
Practical Attacks Against The I2P Network

Christoph Egger1, Johannes Schlumberger2,
Christopher Kruegel2, and Giovanni Vigna2

1 Friedrich-Alexander University Erlangen-Nuremberg
Christoph.Egger@cs.fau.de

2 University of California, Santa Barbara
{js,chris,vigna}@cs.ucsb.edu

Abstract. Anonymity networks, such as Tor or I2P, were built to allow
users to access network resources without revealing their identity. Newer
designs, like I2P, run in a completely decentralized fashion, while older
systems, like Tor, are built around central authorities. The decentralized
approach has advantages (no trusted central party, better scalability), but
there are also security risks associated with the use of distributed hash
tables (DHTs) in this environment.
I2P was built with these security problems in mind, and the network
is considered to provide anonymity for all practical purposes. Unfortu-
nately, this is not entirely justified. In this paper, we present a group of
attacks that can be used to deanonymize I2P users. Specifically, we show
that an attacker, with relatively limited resources, is able to deanonymize
a I2P user that accesses a resource of interest with high probability.

1 Introduction

In modern societies, freedom of speech is considered an essential right. One
should be able to express his/her opinion without fear of repressions from
the government or other members of society. To protect against retribution, the
laws of democratic countries recognize the importance of being able to publish
information without disclosing one’s identity in the process. Unfortunately, this
essential right to anonymity is not available on today’s Internet.

Local observers, such as Internet providers, site administrators, or users on
the same wireless network, can typically track a person while she is using the
Internet and build a record of her actions. While encryption hides the actual
content transmitted, it is still possible to identify which services are used. There-
fore, an observer can link the user to the websites that she visits and, based on
these observations, take action.

Tor [1, 2] was one of the early solutions to provide anonymous communica-
tion on the Internet. It works by routing traffic through a number of intermedi-
ate nodes, and each node only knows about its direct communication partners.
Hence, looking at the first (or last) link, it is not possible to infer the destination
(or source) of the traffic. Tor has a centralized design built around trusted au-
thority servers. Each of these servers keeps track of all nodes in the network and
their performance. The authority servers regularly publish this list for clients to



use. The clients pick nodes from this list to create encrypted tunnels, until they
reach exit nodes. These exit nodes then act as proxies, allowing Tor users to
access the public Internet (called clearnet) without revealing their identity.

As there are only few trusted authority servers, the integrity of these nodes
is essential for the entire network, making them a valuable target for attacks.
In addition, since all of the authorities need to keep track of the whole network
and regularly agree on its state, this design has limited scalability.

To address limitations of Tor’s centralized design, researchers have pro-
posed distributed alternatives. Arguably, the most popular instance of decen-
tralized anonymity systems is I2P. I2P stores all metadata in a distributed hash
table (DHT), which is called netDB. The DHT ensures scalability of the network.
Being run on normal I2P nodes, the netDB also avoids a small group of author-
ity servers that would need to be trusted. Finally, I2P provide a separate net-
work (called darknet) where both, service providers and users, act only within
the I2P network. All connections inside the darknet are end-to-end encrypted,
and participants are well-aware of the anonymity of each other.

The use of DHTs in peer-to-peer anonymity systems has been successfully
attacked in the past [3]. Continued research on this problem finally led to gen-
eral results [4] that showed that the additional effort to verify the correctness
of lookup results directly increases vulnerability to passive information-leak at-
tacks. I2P itself has been attacked successfully by exploiting the decentralized
performance analysis of its participants [5].

The developers of I2P have reacted to the publication of attacks, and they
have improved their network to resist the DHT-based attacks introduced in [3]
and [4], by limiting the database to a subset of well-performing nodes. This
reduces the number of nodes involved in each individual lookup to only one
for most cases. Moreover, the performance computation techniques were up-
dated to make it more difficult for an attacker to exploit them. As a result, I2P
is considered secure in practice. Unfortunately, this is not entirely justified.

In this paper, we describe an attack that can be used to break the anonymity
of a victim who is using anonymized resources in I2P – for example, a user
browsing eepsites (I2P’s terminology for anonymous websites) or chatting.
We are able, with high probability, to list the services the victim accesses regu-
larly, the time of access, and the amount of time that is spent using the service

We first show how an attacker can tamper with the group of nodes provid-
ing the netDB, until he controls most of these nodes. This is possible because I2P
has a fixed maximum number of database nodes (only a small fraction of nodes
in the entire network host the database). The set of nodes can be manipulated
by exploiting the normal churn in the set of participating nodes or by carrying
out a denial of service (DoS) attack to speed up the change. We show how a
Sybil attack [6] can be used as an alternative approach to control the netDB.

By leveraging control over the network database, we demonstrate how an
Eclipse [7, 8] attack can be launch. This results in services being unavailable or
peers getting disconnected from the network.



Finally, our deanonymization attack exploits the protocol used by peers to
verify the successful storage of their peer information in the netDB. The stor-
age and verification steps are done through two independent connections that
can be linked based on timing. Using the information gathered by linking these
two interactions, an attacker can determine (with high probability) which tun-
nel endpoints belong to specific participants (nodes) in the I2P network, and,
therefore, deanonymize the participant.

Experimental results were gathered by tests performed both on our test net-
work and on the real I2P network (against our victim nodes running the un-
modified I2P software; no service disruption was caused to the actual users of
the network).

In summary, the main contributions in this paper are the following:

1. A novel deanonymization attack against I2P, based on storage verification
2. Complete experimental evaluation of this attack in the real I2P network
3. Suggestions on how to improve the I2P to make it more robust

2 I2P Overview

In this section, we will describe key concepts of I2P, as well as how well-known
attacks have been taken into account when designing its network infrastruc-
ture and protocols. I2P is an application framework (or middleware layer) built
around the so-called I2P router. The router is a software component that runs
on a host and provides connectivity for local I2P applications. An application
can either accesses darknet services (as client), or it can host a service (as server).

