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This paper sheds light on crucial weaknesses in the
design of hidden services that allow us to break the
anonymity of hidden service clients and operators pas-
sively. In particular, we show that the circuits, paths
established through the Tor network, used to commu-
nicate with hidden services exhibit a very different be-
havior compared to a general circuit. We propose two
attacks, under two slightly different threat models, that
could identify a hidden service client or operator using
these weaknesses. We found that we can identify the
users’ involvement with hidden services with more than
98% true positive rate and less than 0.1% false positive
rate with the first attack, and 99% true positive rate and
0.07% false positive rate with the second. We then re-
visit the threat model of previous website fingerprinting
attacks, and show that previous results are directly ap-
plicable, with greater efficiency, in the realm of hidden
services. Indeed, we show that we can correctly deter-
mine which of the 50 monitored pages the client is visit-
ing with 88% true positive rate and false positive rate as
low as 2.9%, and correctly deanonymize 50 monitored
hidden service servers with true positive rate of 88% and
false positive rate of 7.8% in an open world setting.

1 Introduction
In today’s online world where gathering users’ per-
sonal data has become a business trend, Tor [14] has
emerged as an important privacy-enhancing technology
allowing Internet users to maintain their anonymity on-
line. Today, Tor is considered to be the most popular
anonymous communication network, serving millions of
clients using approximately 6000 volunteer-operated re-
lays, which are run from all around the world [3].

In addition to sender anonymity, Tor’s hidden services
allow for receiver anonymity. This provides people with
a free haven to host and serve content without the fear
of being targeted, arrested or forced to shut down [11].
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As a result, many sensitive services are only accessi-
ble through Tor. Prominent examples include human
rights and whistleblowing organizations such as Wik-
ileaks and Globalleaks, tools for anonymous messag-
ing such as TorChat and Bitmessage, and black markets
like Silkroad and Black Market Reloaded. Even many
non-hidden services, like Facebook and DuckDuckGo,
recently have started providing hidden versions of their
websites to provide stronger anonymity guarantees.

That said, over the past few years, hidden services
have witnessed various active attacks in the wild [12, 28],
resulting in several takedowns [28]. To examine the se-
curity of the design of hidden services, a handful of at-
tacks have been proposed against them. While they have
shown their effectiveness, they all assume an active at-
tacker model. The attacker sends crafted signals [6] to
speed up discovery of entry guards, which are first-hop
routers on circuits, or use congestion attacks to bias entry
guard selection towards colluding entry guards [22]. Fur-
thermore, all previous attacks require a malicious client
to continuously attempt to connect to the hidden service.

In this paper, we present the first practical passive
attack against hidden services and their users called
circuit fingerprinting attack. Using our attack, an at-
tacker can identify the presence of (client or server) hid-
den service activity in the network with high accuracy.
This detection reduces the anonymity set of a user from
millions of Tor users to just the users of hidden ser-
vices. Once the activity is detected, we show that the
attacker can perform website fingerprinting (WF) attacks
to deanonymize the hidden service clients and servers.
While the threat of WF attacks has been recently criti-
cized by Juarez et al. [24], we revisit their findings and
demonstrate that the world of hidden services is the ideal
setting to wage WF attacks. Finally, since the attack
is passive, it is undetectable until the nodes have been
deanonymized, and can target thousands of hosts retroac-
tively just by having access to clients’ old network traffic.



Approach. We start by studying the behavior of Tor cir-
cuits on the live Tor network (for our own Tor clients and
hidden services) when a client connects to a Tor hidden
service. Our key insight is that during the circuit con-
struction and communication phase between a client and
a hidden service, Tor exhibits fingerprintable traffic pat-
terns that allow an adversary to efficiently and accurately
identify, and correlate circuits involved in the communi-
cation with hidden services. Therefore, instead of mon-
itoring every circuit, which may be costly, the first step
in the attacker’s strategy is to identify suspicious circuits
with high confidence to reduce the problem space to just
hidden services. Next, the attacker applies the WF at-
tack [10, 36, 35] to identify the clients’ hidden service
activity or deanonymize the hidden service server.
Contributions. This paper offers the following contri-
butions:

1. We present key observations regarding the commu-
nication and interaction pattern in the hidden ser-
vices design in Tor.

2. We identify distinguishing features that allow a pas-
sive adversary to easily detect the presence of hid-
den service clients or servers in the local network.
We evaluate our detection approach and show that
we can classify hidden service circuits (from the
client- and the hidden service-side) with more than
98% accuracy.

3. For a stronger attacker who sees a majority of the
clients’ Tor circuits, we propose a novel circuit cor-
relation attack that is able to quickly and efficiently
detect the presence of hidden service activity using
a sequence of only the first 20 cells with accuracy
of 99%.

4. Based on our observations and results, we argue that
the WF attacker model is significantly more realis-
tic and less costly in the domain of hidden services
as opposed to the general web. We evaluate WF at-
tacks on the identified circuits (from client and hid-
den service side), and we are able to classify hidden
services in both open and closed world settings.

5. We propose defenses that aim to reduce the detec-
tion rate of the presence of hidden service commu-
nication in the network.

Roadmap. We first provide the reader with a back-
ground on Tor, its hidden service design, and WF attacks
in Section 2. We next present, in Section 3, our obser-
vations regarding different characteristics of hidden ser-
vices. In Section 4, we discuss our model and assump-
tions, and in Sections 5 and 6, we present our attacks and
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Figure 1: Cells exchanged between the client and the entry
guard to build a general circuit for non-hidden streams after the
circuit to G1 has been created.

evaluation. In Section 7, we demonstrate the effective-
ness of WF attacks on hidden services. We then discuss
possible future countermeasures in Section 8. Finally,
we overview related works in Section 9, and conclude in
Section 10.

2 Background

We will now provide the necessary background on Tor
and its hidden services. Next, we provide an overview of
WF attacks.

2.1 Tor and Hidden Services

Alice uses the Tor network simply by installing the
Tor browser bundle, which includes a modified Firefox
browser and the Onion Proxy (OP). The OP acts as an
interface between Alice’s applications and the Tor net-
work. The OP learns about Tor’s relays, Onion Routers
(ORs), by downloading the network consensus document
from directory servers. Before Alice can send her traffic
through the network, the OP builds circuits interactively
and incrementally using 3 ORs: an entry guard, middle,
and exit node. Tor uses 512-byte fixed-sized cells as its
communication data unit for exchanging control infor-
mation between ORs and for relaying users’ data.

The details of the circuit construction process in Tor
proceeds as follows. The OP sends a create fast cell
to establish the circuit with the entry guard, which re-
sponds with a created fast. Next, the OP sends an
extend command cell to the entry guard, which causes
it to send a create cell to the middle OR to establish
the circuit on behalf of the user. Finally, the OP sends
another extend to the middle OR to cause it to cre-
ate the circuit at exit. Once done, the OP will receive
an extended message from the middle OR, relayed by
the entry guard. By the end of this operation, the OP
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will have shared keys used for layered encryption, with
every hop on the circuit.1 The exit node peels the last
layer of the encryption and establishes the TCP connec-
tion to Alice’s destination. Figure 1 shows the cells ex-
changed between OP and the entry guard for regular Tor
connections, after the exchange of the create fast and
created fast messages.

