects. static void render_scanline_conditional_bitmap(u32 start, u32 end, u16 *scanline, u32 enable_flags) { u16 dispcnt = read_ioreg(REG_DISPCNT); const bitmap_layer_render_struct *layer_renderers = &bitmap_mode_renderers[(dispcnt & 0x07) - 3]; u32 current_layer; u32 layer_order_pos; fill_line_background(start, end, scanline); for(layer_order_pos = 0; layer_order_pos < layer_count; layer_order_pos++) { current_layer = layer_order[layer_order_pos]; if(current_layer & 0x04) { if(enable_flags & 0x10) { render_obj_layer(normal, scanline, start, end); } } else { if(enable_flags & 0x04) { s32 dx = (s16)read_ioreg(REG_BG2PA); s32 dy = (s16)read_ioreg(REG_BG2PC); if (dy) layer_renderers->affine_render(start, end, scanline); else if (dx == 256) layer_renderers->blit_render(start, end, scanline); else layer_renderers->scale_render(start, end, scanline); } } } } // If the window Y coordinates are out of the window range we can skip // rendering the inside of the window. inline bool in_window_y(u32 vcount, u32 top, u32 bottom) { // TODO: check if these are reversed when top-bottom are also reversed. if (top > 227) // This causes the window to be invisible return false; if (bottom > 227) // This makes it all visible return true; if (top > bottom) /* Reversed: if not in the "band" */ return vcount > top || vcount <= bottom; return vcount >= top && vcount < bottom; } // Temporary wrap functions, to be removed once all the plain calls do not exist template static inline void render_scanline_conditional(u32 start, u32 end, u16 *scanline, u32 enable_flags) { if (tiled) render_scanline_conditional_tile(start, end, scanline, enable_flags); else render_scanline_conditional_bitmap(start, end, scanline, enable_flags); } // Renders window1 (low priority window) and outside/obj areas for a given range. template static void render_windowobj_pass(u16 *scanline, u32 start, u32 end) { u16 dispcnt = read_ioreg(REG_DISPCNT); u32 winout = read_ioreg(REG_WINOUT); u32 wndout_enable = winout & 0x3F; // First we render the "window-out" segment. render_scanline_conditional(start, end, scanline, wndout_enable); // Now we render the objects in "copy" mode. This renders the scanline in // WinObj-mode to a temporary buffer and performs a "copy-mode" render. // In this mode, we copy pixels from the temp buffer to the final buffer // whenever an object pixel is rendered. if (dispcnt >> 15) { // Perform the actual object rendering in copy mode if (tiled) { // TODO: Make version 1D/2D? if (dispcnt & 0x40) render_scanline_objects(start, end, scanline, 4); } else { render_scanline_objects(start, end, scanline, 4); } } } // Renders window1 (low priority window) and outside/obj areas for a given range. template static void render_window1_pass(u16 *scanline, u32 start, u32 end) { u16 dispcnt = read_ioreg(REG_DISPCNT); u32 winout = read_ioreg(REG_WINOUT); u32 wndout_enable = winout & 0x3F; switch (dispcnt >> 14) { case 0x0: // No Win1 nor WinObj render_scanline_conditional( start, end, scanline, wndout_enable); break; case 0x2: // Only winobj enabled, render it. render_windowobj_pass(scanline, start, end); break; case 0x1: case 0x3: // Win1 is enabled (and perhaps WinObj too) { // Attempt to render window 1 u32 vcount = read_ioreg(REG_VCOUNT); // Check the Y coordinates to check if they fall in the right row u32 win_top = read_ioreg(REG_WINxV(1)) >> 8; u32 win_bot = read_ioreg(REG_WINxV(1)) & 0xFF; // Check the X coordinates and generate up to three segments // Clip the coordinates to the [start, end) range. u32 win_l = MAX(start, MIN(end, read_ioreg(REG_WINxH(1)) >> 8)); u32 win_r = MAX(start, MIN(end, read_ioreg(REG_WINxH(1)) & 0xFF)); if (!in_window_y(vcount, win_top, win_bot) || (win_l == win_r)) // Window1 is completely out, just render all out. render_windowobj_pass(scanline, start, end); else { // Render win1 withtin the clipped range // Enable bits for stuff inside the window (and outside) u32 winin = read_ioreg(REG_WININ); u32 wnd1_enable = (winin >> 8) & 0x3F; // If the window is defined upside down, the areas are inverted. if (win_l < win_r) { // Render [start, win_l) range (which is outside the window) if (win_l != start) render_windowobj_pass(scanline, start, win_l); // Render the actual window0 pixels render_scanline_conditional( win_l, win_r, scanline, wnd1_enable); // Render