Connectivity between applications is implemented via a fully decentralized
peer-to-peer network, which runs as an overlay on top of IP. Applications can
either use a TCP-like protocol called NTCP or a UDP-like protocol called SSU. The
router maps these connections to packet-based I2P tunnels. These I2P tunnels
provide anonymity using standard onion routing (similar to the well-known
approach used by the Tor network). Tunnels are identified by the outermost
peer in the chain and a unique tunnelID (these elements are roughly analog to
the IP-address and port pair used in the clearnet).

Example applications include websites (called eepsites in the I2P commu-
nity) and file sharing services, which together account for at least 30 % of I2P
services [9], as well as email and chat systems. In February 2013, there were
about 20,000 users in the I2P network at any given point in time; up from
around 14,000 at the beginning of 2012.

2.1 Tunnels and Tunnel Pools

I2P uses paired, unidirectional tunnels handling onion-encrypted packets. It
uses two different types of tunnels: Exploratory tunnels are used for all
database lookups. They typically have a length of two hops. Client tunnels
in contrast are used for all data connections. These client tunnels are bound to a



local application but are used to reach any service this application is accessing,
or, in the case of a server application, for communication with several clients.
They have a typical length of three nodes.

For each application, the I2P router keeps a pool of tunnel pairs. Explo-
ratory tunnels for interactions with the netDB are shared among all users of
a router. If a tunnel in the pool is about to expire or the tunnel is no longer
useable (e.g., because one of the nodes in the tunnel is failing) the router cre-
ates a new tunnel and adds it to the pool. It is important to recall later that
tunnels periodically expire every ten minutes, and hence, need to be refreshed
frequently. This is done to prevent long-lived tunnels from becoming a threat
to anonymity.

2.2 Router Info and Lease Set

The netDB keeps two types of records: Peer and service information. Peer infor-
mation is stored in so-called routerInfo structures containing the information
needed to reach a peer – its IP address and port – as well as its public keys.
This information is needed also to cooperate in a tunnel with this peer. Peer in-
formation has no explicit period of validity, however during normal operation
peers refresh their routerInfo by uploading it to the netDB every ten minutes.
Participants invalidate them after a period of time depending on the number
of peers they know, in order to make sure a reasonable number of peers are
known locally at any point in time.

The leaseSets contain service information, more specifically the public
keys for communicating with a service as well as the tunnel endpoints that can
be contacted to reach the service. Since tunnels expire after ten minutes, old ser-
vice information is useless after that period of time, and it expires together with
the tunnels. Users have to re-fetch them from the netDB if they want to continue
communicating with the service even if the same application-layer connection
is used the whole time.

In order for I2P to provide anonymity, service information has to be unlink-
able to the peer information. However, in this paper, we show a way to actually
link these two pieces of information and, therefore, deanonymize I2P partici-
pants.

2.3 Network Database

Database records are stored in a Kademlia-style DHT [10] with some modifica-
tions to harden it against attacks. This modified database is called floodfill

database and the participating nodes floodfill nodes.
To request a resource on vanilla Kademlia implementations, a client requests

the desired key from the server node considered closest to the key. If the piece
of data is located at the server node, it is returned to the client. Otherwise, the
server uses its local knowledge of participating nodes and returns the server it
considers nearest to the key. If the returned server is closer to the key than the
one currently tried, the client continues the search at this server.



Since a malicious node at the right position relative to the key can prevent a
successful lookup in standard Kademlia, I2P adds redundancy by storing each
database record onto the eight closest nodes (instead of a single one). Addition-
ally, clients do not give up when they reached the closest node they can find
but continue until their query limit (currently eight lookups) is reached.

Both servers and records are mapped into a global keyspace by their cryp-
tographic hash, which is what the notion of closeness is based upon.

The number of floodfill nodes is limited to only few well-connected mem-
bers. This is done because the research by Mittal et al. [4] showed how longer
lookup paths compromise anonymity. With only few nodes (around 3 % of total
network size) acting as database servers and these being well connected, it is
assumed that an I2P client already knows one of the nodes storing the informa-
tion. This keeps the lookup path length to a minimum.

2.4 Floodfill Participation

Floodfill participation is designed to regulate the number of floodfill nodes
in the network and keep them at a constant count.

There are two kinds of database servers, manual floodfill participants and
automatic floodfill participants. The manual floodfill participants are con-
figured by their operator to serve in the database. The automatic floodfill

participants are I2P nodes using the default floodfill configuration and are
therefore not configured to always or never participate. They consider acting as
floodfill nodes if the maximum amount of floodfill nodes, which was at
300 during our attack and increased in later releases, is currently not reached.
As no node has global knowledge about all participants and nodes therefore de-
ciding on their local knowledge only, the actual count is a bit higher. This max-
imum amount of floodfill nodes does not affect manual floodfill nodes.
Based on their performance characteristics, automatic nodes can decide to par-
ticipate. They regularly re-evaluate their performance, and step down if they
no longer meet the needed performance characteristics.

To estimate the proportion of automatic floodfill participants, we moni-
tored the network database from the nodes under our control, and detected
peers changing their participation status, which does not happen for manual

floodfill participants but does happen for automatic ones. Results show that
around 95 % of the database servers are automatic.