Tor uses TCP secured with TLS to maintain the OP-
to-OR and the OR-to-OR connections, and multiplexes
circuits within a single TCP connection. An OR-to-
OR connection multiplexes circuits from various users,
whereas an OP-to-OR connection multiplexes circuits
from the same user. An observer watching the OP-to-OR
TCP connection should not be able to tell apart which
TCP segment belongs to which circuit (unless only one
circuit is active). However, an entry guard is able to dif-
ferentiate the traffic of different circuits (though the con-
tents of the cells are encrypted).

Tor also allows receiver anonymity through hidden
services. Bob can run a server behind his OP to serve
content without revealing his identity or location. The
overview of creation and usage of hidden services is de-
picted in Figure 2. In order to be reachable by clients,
Bob’s OP will generate a hidden service descriptor, and
execute the following steps. First, Bob’s OP chooses a
random OR to serve as his Introduction Point (IP), and
creates a circuit to it as described above. Bob then sends
an establish intro message that contains Bob’s pub-
lic key (the client can select more than one IP). If the
OR accepts, it sends back an intro established to
Bob’s OP. Bob now creates a signed descriptor (contain-
ing a timestamp, information about the IP, and its public
key), and computes a descriptor-id based on the public
key hash and validity duration. The descriptor is then
published to the hash ring formed by the hidden service
directories, which are the ORs that have been flagged by
the network as “HSDir”. Finally, Bob advertises his hid-
den service URL z.onion out of band, which is derived
from the public key. This sequence of exchanged cells to
create a hidden service is shown in Figure 3.

In Figure 4, we show how Alice can connect to Bob.
Using the descriptor from the hidden service directo-
ries, The exchange of cells goes as follows. First,
Alice’s OP selects a random OR to serve as a Ren-
dezvous Point (RP) for its connection to Bob’s service,
and sends an establish rendezvous cell (through a
Tor circuit). If the OR accepts, it responds with a
rendezvous established cell. In the meantime, Al-
ice’s OP builds another circuit to one of Bob’s IPs, and
sends an introduce1 cell along with the address of RP
and a cookie (one-time secret) encrypted under Bob’s

1We have omitted the details of the Diffie-Hellman handshakes (and
the Tor Authentication Protocol (TAP) in general), as our goal is to
demonstrate the data flow only during the circuit construction process.
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Figure 2: Circuit construction for Hidden Services.

public key. The IP then relays that information to Bob
and an introduce2 cell, and sends an introduce ack

towards Alice. At this point, Bob’s OP builds a circuit
towards Alice’s RP and sends it a rendezvous1, which
causes the RP to send a rendezvous2 towards Alice. By
the end of this operation, Alice and Bob will have shared
keys established through the cookie, and can exchange
data through the 6 hops between them.

2.2 Website Fingerprinting

One class of traffic analysis attacks that has gained re-
search popularity over the past few years is the website
fingerprinting (WF) attack [10, 36, 35, 9]. This attack
demonstrates that a local passive adversary observing the
(SSH, IPsec, or Tor) encrypted traffic is able, under cer-
tain conditions, to identify the website being visited by
the user.

In the context of Tor, the strategy of the attacker is
as follows. The attacker tries to emulate the network
conditions of the monitored clients by deploying his own
client who visits websites that he is interested in classi-
fying through the live network. During this process, the
attacker collects the network traces of the clients. Then,
he trains a supervised classifier with many identifying
features of a network traffic of a website, such as the se-
quences of packets, size of the packets, and inter-packet
timings. Using the model built from the samples, the
attacker then attempts to classify the network traces of
users on the live network.

WF attacks come in two settings: open- or closed-
world. In the closed-world setting, the attacker assumes
that the websites visited are among a list of k known web-
sites, and the goal of the attacker is to identify which
one. The open-world setting is more realistic in that it
assumes that the client will visit a larger set of websites
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Figure 3: Cells exchanged in the circuit between the entry
guards and the hidden service operator after the circuits to G1
and G2 have been created. Note that both G1 and G2 might
be the same OR, and that entry guards can only view the first
extend cell they receive.

n, and the goal of the attacker is to identify if the client
is visiting a monitored website from a list of k websites,
where k� n.

Hermann et al. [20] were the first to test this attack
against Tor using a multinomial Naive Bayes classifier,
which only achieved 3% success rate since it relied on
packet sizes which are fixed in Tor. Panchenko et al. [33]
improved the results by using a Support Vector Ma-
chine (SVM) classifier, using features that are mainly
based on the volume, time, and direction of the traf-
fic, and achieved more than 50% accuracy in a closed-
world experiment of 775 URLs. Several subsequent pa-
pers have worked on WF in open-world settings, im-
proved on the classification accuracy, and proposed de-
fenses [10, 36, 35, 9].

3 Observations on Hidden Service Circuits

To better understand different circuit behaviors, we car-
ried out a series of experiments, which were designed to
show different properties of the circuits used in the com-
munication between a client and a Hidden Service (HS),
such as the Duration of Activity (DoA), incoming and
outgoing cells, presence of multiplexing, and other po-
tentially distinguishing features. DoA is the period of
time during which a circuit sends or receives cells. The
expected lifetime of a circuit is around 10 minutes, but
circuits may be alive for more or less time depending on
their activities.

For the remainder of this paper, we use the following
terminology to denote circuits:
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Figure 4: Cells exchanged in the circuit between the entry
guards and the client attempting to access a hidden service after
the circuits to G1 and G2 have been created.

• HS-IP: This is the circuit established between the
Hidden Service (HS) and its Introduction Point (IP).
The purpose of this circuit is to listen for incoming
client connections. This circuit corresponds to ar-
row 1 in Figure 2.

• Client-RP: This is the circuit that a client builds to
a randomly chosen Rendezvous Point (RP) to even-
tually receive a connection from the HS after he has
expressed interest in establishing a communication
through the creation of a Client-IP circuit. This cir-
cuit corresponds to arrow 4 in Figure 2.

• Client-IP: This is the circuit that a client interested
in connecting to a HS builds to one of the IPs of
the HS to inform the service of its interest in wait-
ing for a connection on its RP circuit. This circuit
corresponds to arrow 5 in Figure 2.

• HS-RP: This is the circuit that the HS builds to the
RP OR chosen by the client to establish the commu-
nication with the interested client. Both this circuit
and the Client-RP connect the HS and the client to-
gether over Tor. This circuit corresponds to arrow 6
in Figure 2.