the [win_l, end] range (outside) if (win_r != end) render_windowobj_pass(scanline, win_r, end); } else { // Render [0, win_r) range (which is "inside" window0) if (win_r != start) render_scanline_conditional( start, win_r, scanline, wnd1_enable); // The actual window is now outside, render recursively render_windowobj_pass(scanline, win_r, win_l); // Render the [win_l, 240] range ("inside") if (win_l != end) render_scanline_conditional( win_l, end, scanline, wnd1_enable); } } } break; }; } // Renders window0 (high priority window) and renders window1 or out // on the area that falls outside. It will call the above function for // outside areas to "recursively" render segments. template static void render_window0_pass(u16 *scanline) { u32 vcount = read_ioreg(REG_VCOUNT); // Check the Y coordinates to check if they fall in the right row u32 win_top = read_ioreg(REG_WINxV(0)) >> 8; u32 win_bot = read_ioreg(REG_WINxV(0)) & 0xFF; // Check the X coordinates and generate up to three segments u32 win_l = MIN(240, read_ioreg(REG_WINxH(0)) >> 8); u32 win_r = MIN(240, read_ioreg(REG_WINxH(0)) & 0xFF); if (!in_window_y(vcount, win_top, win_bot) || (win_l == win_r)) // No windowing, everything is "outside", just render win1. render_window1_pass(scanline, 0, 240); else { u32 winin = read_ioreg(REG_WININ); // Enable bits for stuff inside the window u32 wnd0_enable = (winin) & 0x3F; // If the window is defined upside down, the areas are inverted. if (win_l < win_r) { // Render [0, win_l) range (which is outside the window) if (win_l) render_window1_pass(scanline, 0, win_l); // Render the actual window0 pixels render_scanline_conditional( win_l, win_r, scanline, wnd0_enable); // Render the [win_l, 240] range (outside) if (win_r != 240) render_window1_pass(scanline, win_r, 240); } else { // Render [0, win_r) range (which is "inside" window0) if (win_r) render_scanline_conditional( 0, win_r, scanline, wnd0_enable); // The actual window is now outside, render recursively render_window1_pass(scanline, win_r, win_l); // Render the [win_l, 240] range ("inside") if (win_l != 240) render_scanline_conditional( win_l, 240, scanline, wnd0_enable); } } } // Renders a full scaleline, taking into consideration windowing effects. // Breaks the rendering step into N steps, for each windowed region. template static void render_scanline_window(u16 *scanline) { u16 dispcnt = read_ioreg(REG_DISPCNT); u32 win_ctrl = (dispcnt >> 13); // Priority decoding for windows switch (win_ctrl) { case 0x1: case 0x3: case 0x5: case 0x7: // Window 0 is enabled, call the win0 render function. It does recursively // check for window 1 and Obj, so no worries. render_window0_pass(scanline); break; case 0x2: case 0x6: // Window 1 is active, call the window1 renderer. render_window1_pass(scanline, 0, 240); break; case 0x4: // Only winobj seems active render_windowobj_pass(scanline, 0, 240); break; case 0x0: // No windows are active? render_scanline(scanline); break; } } static const u8 active_layers[] = { 0x1F, // Mode 0, Tile BG0-3 and OBJ 0x17, // Mode 1, Tile BG0-2 and OBJ 0x1C, // Mode 2, Tile BG2-3 and OBJ 0x14, // Mode 3, BMP BG2 and OBJ 0x14, // Mode 4, BMP BG2 and OBJ 0x14, // Mode 5, BMP BG2 and OBJ 0, // Unused 0, }; void update_scanline(void) { u32 pitch = get_screen_pitch(); u16 dispcnt = read_ioreg(REG_DISPCNT); u32 vcount = read_ioreg(REG_VCOUNT); u16 *screen_offset = get_screen_pixels() + (vcount * pitch); u32 video_mode = dispcnt & 0x07; // If OAM has been modified since the last scanline has been updated then // reorder and reprofile the OBJ lists. if(reg[OAM_UPDATED]) { order_obj(video_mode); reg[OAM_UPDATED] = 0; } order_layers((dispcnt >> 8) & active_layers[video_mode], vcount); if(skip_next_frame) return; if(dispcnt & 0x80) { // If the screen is in in forced blank draw pure white. memset(screen_offset, 0xff, 240*sizeof(u16)); } else { // Modes 0..2 are tiled modes, 3..5 are bitmap-based modes. if(video_mode < 3) render_scanline_window(screen_offset); else render_scanline_window(screen_offset); } affine_reference_x[0] += (s16)read_ioreg(REG_BG2PB); affine_reference_y[0] += (s16)read_ioreg(REG_BG2PD); affine_reference_x[1] += (s16)read_ioreg(REG_BG3PB); affine_reference_y[1] += (s16)read_ioreg(REG_BG3PD); }