2.5 Example Interactions

Server applications register themselves on the local I2P router with their public
key for data encryption. The router then allocates a tunnel pool for the server
application and publishes the public key and all tunnel endpoints allocated to
this application (service information) to the netDB. The fingerprint of the appli-
cation’s public key serves as key into the netDB. The router then keeps the ser-
vice information up-to-date every time it replaces a tunnel. This key fingerprint
remains the primary identifier to reach a service. A list of bookmarks called the



address book is supplied with the I2P software and users can amend this list
for themselves and share it with others.

If an application wants to access an I2P service, it first needs to locate the
service. It asks the router for the service information. The router may have
this service information stored locally (e.g., if it runs a floodfill node or the
same information was already requested recently) and be able to return it to the
application immediately. If the information is not available locally, the router

sends a lookupMessage through one of the exploratory tunnels and returns
the service information to the application, if it could be found on the netDB, or
an error otherwise. The service lookup is thereby anonymized by the use of an
exploratory tunnel. Otherwise, floodfill nodes would be able to link users to
services, and avoiding such links is the main goal of anonymity networks. The
application can then hand packets to the router and request them to be sent
to the service through one of the client tunnels allocated to the application. If
the router receives any packets through one of the client tunnels allocated to
an application, it forwards them appropriately.

2.6 Threat Model

The I2P project has no explicit threat model specified but rather talks about
common attacks and existing defenses against them3. Overall, the design of
I2P is motivated by threats similar to those addressed by Tor: The attacker can
observe traffic locally but not all traffic flowing through the network and in-
tegrity of all cryptographic primitives is assumed. Furthermore, an attacker is
only allowed to control a limited amount of peers in the network (the web-
site talks about not more than 20 % of nodes participating in the netDB and a
similar fraction of total amount of nodes controlled by the malicious entity). In
this paper, we present an attack that requires fewer malicious nodes while still
deanonymization users. This threat model is also used by Hermann et al. [5],
putting our result in some context.

2.7 Sybil Attacks

One well-known attack on anonymity systems is the so-called Sybil attack [6],
where a malicious user creates multiple identities to increase control over the
system. However, I2P has some defense mechanisms aimed at minimizing the
risk of Sybil attacks.

It is possible to control more identities in the network by running multiple
I2P instances on the same hardware. However, participants evaluate the perfor-
mance of peers they know of and weight them when selecting peers to interact
with instead of using a random sample. As running multiple identities on the
same host decreases the performance of each of those instances, the number
of additional identities running in parallel is effectively limited by the need to
provide each of them with enough resources for being considered as peers.

3
http://i2p2.de/how_threatmodel.html



Additionally, the mapping from leaseSets and routerInfos to netDB keys,
which determines the floodfill nodes responsible for storing the data, in-
cludes the current date so the keyspace changes every day at midnight UTC.
Nodes clustered at a certain point in the keyspace on one day will, therefore, be
distributed randomly on any other day. However, this change does not include
any random inputs, and is thus completely predictable.

2.8 Eclipse Attacks

With a vanilla Kademlia DHT, all requests would be answered by the node
nearest to the searched key. If this node is malicious and claims not to know the
key and not to know any other database server nearer to the key, the lookup will
fail [8]. To circumvent this attack, I2P stores the key on the eight nodes closest
to the key and a requesting node will continue asking nodes further away from
the key if they no longer know any candidate nearer to the searched key.

3 The Attacks

The final goal of our attacks is to identify peers using a particular service on
I2P and their individual usage patterns, including when and for how long they
use this service. We describe different ways to gain the necessary control on the
netDB and include a brief discussion of how to perform a classical Eclipse attack
where access to a service inside the I2P network is blocked by the attacker.
Our attack uses a group of 20 conspiring nodes (fully controlled by us) that
are actively participating in the network and that act as floodfill peers. The
description of our attacks is structured as follows:

a) We take control over the floodfill database. We either forcible remove all
other nodes and take full control (Section 3.1), or use a Sybil attack (Section
3.2) to take control over a region of the database

b) Leveraging this control of the database, we implement an Eclipse attack
(Section 3.3)

c) Alternatively, we exploit our control to link store and verification connec-
tions that done by peers who update their routerInfos, hence deanonymiz-
ing these peers (Section 3.4)

3.1 Floodfill Takeover

In this section, we describe an attack that can be used to control the majority
of database nodes in the I2P network. By taking control of the netDB, one can
log database actions for the full keyspace. The attack is possible with relatively
few resources (only 2 % of total nodes in the network are needed). Note that the
threat model limits an attacker to 20 % of floodfill nodes. This assumption
is violated by this attack. Nonetheless, the I2P developers still consider this a
serious and valid attack.



The attacker can configure his nodes as manual floodfill nodes to make
sure his nodes participate in the database. In the remaining part of this section,
we discuss how the number of legitimate floodfill nodes can be decreased,
facilitating takeover of the network database.

Around 95 % of the floodfill nodes are automatic, that is, they participate
due to the need for more database nodes and the availability of resources on
their side. While there will not be the need for more participants once the
attacker has set up his nodes, all current participants continue to serve as
floodfill nodes as long as they do not get restarted and continue to have
enough resources.

Available resources are both measured in terms of available data rate, which
is statically configured for each node by the admin, and job lag, which is mea-
sured during operation taking the average delay between the scheduled time
where each task (e.g., tunnel building, database lookups) is supposed to run
and the actual point in time when it is started. As this delay largely depends
on the number of open tasks, and an attacker can cause additional tasks to be
scheduled, this job lag is a good target for attack.

As load varies and routers tend to be rebooted from time to time, the least
noisy and easy-to-deploy possibility is waiting for the number of legitimate
floodfill participants to decrease while the attacker adds malicious nodes to
the network. This is especially effective every time an update to the I2P software
is distributed, as updating I2P includes a restart of the router.