For our hidden service experiments, we used more
than 1000 hidden services that are compiled in
ahmia.fi [2], an open source search engine for Tor hid-
den service websites. We base our observations on the
logs we obtained after running all experiments for a three
month period from January to March, 2015. This is im-
portant in order to realistically model steady-state Tor
processes, since Tor’s circuit building decisions are in-
fluenced by the circuit build time distributions. Further-
more, we configured our Tor clients so that they do not
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use fixed entry guards (by setting UseEntryGuards to 0).
By doing so, we increase variety in our data collection,
and do not limit ourselves to observations that are only
obtained by using a handful of entry guards.

3.1 Multiplexing Experiment

To understand how stream multiplexing works for
Client-RP and Client-IP circuits, we deployed a single
Tor process on a local machine which is used by two
applications: firefox and wget. Both automate hid-
den services browsing by picking a random .onion do-
main from our list of hidden services described above.
While the firefox application paused between fetches
to model user think times [19], the wget application ac-
cessed pages sequentially without pausing to model a
more aggressive use. Note that the distribution of user
think times we used has a median of 13 seconds, and a
long tail that ranges between 152 to 3656 seconds for
10% of user think times. Since both applications are us-
ing the same Tor process, our intention is to understand
how Tor multiplexes streams trying to access different
.onion domains. We logged for every .onion incom-
ing stream, the circuit on which it is attached. We next
describe our observations.
Streams for different .onion domains are not multi-
plexed in the same circuit. When the Tor process re-
ceives a stream to connect to a .onion domain, it checks
if it already has an existing RP circuit connected to it. If
it does, it attaches the stream to the same circuit. If not,
it will build a new RP circuit. We verified this by exam-
ining a 7-hour log from the experiment described above.
We found that around 560 RP circuits were created, and
each was used to connect to a different.onion domain.
Tor does not use IP or RP circuits for general
streams. Tor assigns different purposes to circuits when
they are established. For streams accessing non-hidden
servers, they use general purpose circuits. These circuits
can carry multiple logical connections; i.e., Tor multi-
plexes multiple non-hidden service streams into one cir-
cuit. On the other hand, streams accessing a .onion

domain are assigned to circuits that have a rendezvous-
related purpose, which differ from general circuits. We
verified the behavior through our experiments, and also
by reviewing Tor’s specification and the source code.

3.2 Hidden Service Traffic Experiment

The goal of this experiment is to understand the usage of
IP and RP circuits from the hidden server and from the
client points of view. We deployed a hidden service on
the live Tor network through which a client could visit a
cached version of any hidden service from our list above,

which we had previously crawled and downloaded. Our
hidden service was simultaneously accessed by our five
separate Tor instances, four of which use wget, while
one uses firefox. Every client chooses a random page
from our list of previously crawled hidden pages and re-
quests it from our HS. Again, all clients pause between
fetches for a duration that is drawn from a distribution of
user think times. During the whole hour, we logged the
usage of the IP and RP circuits observed from our hidden
server, and we logged the RP and IP circuits from our 5
clients. We ran this experiment more than 20 times over
two months before analyzing the results.

In addition, to get client-side traffic from live hid-
den services, we also deployed our five clients described
above to access our list of real Tor HSs, rather than our
deployed HS.

Similarly, to understand the usage of general circuits,
and to compare their usage to IP, and RP circuits, we
also ran clients as described above, with the exception
that the clients accessed general (non-hidden) websites
using Alexa’s top 1000 URL [1]. From our experiments,
we generated the cumulative distribution function (CDF)
of the DoA, the number of outgoing and incoming cells,
which are shown in Figure 5a, 5b, and 5c. We present
our observations below.
IP circuits are unique. Figure 5a shows the CDF of
the DoA for different circuit types. Interestingly, we ob-
serve that IP circuits from the hidden service side (i.e.,
HS-IP) are long lived compared to other circuit types.
We observe that the DoA of IP circuits showed an age of
around 3600 seconds (i.e., an hour), which happens to be
the duration of each experiment. This seems quite logi-
cal as these have to be long living connections to ensure
a continuous reachability of the HS through its IP. An-
other unique aspect of the hidden services’ IP circuits,
shown in Figure 5b, was that they had exactly 3 outgo-
ing cells (coming from the HS): 2 extend cells and one
establish intro cell. The number of incoming cells
(from the IP to the HS) differ however, depending on
how many clients connect to them. Intuitively, one un-
derstands that any entry guard could, possibly, identify
an OP acting on behalf of an HS by seeing that this OP
establishes with him long-lived connections in which it
only sends 3 cells at the very beginning. Furthermore,
from the number of incoming client cells, an entry guard
can also evaluate the popularity of that HS.

Client-IP circuits are also unique because they have
the same number of incoming and outgoing cells. This
is evidenced by the identical distributions of the num-
ber of incoming and outgoing cells shown in Figures 5b
and 5c. For most cases, they had 4 outgoing and 4 incom-
ing cells. The OP sends 3 extend and 1 introduce1

cells, and receives 3 extended and 1 introduce ack

cells. Some conditions, such as RP failure, occasionally
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resulted in more exchanged cells, but IP circuits still had
the same number of incoming and outgoing cells. An-
other unique feature was that, contrary to the HS-IP cir-
cuits, the Client-IP circuits are very short lived – their
median DoA is around a second, as shown in Figure 5a,
and around 80% of Client-IP circuits have a DoA that is
less than or equal to 10 seconds. We expect this behavior
as Client-IP circuits are not used at all once the connec-
tion to the service is established.

Active RP circuits, like general circuits, had a median
DoA of 600 seconds, which is the expected lifetime of
a Tor circuit. This was in particular observed with the
clients which accessed our HS (the same RP circuit is
reused to fetch different previously crawled pages). On
the other hand, when the clients access live Tor hidden
services, they have significantly lower DoA. Indeed, we
observe (Figure 5a) that general circuits tend to have a
larger DoA than RP circuits. The reason for this is that
the same RP circuit is not used to access more than one
hidden domain. Once the access is over, the circuit is not
used again. On the other hand, general circuits can be
used to access multiple general domains as long as they
have not been used for more than 600 seconds.
HS-RP circuits have more outgoing cells than incom-
ing cells. This is quite normal and expected since that
circuit corresponds to the fetching of web pages on a
server by a client. Typically, the client sends a few re-
quests for each object to be retrieved in the page whereas
the server sends the objects themselves which are nor-
mally much larger than the requests. There can be ex-
ceptions to this observation when, for instance, the client
is uploading documents on the server or writing a blog,
among other reasons.

Similarly, because RP circuits do not multiplex
streams for different hidden domains, they are also ex-
pected to have a smaller number of outgoing and incom-
ing cells throughout their DoA compared to active gen-
eral circuits. As can be seen in Figures 5b, and 5c, one
may distinguish between Client-RP and HS-RP circuits
by observing the total number of incoming and outgo-
ing cells. (Note that, as expected, the incoming distribu-
tions for the client and for the hidden service RP circuits
from Figure 5c are the same as the outgoing distribution
for hidden service and client RP, respectively, from Fig-
ure 5b.)

The incoming and outgoing distributions of RP cir-
cuits are based on fetching a hidden page, so the distribu-
tions we see in the figures might represent baseline dis-
tributions, and in the real network, they may have more
incoming and outgoing cells based on users’ activity. Al-
though the exact distributions of the total number of in-
coming and outgoing cells for RP circuits is based on
our models and may not reflect the models of users on
the live network, we believe that the general trends are
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(a) Distribution of the DoA of different Tor circuits from
the hidden service- and the client-side.
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Figure 5: Cumulative distribution functions showing our ob-
servations from the experiments. Note that the X-axis scales
exponentially.

realistic. It is expected that clients mostly send small re-
quests, while hidden services send larger pages.
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Table 1: Edit distances of hidden pages across several weeks.

Edit distance 1 week 2 weeks 3 weeks 8 weeks
Q1 1 0.997 0.994 0.980

Median 1 1 1 1
Q3 1 1 1 1

Mean 0.96 0.97 0.96 0.927

Table 2: Edit distances of Alexa pages across several weeks.

Edit distance 1 week 2 weeks 3 weeks 8 weeks
Q1 0.864 0.846 0.81 0.71

Median 0.95 0.94 0.92 0.88
Q3 0.995 0.990 0.98 0.96

Mean 0.90 0.88 0.86 0.8

3.3 Variability in Hidden Pages

Over a period of four weeks, we downloaded the pages of
more than 1000 hidden services once per week. We then
computed the edit distance, which is the number of inser-
tions, deletions, and substitutions of characters needed to
transform the page retrieved at time T with the ones re-
trieved at time T + k weeks (with k ∈ [1..8]). Table 1
shows the three quartiles and the mean for the distribu-
tion of edit distances computed, which demonstrates that
the pages remained almost identical. For comparison, we
also downloaded the pages of Alexa’s top 1000 URLs,
and computed the edit distances in Table 2. This is not
surprising since the sources of variations in the pages are
mostly due to dynamism, personalized advertisements,
or different locations. None of these sources is applica-
ble to hidden services since clients are anonymous when
they initiate the connections. Note that hidden services
may implement personalized pages for a user after he or
she logs into his or her account; however in the context
of this paper, we are mainly concerned with the retrieval
of the very first page.

4 Threat Model

Alice’s anonymity is maintained in Tor as long as no
single entity can link her to her destination. If an at-
tacker controls the entry and the exit of Alice’s circuit,
her anonymity can be compromised, as the attacker is
able to perform traffic or timing analysis to link Alice’s
traffic to the destination [5, 23, 25, 32]. For hidden ser-
vices, this implies that the attacker needs to control the
two entry guards used for the communication between
the client and the hidden service. This significantly lim-
its the attacker, as the probability that both the client and
the hidden service select a malicious entry guard is much
lower than the probability that only one of them makes a
bad choice.

abc.onion

xyz.onion

Malicious
   Entry     
  Guard

   Entry     
  Guard

The Tor 
Network

Figure 6: Our adversary can be a malicious entry guard that is
able to watch all circuits

Our goal is to show that it is possible for a local pas-
sive adversary to deanonymize users with hidden service
activities without the need to perform end-to-end traffic
analysis. We assume that the attacker is able to monitor
the traffic between the user and the Tor network. The at-
tacker’s goal is to identify that a user is either operating
or connected to a hidden service. In addition, the attacker
then aims to identify the hidden service associated with
the user.

In order for our attack to work effectively, the attacker
needs to be able to extract circuit-level details such as
the lifetime, number of incoming and outgoing cells, se-
quences of packets, and timing information. We note
that similar assumptions have been made in previous
works [10, 35, 36]. We discuss the conditions under
which our assumptions are true for the case of a network
admin/ISP and an entry guard.
Network administrator or ISP. A network administra-
tor (or ISP) may be interested in finding out who is ac-
cessing a specific hidden service, or if a hidden service
is being run from the network. Under some conditions,
such an attacker can extract circuit-level knowledge from
the TCP traces by monitoring all the TCP connections
between Alice and her entry guards. For example, if
only a single active circuit is used in every TCP con-
nection to the guards, the TCP segments will be easily
mapped to the corresponding Tor cells. While it is hard
to estimate how often this condition happens in the live
network, as users have different usage models, we argue
that the probability of observing this condition increases
over time.
Malicious entry guard. Controlling entry guards al-
lows the adversary to perform the attack more realisti-
cally and effectively. Entry guards are in a perfect po-
sition to perform our traffic analysis attacks since they
have full visibility to Tor circuits. In today’s Tor net-
work, each OP chooses 3 entry guards and uses them for
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45 days on average [16], after which it switches to other
guards. For circuit establishment, those entry guards are
chosen with equal probability. Every entry guard thus
relays on average 33.3% of a user’s traffic, and relays
50% of a user’s traffic if one entry guard is down. Note
that Tor is currently considering using a single fast entry
guard for each user [13]. This will provide the attacker
with even better circuit visibility which will exacerbate
the effectiveness of our attack. This adversary is shown
in Figure 6.

5 Circuit Fingerprinting Attack

In this section, we present our circuit fingerprinting at-
tacks. Our attack allows an adversary to accurately and
efficiently identify the presence of hidden service activ-
ity of a client or a server, and the circuit used to com-
municate with or by the hidden service (i.e., RP circuit).
We first present an attack feasible for a more traditional
attacker. Then, we describe a stronger attack for a more
powerful adversary who can see more of the circuits from
a user.

5.1 Classifying Special Circuits

Since the attacker is monitoring thousands of users, who
produce hundreds of thousands of circuits, it is impor-
tant to find an easy and straightforward approach to flag
potentially “interesting” circuits for further examination.
The attacker can exploit the simple and surprisingly dis-
tinctive features exhibited by IP and RP circuits (both
client and hidden service side) to identify those circuits.
In particular, we use the following features which are
based on our observations in Section 3:

• Incoming and outgoing cells: This category of fea-
tures will be useful in identifying IP circuits. For
example, if a circuit sends precisely 3 cells, but has
slightly more incoming cells (within a 1-hour dura-
tion), then this circuit is HS-IP with a high probabil-
ity. Furthermore, if a circuit sends more than 3 cells,
but has the exact same number of incoming and out-
going cells, then it is a client-IP with a high prob-
ability. This feature is also useful in distinguishing
Client-RP from HS-RP circuits since we expect that
HS-RP circuits to have more outgoing than incom-
ing cells, and vice-versa for Client-RP circuits.

• Duration of activity: This feature is useful in dis-
tinguishing three groups of circuits: Client-IP cir-
cuits, HS-IP circuits, and all other circuits consist-
ing of general, Client-, and HS-RP circuits. Recall
that HS-IP circuits are long lived by design in or-
der to be contacted by all interested clients, whereas

client-IP circuits are inactive after performing the
introduction process between the client and the hid-
den service, and have a median DoA of 1 second.
Active general, Client-RP and HS-RP circuits can
be alive and have a median of 600 seconds, which
is the default lifetime of a circuit in Tor.