However, to speed up churn in the floodfill set, an attacker can influence
the job lag using a denial-of-service (DoS) attack against a legitimate floodfill
participant. The attacker creates many new tunnels through the attacked node
adding a tunnel build job for each. When specifying a non-existing identity for
the node after the victim in the tunnel, it also adds a total of eight search jobs
looking for the peer information to the victim’s job queue. If the attacker is
able to create more open jobs than the node can handle, these jobs get started
late, building up a job lag. The attacker needs to be careful to not actually send
large amounts of data through the attacked node as this would trigger the data
rate limiting functionality and make the victim drop tunnel requests instead of
adding them to the job queue. As soon as the attacked node drops its floodfill
flag, the attacker continues with the next active floodfill node. It is important
to note that an attacker only needs capacity to launch a DoS attack on a single
legitimate floodfill node at a time. Nodes will only regain floodfill status
if there are too few active floodfill nodes in the network. In the attack sce-
nario, however, the attacker inserted his own nodes in the network, replacing
the failing, legitimate ones.

3.2 Sybil Attack

Under certain conditions, the floodfill takeover described in the previous
section is not optimal. The Eclipse attack described in the next section requires
several floodfill nodes closest to a keyspace location, while there are still
legitimate floodfill nodes at random places in the keyspace after a successful



floodfill takeover. Additionally, the takeover attack requires over 300 active
malicious nodes in the network.

A Sybil attack will allow the attacker to get close control over a limited part
of the keyspace, and it requires fewer resources than the complete takeover.
While an attacker cannot run (too many) I2P nodes in parallel due to the peer
profiling that is in place, it is possible to compute huge quantities of identities
offline and then use the best placed ones (the ones closest to the victim in the
keyspace). To exhaust the query limit with negative responses, a total of eight
nodes near the target key are necessary (near means closer than any legitimate
participant in this region of the netDB). To log lookups, a single attacker would
suffice. As there are currently only 320 floodfill nodes active, a set of 10,000
identities, which can be computed in few minutes, already gives the attacker
many possible identities to completely control any position in the keyspace.

Introducing a new node into the network requires a setup time of about an
hour, during which the node gets known by more and more of its peers and
actively used by them for lookup. Hence, it takes some time until the Sybil
attack reaches the maximal impact. In addition, as mentioned previously, the
storage location of the keys that the attacker is interested in (e.g., the key at
which the service information, that should be eclipsed, is stored) changes every
day at midnight. This requires attacking nodes to change their location in the
keyspace, opening a window during which legitimate nodes control the posi-
tion in question. However, as the rotation is known in advance, a second set of
attack nodes can be placed at the right spot before midnight, so they are already
integrated once the keyspace shifts. As a result, this keyspace rotation does not
prevent our attack but only requires few additional resources.

3.3 Eclipse Attack

Our Eclipse attack allows an attacker to make any database record unavail-
able to network participants. It is an example of how Sybil attacks can be used
against the network, independent from the deanonymization described in the
next section. As clients use up to eight floodfill nodes to locate a key in the
network database, the attacker needs to control at least the eight nodes clos-
est to the key. The list of other close servers piggybacked on a negative lookup
answer is used to increase the probability of the client knowing all floodfill
participants controlled by the attacker.

Once control over a region in the keyspace is established, the attacker can
block access to items in this region by sending a reply claiming to not know the
resource. If the blocked resource contains service information, this effectively
prevents anyone from accessing the service. Similarly, if peer information is
blocked, network participants are unable to interact with it.

3.4 Deanonymization of Users

Finally, we show an attack allowing an attacker to link any user with his IP
address to the services he uses. For this attack, we use the Sybil attack described



earlier to place malicious nodes in the netDB so they can observe events in the
network related to each other. We later use information from these events to
deanonymize users.

Nodes store their database records on the closest floodfill node that they
are aware of. To verify proper storage of a database record, a node subsequently
sends a lookup to another floodfill node nearby. This is done after waiting for
20 seconds. If both nodes, the one stored on and the one handling the verifying
lookup, are controlled by the same (malicious) entity, the attacker can observe
both interactions and connect them (with some probability).

Storage of peer information is done without a tunnel. That is, it is done
in the clear, as the client is exposed by the content of the database entry any-
ways. Storage verification, on the other hand, is done through an exploratory
tunnels to make it more difficult to distinguish storage verification from nor-
mal lookup (if floodfill nodes could distinguish verifications from normal
lookups, they could allow verification and still hide the stored information from
normal lookups). As a result, the first part of this interaction exposes the client
node, while the second part exposes an exploratory tunnel endpoint. This com-
bination allows us to create a probabilistic mapping between exploratory tunnel
endpoints and the peers owning the tunnel.

If an attacker can later link actions to an exploratory tunnel endpoint, she
can use this probabilistic mapping to identify the client initiating this action,
effectively deanonymizing this client. Exploratory tunnels are used for all reg-
ular database lookups, including those for service information. A floodfill

node controlled by the attacker will therefore see the exploratory tunnel end-
points for all lookups for services that this node handles. Thus, if the attacker
places malicious floodfill nodes at the right positions to observe the lookups
for interesting services, he can combine the probabilistic mapping with the ser-
vice lookups.

The attack process is shown in Figure 1: The client (victim) stores its peer
information on Node 7 in the netDB. This node then pushes the peer informa-
tion to other floodfill nodes that are close in the netDB. In this case, these
close nodes are Node 6, Node 8 and Node 9. After 20 seconds, the client starts
the verification process and requests its own peer information from Node 6, us-
ing one of its exploratory tunnel pairs. Later, it requests the service information
for an eepsite from Node 4, using the same exploratory tunnel! If the attacker
controls Nodes 4, 6 and 7, he can (i) leverage the store and verification opera-
tion (on Node 6 and 7) to map the victim’s tunnel identifier to the actual victim
node, and (ii) see the victim requesting the service (on Node 4).