• Circuit construction sequences: We represent
each of the first 10 cells (enough cells to capture
the sequence of circuit establishment) either by the
string -1 or +1. Each string encodes the direction
of the corresponding cell. For example, the se-
quence “-1-1+1” corresponds to two outgoing cells
followed by one incoming cell. This feature is use-
ful in distinguishing Client-RP circuits from general
and HS-RP circuits. The reason is that the circuit
construction cell sequences in the case of Client-
RP circuits differs from HS-RP and general circuits.
This can be observed in Figures 1, 2, and 3. For
example, we noticed that the sequence -1+1-1+1-
1+1+1-1+1-1 is very common in Client-RP circuits,
which corresponds to the sequence between the OP
and G1 in Figure 3. However, HS-RP and general
circuits have similar sequences so this feature alone
cannot differentiate between those two circuit types.

Strategy. Different features are more indicative of cer-
tain circuit types. To best exploit those features, we per-
form our classification in two steps. First, the adversary
looks for Client-IP and HS-IP circuits since those are the
easiest ones to classify. This also allows the adversary
to figure out if he is monitoring a HS or client of a HS.
In the second step, the adversary examines the non-IP
circuits to find RP circuits among them.

We use decision-tree classification algorithms, since
identifying IP and RP circuits is dependent on an if-
then-else conditional model as we discussed above.
Tree-based algorithms build decision trees whose inter-
nal nodes correspond to the tests of features, and the
branches correspond to the different outcomes of the
tests. The leaves of the tree correspond to the classes, and
the classification of a test instance corresponds to select-
ing the path in the tree whose branch values best reflect
the new testing instance. Decisional trees have been used
previously in the traffic classification literature [27, 4, 26]
and are ideal for our problem.

Figures 7 and 8 depict decision trees which we use in
the first step of this attack to identify the IP circuits. Note
that general and RP circuits are treated as “noise”. The
tree in Figure 7 uses all features described above, and
has a size of 15 nodes and 8 leaves, whereas the tree in
Figure 8 omits the sequences, and only relies on incom-
ing/outgoing packets and the DoA, which results in 10
leaves and a total size of 19 nodes. Both trees are very
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Figure 7: Decisional Tree (C4.5 algorithm) used in identifying
IP circuits when cell sequences are used.

small, which allows for efficient classification. We dis-
cuss their performance in Section 6.1.

Once the adversary succeeds in identifying IP circuits,
he is able to mark suspicious clients, and he can pro-
ceed to identifying their RP circuits. This can reduce his
classification costs, and false positives. One challenge
in distinguishing RP circuits from general circuits is that
we cannot rely on DoA or the total number of incom-
ing and outgoing cells as we did for IP circuits: in the
case of general and RP circuits, those values are based
on the user activity and can be biased by our models.
To avoid such biases, we rely again on features that are
protocol-dependent rather than user-dependent. Using
our observation about sequences of Client-RP described
previously, we can classify the circuit. Finally, to distin-
guish between HS-RP and general circuits, we use the
first 50 cells of each circuit, and count the number of its
incoming and outgoing cells. HS-RP circuits will gener-
ally have more outgoing than incoming, and the opposite
should be true for general browsing circuits.

Figure 9 depicts a decision tree for classifying Client-
RP, HS-RP and general circuits. It can be seen from the
tree that Client-RP circuits are completely distinguished
by their packet sequence fingerprint. Recall that those
sequences represent the first 10 cells from the circuit,
which is important as we want our sequences to be ap-
plication independent. Also, HS-RP and general circuits
are distinguished from each other by the fraction of in-
coming and outgoing cells of the first 50 cells. The tree
contains a total of 17 nodes and only 9 leaves. We present
the performance of this tree in Section 6.1.

5.2 Correlating Two Circuits

As mentioned in Section 4, Tor is considering using only
a single entry guard per user. This changes the adver-
sarial model: a malicious entry guard can now see all of
the circuits used by a connected user. In this scenario,
the attacker can see both IP and RP circuits. Even for a
traditional entry guard, it has at least 11-25% chance of
seeing both circuits. Such an attacker can leverage the

Figure 8: Decisional Tree (C4.5 algorithm) used in identifying
IP circuits when cell sequences are not used

Figure 9: Decisional Tree (C4.5 algorithm) used in identifying
RP circuits out of web browsing circuits.

fact that the process of establishing the connection with
the hidden service is fingerprintable.

A client accessing a hidden service will exhibit a dif-
ferent circuit construction and data flow pattern from that
of a client accessing a non-hidden service. For a client
accessing a hidden service, the OP first builds the RP cir-
cuit, and simultaneously starts building a circuit to the IP.
In contrast, a client visiting a regular website only estab-
lishes one circuit. (Figures 1 and 4 in Section 2 illustrate
the exact flow of cells.) Using this fact, the attacker can
classify behavior of pairwise circuits, and learn the RP
of a user. In particular, we show that the first 20 cells of
a circuit pair, which include all the cells used to establish
connections with IP and RP, are enough to identify IP-RP
pairs.

6 Evaluation

To evaluate our features with different machine learn-
ing algorithms, we used Weka [18], a free and open-
source suite which provides out-of-the-box implementa-
tion of various machine learning algorithms. We experi-
mented with the following algorithms: CART [8], which
builds binary regression trees based on the Gini impurity,
C4.5 [34], which uses information gain to rank possi-
ble outcomes, and k-nearest neighbors (k-NN for short),
which considers the neighbors that lie close to each other
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Table 3: Number of instances of different circuit types

Dataset HS-IP HS-RP Client-IP Client-RP general
IP-Noise 76 954 200 4514 3862
RP-Noise N/A 954 N/A 4514 3862

in the feature space. When the k-NN classifier is used,
we set k = 2 with a weight that is inversely proportional
to the distance. For each algorithm, we study the true
positive rate (T PR = T P

T P+FN ) and the false positive rate
(FPR = FP

T N+FP ). Specifically, TPR is the rate of cor-
rectly identified sensitive class, and FPR is the rate of
incorrectly identified non-sensitive class. We collected
network traces over the live Tor networks for our clients
and server, and we did not touch or log the traffic of other
users. We used the latest stable release of the Tor source
code (tor-0.2.5.10) in all our experiments.

6.1 Accuracy of Circuit Classification

Datasets. From our long-term experiments described
in Section 3, we extracted 5 types of circuits: Client-
IP, Client-RP, HS-IP, HS-RP and general circuits. From
every circuit, we created an instance consisting of its se-
quences (first 10 cell), DoA, total incoming and outgoing
number of cells within the first 50 cells in the circuit, and
a class label corresponding to the circuit type. Further-
more, since Tor is mainly used for web browsing [29],
we designed our datasets so that most of the instances
are “general” circuits to reflect realistically what an ad-
versary would face when attempting to classify circuits
of real users on the live network.

Recall that our general circuits are generated by
browsing a random page from the top 1000 websites pub-
lished by Alexa [1]. This list contains very small web-
pages (such as localized versions of google.com), and
large websites (such as cnn.com). While it is not clear if
this set of websites represents what real Tor users visit,
we believe that this would not affect our approach since
our features are protocol-dependent rather than website-
or user-dependent. This is also true about our RP cir-
cuits. Therefore, we believe that the specific models and
websites should not have an impact on our classification
approach. Table 3 shows the number of instances of ev-
ery class for both datasets.

Since we perform the classification in two steps, we
created the following datasets:

• IP-Noise dataset: This dataset consists of 76 HS-
IP circuits, 200 Client-IP circuits, and 6593 “noise”
circuits. The 200 Client-IP circuits were selected
uniformly at random from a large collection of 4514

Client-IP circuits.2 The circuits labeled with the
class “noise” consist of 954 HS-RP, 4514 Client-RP,
and 3862 general browsing circuits.

• RP-Noise dataset: This dataset contains 200 Client-
RP, 200 HS-RP circuit, and 3862 “noise” circuits
(general browsing). The Client-RP and HS-RP cir-
cuits were selected uniformly at random from our
collection of 954 and 4514 HS-RP and Client-RP
circuits, respectively. Again, our goal is to imitate
the conditions that the adversary would most likely
face on the live network, where the majority of cir-
cuits to be classified are general browsing circuits.

Results. We used n-fold cross-validation for the three
classification algorithms. This is a validation technique
where the dataset is divided into n subsets and n−1 sub-
sets are used for training and 1 subset is used for testing,
and the process is repeated n times, where each subset is
used for validation exactly once. Finally, the results from
all n folds are averaged. We set n to 10 for our experi-
ments.

We found that both C4.5 and CART perform equally
well in classifying both datasets. We also found that k-
NN performs well when cell sequences are used as fea-
tures but otherwise performs poorly. For the IP-Noise
dataset, when cell sequences are not used as a feature,
as shown in Figure 10, the per-class TPR for CART
ranges between 91.5% (Client-IP class) and 99% (for
noise class), whereas the per-class accuracy for C4.5
ranges between 95.5% (Client-IP), and 99.8% (for noise
class). k-NN performs worse with a TPR ranging from
55% (for HS-IP class) and 99% (for noise class). k-NN
also has a high FPR for the noise class that exceeds 20%.
Both C4.5 and Cart have 0% FPR for HS-IP, and have
0.2% and 0.1% FPR for Client-IP, respectively. How-
ever, we found that Cart has 7% FPR for the noise class
because 17 out of 200 Client-IP instances got misclas-
sified as noise. Therefore, based on the TPR and FPR
rates, we conclude that C4.5 outperforms k-NN and Cart
for the IP-Noise dataset when no sequences are used as
features.

Figure 11 shows that when sequences are used as clas-
sification features, all three classifiers perform very well,
but C4.5 still outperforms both Cart and k-NN with a
nearly perfect per-class TPR. Interestingly, all classifiers
provide 0% FPR for HS-IP and very low FPR for Client-
IP and noise. We note that C4.5 also provides the best
performance since it provides the highest TPR and low-
est FPR among other classifiers.

2Recall that Client-IP are short-lived and one of these circuits is
created every time a client attempts to connect to a HS, whereas HS-IP
circuit samples are the most difficult to obtain since we observe each
of them for an hour before we repeat experiments.
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Table 4: Impact of different features on the TPR and FPR for
the RP-Noise dataset. The table shows the accuracy results
(TPR / FPR) if individual categories of features are used.

TPR/FPR Sequences Cells Sequences and Cells
HS-RP 0% / 0% 95% / 0.1% 95.5% / 0.1%

Client-RP 98% / 0% 15% / 0.3% 99% / 0%
Noise 100% / 46% 99.5% / 44.8% 99.9% / 2.5%
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Figure 10: TPR and FPR of circuit classification with 3 classes
when no cell sequences are used. FPR is shown in log scale.

For the RP-Noise dataset, we observe that both C4.5
and Cart provide identical performances in terms of TPR
and FPR as shown in Figure 12. Both provide very high
TPR for all classes, and 0% FPR for HS-RP and Client-
RP classes. The FPR achieved by C4.5 and CART for
the noise class is also low at 3%. k-NN provides slightly
higher TPR for the HS-RP class than CART and C4.5,
but the TPR is very similar to that achieved by CART
and C4.5. We thus conclude that all classifiers perform
equally well for the RP-noise dataset. Table 4 shows the
impact on the overall accuracy based on different fea-
tures.

6.2 Accuracy of Circuit Correlation

Datasets. We collected data of both the clients’ and the
servers’ IP and RP circuit pairs for different hidden ser-
vices. To collect client side circuit pairs, we used both
firefox and wget (with flags set to mimic a browser as
much as possible) to connect to hidden and non-hidden
services from many different machines, each with one
Tor instance. Each client visited 1000 different hid-
den services and 1000 most popular websites [1] several
times. To collect server side circuit pairs, we spawned
our own hidden service, and had multiple clients connect
and view a page. The number of simultaneously connect-
ing clients ranged from 1 to 10 randomly.

Ac
cu

ra
cy

 Client-IP  HS-IP  Other10-4

10-3

10-2

10-1

1

Fa
lse

 P
os

iti
ve

 R
at

e

 Client-IP  HS-IP  Other0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

C4.5 CART k-NN

Figure 11: TPR and FPR of circuit classification with 3 classes
when cell sequences are used. FPR is shown in log scale.
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Figure 12: TPR and FPR of circuit classification with 3
classes. FPR is shown in log scale.

We then extracted traces of the first 20 cells of 6000
IP-RP circuit pairs (3000 client and 3000 server pairs)
and 80000 of non-special circuit pairs. The non-special
circuit pairs included any combination that is not IP-RP
(i.e., IP-general, RP-general, general-general).
Result. The accuracy of IP-RP classification is shown
in Table 5. We again used 10-fold cross validation to
evaluate our attack. We can see that IP-RP circuit pairs
are very identifiable: all three algorithms have 99.9%
true positive rate, and less than 0.05% false positive rate.
This accuracy is likely due to the uniqueness of the ex-
act sequence of cells for IP-RP circuits. From the 6000
sequences of IP-RP pairs and 80000 non-special pairs,
there were 923 and 31000 unique sequences respectively.
We found that only 14 sequences were shared between
the two classes. Furthermore, of those 14 sequences,
only 3 of them had more than 50 instances.

This result implies that an adversary who can see a
user’s IP and RP (e.g., entry guard) can classify IP and
RP circuits with almost 100% certainty by observing a
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Table 5: IP/RP Pair Classification

Algorithm True Positive Rate False Positive Rate
CART 0.999 2.07 ·10−4

C4.5 0.999 3.45 ·10−4

k-NN 0.999 6.90 ·10−5

few cells. Moreover, the attack can be carried out in near
real-time speed since we only need the first 20 cells. The
attacker can thus effectively rule out most non-sensitive
circuits, making data collection much easier.

7 Website Fingerprinting Revisited

In this section, we discuss the impact of our observations
and attacks on WF, and show the result of applying mod-
ern WF techniques to hidden services. We show that the
adversary can classify both the clients’ and the operators’
hidden service activities with high probability.