As service information expires after ten minutes, each client needs to fetch it
before starting an interaction with a service and update it regularly during the
interaction. This allows the attacker to identify which of the observed clients
interact with each of the monitored resources and when she does so. The regu-
lar update of service information additionally reveals how long the service has
been used. As a result, the attacker is able to deanonymize users with respect
to their usage of certain services.



0

1

2
3

4

5

6

7
8

9

netDB

Client
store

replication

exploratory tunnel pair

verify

lookup

Fig. 1. Deanonymizing attack

4 Evaluation

In this section, we describe our experiments confirming the attacks described
in the previous section. We have made sure to not disrupt any participant in
the I2P network apart from our own nodes and no identifying information has
been collected about other participants in the network. For testing the DoS at-
tack, which we describe first, a special, separated test network was created to
prevent any harm on the real network. All other attacks were tested in the real
I2P network.

4.1 Floodfill Takeover

We discuss the impact of a takeover attack and the time needed for a passive
takeover where the attacker only waits for automatic floodfill nodes to resign
due to normal fluctuations in the network.

The fraction of automatic floodfill nodes in the network was determined
by monitoring the local peer storage on the routers under our control. These
routers participated as floodfill nodes in the real I2P network, and logged
whenever a node removed or added the floodfill flag to its peer information.
Automatic floodfill nodes add the floodfill status only after being online
for at least two hours and can lose and regain floodfill status depending on
network load. Manual floodfill nodes, instead, will always have the floodfill
flag set. Over a period of ten days, we saw a total of 597 floodfill nodes and an
average of 413 floodfill nodes each day. During these days, only 128 of them
did not change their floodfill status. Therefore, a passive floodfill takeover
attempt lasting for ten days would leave 128 legitimate nodes in place while
adding 258 malicious nodes.

As seen in Figure 2, the amount of floodfill nodes never losing floodfill

status decreases almost linearly by five nodes every day, until it reaches 26
nodes after 44 days. From there on, the count remains stable, and after 60 days,
still 25 nodes are left. These are likely to be manual floodfill nodes, which
would also not have resigned in a DoS attack.



Fig. 2. Legitimate floodfill nodes after n days

 0

 20

 40

 60

 80

 100

 120

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

N
o
d
e
s

Days

nodes

As the active floodfill takeover uses a DoS attack on target nodes, we de-
cided to test this attack on a closed local network. The test network consisted
of 100 nodes split into five groups: 30 slower users with default data rate con-
figuration (96kB/s down- and 40kB/s upload), 30 faster users configured to
use up to 200kB of data rate in both directions, 20 automatic floodfill nodes,
and 5 manual floodfill nodes, as well as 15 attackers. To simulate a large-
enough number of floodfill nodes, a larger fraction of peers were configured
as floodfill nodes, and the maximum number of active floodfill nodes was
lowered from 300 to 20. In this setup, a group of five attacking nodes was able
to slow down the attacked nodes enough for them to give up floodfill status.

4.2 Experimental Setup

In this section, we describe the setup used for all the following attacks. All of
these attacks have been successfully tested on the real I2P network. All nodes
being attacked were controlled by us.

We ran 20 attacking nodes connected to the normal I2P network. These
nodes acted as floodfill peers. Six additional nodes served as legitimate
peers, and were used to verify the attacks. All attackers were set up on a sin-
gle VM host in the US and configured to use 128kB/s of download and 64kB/s
of upload data rate. The legitimate nodes were split evenly between the VM
host in the US and a second VM host in Europe (to make sure the results do
not rely on proximity between attackers and victims). Attackers were config-
ured to act as manual floodfill nodes and had additional code added, which
logged network events and allowed for the blacklisting of specific information,
as required by the Eclipse attack.

During our experiments, the I2P statistics4 reported between 18,000 and
28,000 nodes and 320 to 350 floodfill nodes, fluctuations during the day.

4
http://stats.i2p.in



Therefore, we were controlling less than 7 % of floodfill nodes and a neg-
ligible part of total nodes.

4.3 Sybil Attack

To test our Sybil attacks, we created a set of 50,000 precomputed router iden-
tities. Each identity consists of one signing and one encryption key (as well as
a certificate, which is unused). Computing this set of identities took less than
30 minutes on a twelve-core Xeon server. We then made this set of identities
available to all our I2P nodes for the following experiments.

Additionally, we modified the router software to enable our attacking
nodes to change their identity to any of the precomputed ones on demand,
as well as to enable a group of attackers to use a set of identities, one per node,
close to a target.

4.4 Eclipse Attack

To evaluate the Eclipse attack, we configured our victims to download a test
eepsite every minute, and log the results. Ten attack nodes were moved to the
storage location of the service information for the test eepsite. The attackers
were configured to give negative response to all lookups for the test eepsite
and only refer to each other in these negative responses such that the victims
would learn about all malicious floodfill nodes as fast as possible. A second
group of ten attack nodes was moved to the test eepsite’s storage location for
the following day, and was configured to keep the service information unavail-
able across the keyspace shift.

We ran the Eclipse attack over a period of 42 hours. During this time, victims
were on average able to reach the blocked eepsite for a total of five minutes.
Three out of six nodes were not able to reach the eepsite at any point in time,
and the most successful victim was able to interact with the destination for a
total of only 16 minutes during that period. When the second set of attackers
was not used, all victims could successfully reach the eepsite during a 15-
minute window around midnight (when the keyspace rotation happens).