7.1 Adversaries Targeting Hidden Services

Juarez et al. [24] recently criticized various WF attacks
because they made assumptions which were too advan-
tageous for the adversary, and exacerbated the effective-
ness of their attacks. In this section, we discuss some
of the points that were raised by Juarez et al. [24] and
show how our attacks address the concerns in the case of
attacking hidden services.
Noisy streams. Previous WF attacks assumed that the
adversary is able to eliminate noisy background traffic
[10, 35, 36]. For example, if the victim’s file download
stream (noise) is multiplexed in the same circuit with the
browsing stream (target), the attacker is able to eliminate
the noisy download stream from the traces. With a lack
of experimental evidence, such an assumption might in-
deed overestimate the power of the attack.

In the world of hidden services, we observed that
Tor uses separate circuits for different .onion domains
(Section 3). Furthermore, Tor does not multiplex gen-
eral streams accessing general non-hidden services with
streams accessing hidden services in the same circuit.
From the attacker’s perspective, this is a huge advan-
tage since it simplifies traffic analysis; the attacker does
not have to worry about noisy streams in the background
of target streams. Furthermore, the previous assumption
that the attacker can distinguish different pages loads is
still valid [35]. User “think times” still likely dominate
the browsing session, and create noticeable time gaps be-
tween cells.
Size of the world. All previous WF attacks have a
problem space that is potentially significantly smaller
than a realistic setting. Even in Wang et al.’s “large”

open-world setting, the number of all websites are lim-
ited to 10,000 [35]. Moreover, different combinations
of websites sharing one circuit could make it impossible
to bound the number of untrainable streams. This im-
plies that the false positive rate of WF techniques in prac-
tice is significantly higher, since the ratio of trained non-
monitored pages to all non-monitored pages go down.

However, in the case of hidden services, the size of the
world is significantly smaller than that of the world wide
web. Also, while it is true that not all existing hidden
services are publicly available, it has been shown that
enumerating hidden services is possible [6]3. In some
cases, the attacker could be mainly interested in identi-
fying a censored list of services that make their onion
address public. Furthermore, we do not need to consider
the blow up of the number of untrainable streams. Since
RP always produces clean data, the number of untrained
streams is bounded by the number of available hidden
services.

Rapidly changing pages. The contents of the general
web changes very rapidly as shown by Juarez et al. [24].
However, hidden pages show minimal changes over time
(Section 3), contrary to non-hidden pages. The slowly
changing nature of hidden services reduces the attacker’s
false positives and false negatives, and minimizes the
cost of training. Furthermore, hidden services do not
serve localized versions of their pages.

Replicability. Another assumption pointed out by
Juarez et al. [24], which we share and retain from pre-
vious WF attacks, is the replicability of the results. That
is, we are assuming that we are able to train our classifier
under the same conditions as the victim. Indeed, we ac-
knowledge that since it is difficult to get network traces
of users from the live Tor network, we are faced with the
challenge of having to design experiments that realisti-
cally model the behavior of users, hidden services, and
the conditions of the network. That said, our attacks de-
scribed above use features that are based on circuit inter-
actions and are independent of the users’ browsing habits
or locations, which can reduce the false positive rate for
the WF attacker.

Based on the above discussion, we claim that our at-
tacker model is significantly more realistic than that of
previous WF attacks [10, 35, 36]. While the conclusions
made by Juarez et al. [24] regarding the assumptions of
previous WF attacks are indeed insightful, we argue that
many of these conclusions do not apply to the realm of
hidden services.

3As pointed out by a reviewer, it is worth noting that the specific
technique used in [6] has since been adressed by a change in the HS
directory protocol.
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7.2 Methodology

We first note here that hidden services have significantly
lower uptime than a normal website on average. We
found that only about 1000 hidden services were consis-
tently up of the 2000 hidden services we tried to connect
to. This makes collecting significant amounts of traces
of hidden services very difficult. Furthermore, we found
that hundreds of the available services were just a front
page showing that it had been compromised by the FBI.
This introduces significant noise to WF printing tech-
niques: we now have hundreds of “different” pages that
look exactly the same. We thus tried to group all of these
hidden services as one website. This unfortunately lim-
ited our open world experiments to just 1000 websites.
We also note that there may be other similar cases in our
data, where a hidden service is not actually servicing any
real content.

7.2.1 Data Collection

We gathered data to test OP servicing a normal user and
a hidden service for both closed and open world settings.
For the normal user case, we spawned an OP behind
which a client connects to any website. We then used
both firefox and wget to visit 50 sensitive hidden ser-
vices that the attacker monitors (similar to experiments
in Section 3). Our sensitive hidden service list contained
a variety of websites for whistleblowing, adult content,
anonymous messaging, and black markets. We collected
50 instances of the 50 pages, and 1 instance of 950 the
other hidden services.

For the hidden service case, we first downloaded the
contents of 1000 hidden services using a recursive wget.
We then started our own hidden service which contains
all the downloaded hidden service contents in a subdi-
rectory. Finally, we created 5 clients who connect to our
service to simulate users connecting to one server, and
visiting a cached page. We then reset all the circuits, and
visited a different cached page to simulate a different hid-
den service. We repeated this experiment 50 times for the
50 monitored hidden services, and once for the other 950
hidden services.

We argue that this setup generates realistic data for the
following reasons. First, as shown in Section 3, the ac-
tual contents of hidden services changes minimally. Thus
servicing older content from a different hidden service
within our hidden service should not result in a signifi-
cantly different trace than the real one. Second, the exact
number of clients connected to the service is irrelevant
once you consider the results in Section 6. An RP circuit
correlates to one client, and thus allows us to consider
one client trace at a time. Note that this is how a real-life
adversary could generate training data to deanonymize
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Figure 13: Accuracy of website fingerprinting attacks in closed
world setting.

the servers: it could run its own servers of the cached
hidden services, and collect large samples of the servers’
traffic patterns.

7.2.2 Website Fingerprinting Hidden Services

We extracted features similar to the ones presented in
Wang et al. [35] from the data we collected.

• General Features: We use the total transmission
size and time, and the number of incoming and out-
going packets.

• Packer Ordering: We record the location of each
outgoing cell.

• Bursts: We use the number of consecutive cells of
the same type. That is, we record both the incoming
bursts and outgoing bursts, and use them as features.

We performed WF in closed and open world settings.
In the closed world setting, the user visits/hosts a hid-
den service selected randomly from the list of 50 pages
known to the attacker. In the open world setting, the user
visits/hosts any of the 1000 pages, only 50 of which are
monitored by the attacker. In either case, the attacker col-
lects network traces of the Tor user, and tries to identify
which service is associated with which network trace.
We can consider the clients and the servers separately
since we can identify HS-IP and Client-IP using the at-
tack from Section 5.1 with high probability.

7.3 WF Accuracy on Hidden Services

We ran the same classifiers as the ones used in Section 6:
CART, C4.5, and k-NN.4 The accuracy of the classifiers
in the closed world setting of both client and server is
shown in Figure 13. For the open world setting, we var-
ied the number of non-monitored training pages from
100 to 900 in 100 page increments (i.e., included exactly

4For k-NN, we tested with both Wang et al. [35] and the implemen-
tation in Weka, and we got inconsistent results. For consistency in our
evaluation, we used the Weka version as with the other two classifiers.
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Figure 14: TPR and FPR of the client side classification for
different classifiers.
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Figure 15: TPR and FPR of the server side classification for
different classifiers.

one instance of the websites in the training set), and mea-
sured the TPR and FPR. The results of the open world
experiment on the clients and the servers are shown in
Figure 14 and Figure 15 respectively.

In all settings, we found that k-NN classifier works
the best for classifying hidden services. We believe this
is because k-NN considers multiple features simultane-
ously while the tree-based classifiers consider each fea-
ture one after another. In the closed world, the accu-
racy of k-NN was 97% for classifying the clients and
94.7% for the servers. In the open world, the k-NN
classifier again performed the best. The TPR of k-NN
reduced slightly as we increased the number of trained
non-monitored websites. The TPR ranged from 90% to
88% and 96% to 88% for classifying clients and servers
respectively. The FPR steadily decreased as we trained
on more non-monitored websites: for classifying clients,
it varied from 40% to 2.9% depending on the number of
trained pages. Similarly, FPR of classifying servers var-

ied from 80.3% to 7.8% for attacking servers.5 Though
the FPR is too a large for accurate classification when
trained only on small number of non-monitored websites,
we found that it quickly decreased as we increased the
number of websites in the training set.

In general, the classifiers performed better in identify-
ing clients’ connections better than the hidden services
servers; the TPR was comparable, but the FPR was sig-
nificantly lower for classifying clients. We believe that
this is, at least partially, due to the fact that we are us-
ing one real hidden service to emulate multiple hidden
services; our data does not capture the differences in the
differences in hardware, software, locations, and other
characteristics real hidden service servers would have.

8 Future Possible Defenses

Our attacks rely on the special properties of the circuits
used for hidden service activities. For the first attack
(Section 5.1), we used three very identifiable features
of the circuits: (1) DoA, (2) number of outgoing cells,
and (3) number of incoming cells. To defend against this
attack, Tor should address the three features. First, all
circuits should have similar lifetime. Client IP and hid-
den service IP lasts either a very short or very long time,
and this is very identifying. We recommend that circuits
with less than 400 seconds of activity should be padded
to have a lifetime of 400-800 seconds. Furthermore, we
suggest that hidden services re-establish their connection
to their IPs every 400-800 seconds to avoid any circuits
from lasting too long. Second, hidden service and client
IP should have a larger and varying number of outgo-
ing and incoming cells. IPs are only used to establish
the connection which limits the possible number of ex-
changed cells. We believe they should send and receive
a random number of PADDING cells, such that their me-
dian value of incoming and outgoing cells is similar to
that of a general circuit. We evaluated the effectiveness
of this defense on the same dataset used in Section 6.1,
and found that the true positive rate for the IPs and RPs
fell below 15%. Once the features look the same, the
classifiers cannot do much better than simply guessing.

To prevent the second attack (Section 5.2), we recom-
mend that every circuit be established in a pair with the
same sequence for the first few cells. If an extend fails
for either circuit (which should be a rare occurrence),
then we should restart the whole process to ensure no in-
formation is leaked. To do this efficiently, Tor could use
its preemptive circuits. Tor already has the practice of
building circuits preemptively for performance reasons.
We can leverage this, and build the preemptive circuit

5The results are not directly comparable to previous WF attacks due
to the differences in the settings, such as the size of the open world.
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with another general circuit with the same sequence as
the IP-RP pairs. This would eliminate the second attack.

For WF attacks (Section 7), defenses proposed by pre-
vious works [35, 9] will be effective here as well. Fur-
thermore, for the clients, the results of Juarez et al. [24]
suggest that WF attacks on hidden service would have
significantly lower accuracy if an RP circuit is shared
across multiple hidden service accesses.

9 Related Work

Several attacks challenging the security of Tor have been
proposed. Most of the proposed attacks are based on
side-channel leaks such as congestion [31, 17], through-
put [30], and latency [21]. Other attacks exploit Tor’s
bandwidth-weighted router selection algorithm [5] or its
router reliability and availability [7]. Most of these at-
tacks are active in that they require the adversary to per-
form periodic measurements, induce congestion, influ-
ence routing, or kill circuits.

Our attacks on the other hand, like the various WF at-
tacks, are passive. Other passive attacks against Tor in-
clude Autonomous Systems (AS) observers [15], where
the attacker is an AS that appears anywhere between the
client and his entry guard, and between the exit and the
destination.

In addition, several attacks have been proposed to
deanonymize hidden services. Øverlier and Syver-
son [32] presented attacks aiming to deanonymize hid-
den services as follows: the adversary starts by deploying
a router in the network, and uses a client which repeat-
edly attempts to connect to the target hidden service. The
goal is that, over time, the hidden service will choose the
malicious router as part of its circuit and even as its entry
guard to the client allowing the attacker to deanonymize
him using traffic confirmation.

A similar traffic confirmation attack was described by
Biryukov et al. [6]. The malicious RP sends a message
towards the hidden service consisting of 50 padding cells
when it receives the rendezvous1 sent by the hidden
service. This signal allows another malicious OR along
the circuit from the hidden service to the RP, to iden-
tify the hidden service or its entry guard on the circuit.
Biryukov et al. also show how it is possible for the at-
tacker to enumerate all hidden services and to deny ser-
vice to a particular target hidden service.

10 Conclusion

Tor’s hidden services allow users to provide content and
run servers, while maintaining their anonymity. In this
paper, we present the first passive attacks on hidden ser-
vices, which allow an entry guard to detect the presence

of hidden service activity from the client- or the server-
side. The weaker attacker, who does not have perfect cir-
cuit visibility, can exploit the distinctive features of the
IP and RP circuit communication and lifetime patterns
to classify the monitored circuits to five different classes.

For the stronger attacker, who has perfect circuit vis-
ibility (in the case where the client uses only one entry
guard), the attacker runs a novel pairwise circuit correla-
tion attack to identify distinctive cell sequences that can
accurately indicate IP and RP circuits.

We evaluated our attacks using network traces ob-
tained by running our own clients and hidden service on
the live Tor network. We showed that our attacks can
be carried out easily and yield very high TPR and very
low FPR. As an application of our attack, we studied the
applicability of WF attacks on hidden services, and we
made several observations as to why WF is more real-
istic and serious in the domain of hidden services. We
applied state-of-the-art WF attacks, and showed their ef-
fectiveness in compromising the anonymity of users ac-
cessing hidden services, and in deanonymizing hidden
services. Finally, we propose defenses that would miti-
gate our traffic analysis attacks.

11 Code and Data Availability

Our data and scripts are available at http://people.
csail.mit.edu/kwonal/hswf.tar.gz.
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