4.5 Deanonymization of Users

In the next step, we ran an experiment that simulates our ability to deanony-
mize a particular victim user Alice, who is accessing a specific resource R of
interest. This resource could be a dissident’s web page or a sensitive file. The
idea is that the attacker knows that resource and tries to determine whether a
user under suspicion actually accesses R.

For the simulated attack, we first configured ten malicious nodes and set
them up as floodfill nodes in the keyspace region occupied by our six victim
nodes. We then configured these six victim nodes to repeatedly query our test
eepsite. In a first step, we wanted to understand how many service lookups



Fig. 3. Logged service lookups per hour

 0

 10

 20

 30

 40

 50

 60

10 9 8 7 6 5 4 3 2 1

Lo
o
ku

p
s 

p
e
r 

h
o
u
r

Number of Nodes

lookups

could be observed by the malicious floodfill nodes. In particular, we checked
for an increasing number of malicious nodes (from 1 to all 10), the number of
lookups from the victim machines that we could observe. We ran this experi-
ment for a total of eight hours for each number of nodes, during different parts
of the day. This was done to avoid that the different number of routers at dif-
ferent times during the day would influence the results.

The experiments (Figure 3) show a roughly constant amount of around 50
lookups logged every hour, until fewer than three malicious nodes are left.
More precisely, there was a lookup observed from all our victim nodes approx-
imately every nine to ten minutes, which was caused by the lifespan of service
information. Under optimal conditions, one would expect 36 to 40 lookups per
hour, which is the total for six hosts updating their local information every nine
to ten minutes. However, shortly after the service information expired, there
were more than six lookups due to nodes retrying their lookup after losing the
response, adding up to the total of around 50 lookups. This means that the at-
tacker needs only three malicious nodes in the vicinity of the victim nodes to
observe all their relevant lookups.

In the next step, we tried to understand how many lookups observed at
the malicious nodes could be properly attributed to the queries made by the
victims. Observing lookups, of course, is not enough. It is also necessary to at-
tribute different lookups (and tunnel endpoints) to the victim machines. Other-
wise, we cannot determine whether a victim has requested a particular service.
Since the network is not only used by the victims, the malicious nodes receive
unrelated lookups by other (random) nodes in the I2P network.

The results were similar for the sites both in Europe and the US: 52% of the
tunnel endpoints that we attributed to a victim user were indeed originating
from this user (call her Alice), while in 48% of the cases, a specific lookup (and
thus, tunnel endpoint) that we attributed to Alice actually belonged to a dif-
ferent, random user. That is, in this step, we only correctly identify about half
the tunnel endpoints. However, this does not imply that we can detect Alice
only half the time, or that the results are only slightly better than a coin toss.



Instead, it means that we can detect a single access that Alice performs for re-
source R half the time. Monitoring Alice’s accesses over a longer period of time
then allows us to mount a much stronger attack, as discussed below.

Assume that we monitor Alice and a resource R for a certain time period T.
Let’s partition this period into N time slots of duration d, where d = 10 minutes.
This is the time interval after which I2P refreshes the tunnel identifiers, and
hence, a new lookup is performed. During each of the i : 0 <= i < N time
slots, we see a list L

i

of all tunnel identifiers that access resource R. Moreover,
we learn one tunnel identifier t

i

that we believe belongs to Alice (but we could
be wrong, since we are right only half the time). We call this probability u, and,
as discussed above, we empirically found u = 0.52. We then check whether
t

i

2 L

i

. If this is true, we have a hit. If not, we have a miss for time slot i. If
we could always attribute each lookup (and tunnel endpoint) correctly to the
corresponding user, a single hit would be enough. Unfortunately, u < 1.0, and
hence, we require to monitor for multiple time slots.

Assume further that we observe k hits over the time period T, we want to
determine the probability that Alice has indeed accessed R. We need to assume
certain parameters to compute this probability (and ultimately, to determine a
suitable threshold for k for deanonymization). In particular, we need to assume
the fraction of time slots in N where Alice accesses R (we call this fraction p). In-
tuitively, if Alice accesses R often, our task will be easier. Moreover, we need to
know the probability q that any other, random node accesses R. When q p, then
Alice behaves similar to any random node, and we cannot meaningfully distin-
guish her accesses from other nodes. Hence, we require that p > q; intuitively,
as p grows larger than q, our task becomes easier.

The probability that we have k hits over N time slots can be computed with
the binomial distribution. Recall that a hit occurs when we attribute a certain
lookup (tunnel id) with Alice, and we see this tunnel identifier accessing R.

The probability that t

i

2 L

i

= x = u ⇤ p + (1 � u) ⇤ q = 0.5p + 0.5q. This
is the chance of Alice accessing resource, in case we guessed correctly, plus the
chance of a random hit when we misidentified the tunnel. Thus:

P(k hits) =

✓
N

k

◆
x

k ⇤ (1 � x)N�k (1)

Since we care about the probability of at least k hits, we require the cumu-
lative distribution function. In Figure 4, one can see the probability (shown y-
axis) that one observe at least k hits (shown on the x-axis) for different values of
p (the probability that Alice accesses R during an arbitrary time slot). For this
graph, we assume the length of the observation period to be one day (N = 144),
and we set q = 0.001.

The value of q is relevant for false positives, and has been chosen conser-
vatively here. Our concrete values assumes that about 7% of all nodes access
R once a day. The false positives (incorrect attributions) are represented by the
solid line for p = 0; that is, Alice does not at all visit R. It can be seen that this
line quickly drops close to zero. When we require at least two hits per day, the



Fig. 4. Probability of k or more hits, depending on p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18  20

P(
 #

H
its

 | 
p 

[F
re

qu
en

cy
 o

f R
es

ou
rc

e 
Ac

ce
ss

] )

Number Of Hits Observed

p = 0
p = 0.007
p = 0.01
p = 0.02
p = 0.05
p = 0.1
p = 0.2

chance for a false positive is about 2.4%. For less frequently-accessed resources,
this value drops quickly (0.003% for two or more hits, 0.7% for a single hit for
q = 0.0001).

When we require three hits per day, Figure 4 shows that we would detect
Alice with more than 80% probability when she accesses the site with p = 0.05.
This translates to about 7 visits per day. In case Alice visits the site only one
time (p = 0.007), we would need to lower the threshold k to 1. In this worst
case, we would have 52% chance of detection (exactly the probability to get the
correct tunnel), and we would risk about 7% false positives.

Overall, when Alice visits a certain resources a few times per day, and this
resource is not very popular, our approach has a very high probability to cor-
rectly deanonymize Alice. As expected, when a resource is popular in the net-
work and Alice’s visits become more infrequent, our system becomes less accu-
rate and more prone to false positives.

5 Discussion

5.1 Limitations

For a successful deanonymization of a client’s lookups, the attacker needs to
have his floodfill nodes both next to the client’s peer info storage position
and the service information’s storage position in the netDB. Therefore, a Sybil
attack requires the attacker to limit himself to a small number of services and



peers. However, as there are just three malicious floodfill nodes required for
each monitored service, and the number of darknet services interesting to the
attacker is likely to be small, tracking specific user is not a problem. As many
clients map to the same region in the keyspace and, therefore, store their peer in-
formation to the same set of floodfill nodes, it is also possible to track all these
users without additional resources. However, as the mapping to the keyspace
is essentially random, the attacker cannot select an arbitrary group of clients,
but only clients close together in the keyspace.

5.2 Potential Attack Improvements

The experiments have all been run with relatively few nodes configured with
limited data rates. It should be easy to set a higher limit on data rates, which
will make the nodes better known throughout the network, and, therefore, im-
prove the results of the attacks. In order to deal with the increased number of
interactions, one needs to either improve performance of the attack code or as-
sign more processing power to the attack nodes.

Instead of blocking lookups, an Eclipse attack could also block the store
operation. An approach similar to the one used for the deanonymization attack
can be used to make the storing node believe that the storage was successful,
while it was actually blocked: More precisely, the attacking floodfill nodes
can identify the victim’s verification step, and only signal successful lookup for
this verification, while replying with a negative response to all regular lookups.

5.3 Experiments in the I2P Network

After running our nodes for three weeks in the I2P network, developers noticed
our group of 20 floodfill nodes that were connecting with consecutive IP
addresses and had cloned configuration. These were changing their identity
together at midnight each day, and were suspiciously close to each other in the
keyspace. Using the notes already prepared for discussing our results with the
I2P development community, we used this opportunity to start the interaction
following a responsible disclosure strategy. This discussion resulted in some
improvements made to I2P, which we will discuss in Section 5.4 and 5.5 below.

5.4 Implemented Improvements

After sharing our results with the I2P developers, first improvements were im-
plemented to make our attacks more difficult. The limit of floodfill nodes
was raised from 300 to 500, requiring an attacker to run almost twice as many
malicious nodes to take control over the full network database and reducing
the fraction of the keyspace controlled by a single node. Additionally, the num-
ber of tunnels built with the same previous node in the chain was limited, so
that the attacker has to route tunnel build requests through an additional hop.
Therefore, the attacker has to add an additional encryption layer to the tunnel



initiation packets, requiring expensive public key cryptography. However, as
an attacker already needs 500 malicious nodes to replace legitimate floodfill

nodes, and our experiments showed that we were able to run the DoS attack
with only five malicious nodes, it is save to assume, that the attacker has the
necessary resources for this additional encryption.

Finally, only one floodfill node per /16 subnet is considered now for
database lookups, requiring an attacker to spread nodes over several networks
in order to successfully execute an Eclipse attack. However, several legitimate
floodfill nodes in the same /16 subnetwork are unlikely to also serve the
same part of the network database, so only malicious nodes are affected by this
change. As our attacks require at most ten floodfill nodes in the same region,
the attacker can work around this limitation by using several cloud services.

I2P developers also started to discuss replacing the Kademlia implementa-
tion of the network database with R

5
N [11] used by gnunet, which is designed

to deal with malicious peers. This will allow I2P to profit from current research
in this area.

5.5 Suggested Improvements

While the desire to have slow nodes not participate in the floodfill database
is understandable, this is giving an attacker the possibility to permanently re-
move legitimate nodes from the database using a DoS attack. If nodes that once
had floodfill status will return independent of the current number of active
floodfill nodes, an attacker needs to constantly DoS the legitimate partici-
pants to keep them out of the database. Additionally, this should not increase
the number of floodfill nodes beyond a constant number, as once a certain
number of floodfill nodes is reached there will always be a large enough
fraction of them online to reach the limit of floodfill nodes, and no new vol-
unteers will join even under high load or attack.

Alternatively, the hard-coded number of active floodfill nodes could be
removed completely, and the count of floodfill nodes could be solely reg-
ulated by the suitability metric, which would also prevent an attacker from
permanently removing legitimate nodes. After discussing the issues with I2P
developers, they confirmed that this is the direction I2P is taking.

To counter Sybil attacks, a client node could only start to trust a floodfill

node after seeing it participate for n days in the network. This would increase
the cost for multi-day attacks, as the attacker needs to have n + 1 attack groups
active at the same time. This adds a multi-day setup time during which his
intentions could be discovered, and potential victims could be warned using
the newsfeed of the I2P client software. Since we have observed 600 distinct
floodfill nodes over the period of ten days, it should be safe to assume that
enough floodfill candidates exist in the network, even after adding this ad-
ditional restriction. However keeping track of clients active in the past creates
problems on the client, if he is just bootstrapping and does not have any knowl-
edge of the past. This is also problematic for a client that has been offline for



several days. In addition, keeping track of known identities for a larger time-
frame requires storing and accessing the information effectively.

An alteration of this idea is currently being discussed by the I2P developers:
If the modification used for keyspace rotation is not predictable, requiring iden-
tities to be known in the network for one day is enough. Since it will be hard
to build consensus on such an unpredictable modification in a fully distributed
manner, one could observe daily external events that are hard to predict, such
as the least significant digits of stock exchange indices at the end of each day.
The problem with this approach will be finding a way to automatically collect
this information in a censorship-resilient and reliable way.

Storage verification does not work against a group of malicious nodes. The
randomization of the delay between storage and verification introduced in I2P
as a reaction to our research will make correlation less certain but still allows
an attacker to reduce anonymity. One way around this would be to use direct
connections also for the verifying lookup. By doing this, problems on legitimate
nodes and attacks carried out by a single malicious floodfill node could still
be detected, while no information about exploratory tunnels would be leaked.
Also, if the redundant storing is done by the client, no verification is needed.

6 Related Work

Distributed anonymity systems, as well as I2P specifically, have been discussed
in previous work. Tran et al. [3] described common failures of DHT-based
anonymity schemes and Mittal et al. [4] later provided a proof on the trade-
off between passive information-leak attacks and verifiability of the data. I2P
was built with this limitation in mind. In particular, I2P limits the number of
database nodes to a small fraction of the network and selects peers for tunnel
building from a local pool rather than random walks in the netDB, discussed in
detail and attacked by Herrmann et al. [5], to counter these problems. With only
few nodes participating in the DHT, it is a reasonable assumption that all nodes
in the I2P network know the right node for every DHT lookup already, and,
therefore, no attacks on lookup capture due to increased path lengths are pos-
sible. We have shown that I2P is still vulnerable to database-based attacks, and
focused on store events, as opposed to blocking certain lookups. Wolchok et
al. [12] used Sybil nodes with changing identities, which enabled them to crawl
DHTs faster. Similar identity changing was utilized by our work to counter the
daily keyspace rotation and may also be used to cover larger parts of the NetDB

for deanonymization.
Herrmann et al. [5] showed a way to identify peers hosting I2P services ex-

ploiting the peer-profiling algorithm to influence the set of nodes the victim
interacts with. In contrast, our identification shows the actions that a specific
user (victim) performs in the network. Also, while they showed the individual
steps needed to deanonymize users, the complete attack was evaluated only
with victim nodes patched to only consider their attackers as tunnel partici-
pants.



7 Conclusions

In this paper, we presented attacks that can be combined to deanonymize I2P
users. This confirms that critical attacks (such as Sybil and Eclipse attacks)
against DHTs used for anonymity systems are still valid, even when these sys-
tems are designed to resist these threats for practical purpose.

Acknowledgements

This work was supported in part by the ARO under grant W911NF-09-1-0553
and Secure Business Austria.

References

1. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th conference on USENIX Security Symposium -
Volume 13. SSYM’04, Berkeley, CA, USA, USENIX Association (2004) 21–21

2. Dingledine, R., Mathewson, N., Murdoch, S., Syverson, P.: Tor: the second-
generation onion router 2012 draft. (2012)

3. Tran, A., Hopper, N., Kim, Y.: Hashing it out in public: common failure modes
of DHT-based anonymity schemes. In: Proceedings of the 8th ACM workshop on
Privacy in the electronic society. WPES ’09, New York, NY, USA, ACM (2009) 71–80

4. Mittal, P., Borisov, N.: Information leaks in structured peer-to-peer anonymous com-
munication systems. ACM Trans. Inf. Syst. Secur. 15(1) (March 2012) 5:1–5:28

5. Herrmann, M., Grothoff, C.: Privacy-implications of performance-based peer se-
lection by onion-routers: a real-world case study using I2P. In: Proceedings of the
11th international conference on Privacy enhancing technologies. PETS’11, Berlin,
Heidelberg, Springer-Verlag (2011) 155–174

6. Douceur, J.: The sybil attack. In Druschel, P., Kaashoek, F., Rowstron, A., eds.: Peer-
to-Peer Systems. Volume 2429 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2002) 251–260

7. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing for
structured peer-to-peer overlay networks. SIGOPS Oper. Syst. Rev. 36(SI) (December
2002) 299–314

8. Singh, A., wan Ngan, T., Druschel, P., Wallach, D.S.: Eclipse attacks on overlay net-
works: Threats and defenses. In: In IEEE INFOCOM. (2006)

9. Timpanaro, J.P., Chrisment, I., Festor, O.: Monitoring the I2P network
10. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based

on the xor metric. In Druschel, P., Kaashoek, F., Rowstron, A., eds.: Peer-to-Peer
Systems. Volume 2429 of Lecture Notes in Computer Science. Springer Berlin Hei-
delberg (2002) 53–65

11. Evans, N., Grothoff, C.: R5n: Randomized recursive routing for restricted-route net-
works. In: Network and System Security (NSS), 2011 5th International Conference
on. (sept. 2011) 316 –321

12. Wolchok, S., Hofmann, O.S., Heninger, N., Felten, E.W., Halderman, J.A., Rossbach,
C.J., Waters, B., Witchel, E.: Defeating Vanish with low-cost Sybil attacks against
large DHTs. In: Proc. of NDSS. (2010)


